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Abstract

The 3/5-conjecture for the domination game states that the game domination
numbers of an isolate-free graph G on n vertices are bounded as follows: γg(G) ≤
3n

5
and γ′

g
(G) ≤ 3n+2

5
. Recent progress have been done on the subject and the

conjecture is now proved for graphs with minimum degree at least 2. One powerful
tool, introduced by Bujtás is the so-called greedy strategy for Dominator. In
particular, using this strategy, she has proved the conjecture for isolate-free forests
without leafs at distance 4. In this paper, we improve this strategy to extend the
result to the larger class of weakly S(K1,3)-free forests, where a weakly S(K1,3)-free
forest F is an isolate-free forest without induced S(K1,3), whose leafs are leafs of
F as well.

Keywords: domination game; 3/5-conjecture

AMS Subj. Class.: 05C57, 91A43, 05C69

1 Introduction

The domination game, introduced five years ago in [3] is played on an arbitrary graph
G by two players, Dominator and Staller. They alternately choose a vertex from G
such that at least one previously undominated vertex becomes dominated. The game
ends when no move is possible. Dominator aims to end the game as soon as possible,
while Staller wants to prolong it. By D-game (resp. S-game) we mean a game in which
Dominator (resp. Staller) plays first. Assuming that both players play optimally, the
D-game domination number γg(G) (resp. the S-game domination number γ′g(G)) of a
graph G, denotes the total number of chosen vertices during D-game (resp. S-game)
on G. There is already a flourishing amount of works on the subject, see for various
examples [15, 10, 1, 5, 2, 16]. The most outstanding conjecture concerning this game is
probably the so-called 3/5-conjecture. (For related developments concerning the total
domination game see [12, 13].)
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Conjecture 1.1 (Kinnersley, West and Zamani, [14]) If G is an isolate-free
graph on n vertices, then

γg(G) ≤
3n

5
and γ′g(G) ≤

3n+ 2

5
.

If true, the bounds are known to be tight, even if we restrict ourself to forests. See
[4] for a study of the structure of graphs reaching these bounds. Recently Bujtás has
made a breakthrough by introducing a powerful greedy strategy for Dominator [7]. In
particular, using this technique, she has proved the conjecture for a large subclass of
forests [7, 9]. In that case, the upper bound for S-game turns two be even better.

Theorem 1.2 (Bujtás 2014) If F is an isolate-free forest on n vertices, without leafs
at distance 4, then

γg(F ) ≤
3n

5
and γ′g(F ) ≤

3n+ 1

5
.

This greedy strategy could also be applied to graphs with minimum degree at least 3.
In [8], the conjecture is proved for this class of graph. Even more recently, Henning and
Kinnersley [11] established the truth of the 3/5-conjecture over the class of graphs with
minimum degree at least 2. Hence the 3/5-conjecture remains open only for graphs with
pendant vertices. In this paper, we prove the 3/5 conjecture for a larger class of forests,
which contains the forests without leafs at distance 4. Even if forests deserve interest
by themselves, we emphasize that the general conjecture cannot be easily reduced to
the one on forests. There are actually graphs which have greater domination number
than any of their spanning trees [6].

Let S(K1,3) be the graph obtained by subdividing once all the edges of the star
K1,3 (see Figure 1). A weakly S(K1,3)-free forest is a forest which does not contain:

• isolated vertices and

• induced S(K1,3) whose leafs are leafs in the original forest.

Figure 1: S(K1,3)

The class of weakly S(K1,3)-free forests obviously contains the isolate-free forests with-
out leafs at distances 4. For this class of forests we are able to extend Bujtás greedy
strategy to prove the following more general theorem.
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Theorem 1.3 If F is a weakly S(K1,3)-free forest on n vertices, then

γg(F ) ≤
3n

5
and γ′g(F ) ≤

3n+ 2

5
.

The upper bounds are tight in both cases. For example, by [4, Theorem 3.7], trees from
Figure 2 (a) reach the bound for D-game. For S-game, we easily verify that forests from
Figure 2 (b) attain the bound as well.
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Figure 2: Extremal weakly S(K1,3)-free forests

In the second section of the article, we are going to prove the upper bounds of our
main theorem. The first subsection describes Bujtás’ greedy strategy and introduces
an improvement of it, the so-called breaking-P5 strategy. The second subsection deals
with the proof of the main theorem for D-game. Finally, in the last subsection, we
explain briefly how to modify the proof to extend the result to S-game.

2 Proof of the main theorem

We start by proving the upper bound for D-game. All the results of the two following
subsections are stated assuming that D-game is played. In the last subsection, we
explain how to modify the proof to get the desired upper bound for S-game.

2.1 The greedy strategy and the breaking-P5 strategy

First we recall Bujtás’ greedy strategy for Dominator and give definitions and back-
ground needed to understand it. Our strategy will be compatible with the greedy one.
In fact, it is only a refinement of the first phase of this strategy. Let F be an isolate-free
forest on n vertices. All vertices will be colored with one of the following three colors:
white (W ), blue (B) and red (R). In addition to colors, each vertex of F has also a
value. It is this value which ables to define a greedy like strategy. The coloring and the
values will change all along the game. At the end of turn k ≥ 0, the color and value of
a vertex are defined as follows.
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• A vertex is white and its value is 3 if it is not already dominated.

• A vertex is blue and its value is 2 if it is dominated, but at least one of its
neighbors is not.

• A vertex is red and its value is 0 if N [v] is entirely dominated.

Note that, when a vertex is selected by a player, it is always going to turn red
during the current turn. We denote respectively by Wk(F ), Bk(F ) and Rk(F ), the set
of white, blue and red vertices at the end of turn k ≥ 0. When F will be clear from
the context, we will omit it in the notations. At the end of turn k ≥ 0, we define the
residual forest Fk as the forest obtained from F by deleting all the red vertices and all
the edges between two blue vertices (note that F0 = F ). Since all the legal moves are
either white or blue vertices and all the blue vertices are already dominated, the game
after k moves is the same played on the forest F or played on the residual forest Fk.
The following statement proved in [9] is particularly useful. In particular, the first item
ensures that any white leaf in a residual forest is also a leaf in the original forest. In
other words, no white leaf is created during the game.

Lemma 2.1 Let F be an isolate-free forest and k ≥ 0.

1. If v belongs to Wk, then v has the same neighborhood in Fk as in F .

2. If F has no isolated vertex, then neither has Fk.

For k ≥ 0, the value of the residual forest Fk is the sum of the values of all its
vertices. We denote this value by p(Fk). By definition, p(F ) = 3n. At each turn, the
value of the residual forest decreases. We say that a player seizes s points during turn
k ≥ 1, when p(Fk−1) − p(Fk) = s. In the greedy strategy the game will be divided
into four phases described below. Dominator will always start by applying, if possible,
Phase 1 of the strategy. For i ∈ {2, 3, 4}, Phase i starts at Dominator’s turn only if
Phase i − 1 is no longer possible. If at this moment, the strategy of Phase i is not
applicable, then it will be skipped. When Dominator starts to play in a new phase, he
will never go back to a previous one, even if a change in the residual graph might cause
this phase applicable again.

Greedy strategy.

• Phase 1. At his turn Dominator seizes at least 7 points and at least two vertices
turn red during this turn.

• Phase 2. At his turn Dominator seizes at least 7 points.

• Phase 3. At his turn Dominator seizes at least 6 points. Moreover, he applies
the following two rules.

– Dominator selects a vertex which ensures the maximal possible gain achiev-
able at this turn.
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– Under the above rule, Dominator always prefers to play a white stem in the
residual forest, which has a white leaf neighbor.

• Phase 4. At his turn Dominator seizes at least 3 points.

Roughly speaking, Bujtás’ proof is to show that during a turn of Dominator and the
turn of Staller which follows, the value of the residual forest is in average decreased by
10 points. It implies directly that after at most 3n/5 moves, the value of the residual
graph is 0, which means the game is over. But it works only if we do not deal with
what Bujtás called critical P5.

Definition 2.2 A critical P5 in Fk, with k ≥ 0 is a path of length 4 such that the
following holds.

• All the vertices are in Wk, save the center of the path which is in Bk.

• Both ends of the path are leafs in Fk.

The blue center of a critical P5 is called a critical center. It is proved in [9], that these
critical centers could only appear during Phase 1. Since no new white leaf is created
along the game, the following observations are also easy to prove.

Observation 2.3 If a vertex in Bk is not a critical center at the end of turn k ≥ 1,
then it is not a critical center at the end of any turn k′ ≥ k.

In order to state precisely the results obtained by Bujtás, we need more definitions
related to this phase. Let k∗ ≥ 0 be the turn at the end of which Phase 1 is over.
If Phase 1 is skipped, it is easy to show that the 3/5-conjecture holds (the forest is
actually a disjoint union of edges). For, we assume in the rest of the paper that k∗ ≥ 1.
The number of critical centers at the end of turn k∗ will be denoted by c∗. For each
turn of Phase 1, when Dominator decreases the value of the graph by more than 7,
he does better than what it is expected during this phase. It is the same for Staller
when she decreases the value by more than 3 points. These bonus points are defined
as follows.

Definition 2.4 For k ∈ {1, ..., k∗}, set:

ek =

{

p(Fk−1)− p(Fk)− 7 if turn k is due to Dominator,

p(Fk−1)− p(Fk)− 3 if it is due to Staller.

The sum of all the bonus points earned during Phase 1 will be denoted by e∗, that is
e∗ = e1 + · · · + ek∗. In [9, Theorem 2], Bujtás proved the following result.

Proposition 2.5 Let F be an isolate-free forest on n vertices. If Dominator plays
D-game according to the greedy strategy, then the number of turns will be at most
3n − e∗ + c∗

5
.
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By Lemma 2.1, no new white leaf is created all along the game. It follows that for
an isolate-free forest F without leafs at distance 4, c∗ is always equal to 0. Hence,
the above proposition shows that the 3/5-conjecture holds for D-game when restricted
to this class of forests. For S-game similar arguments show that for this restricted
class the upper bound is slightly better than the one announced by the conjecture:
γ′g(F ) ≤ 3|V (F )|+1

2 .

We now improve the greedy strategy in order to apply it to the larger class of
weakly S(K1,3)-free forests. Let F be an isolate-free forest on n vertices. From now
on, we assume that F is arbitrarily rooted. More precisely, if F is a forest with m ≥ 1
connected components T1,...,Tm, then for any i ∈ {1, ...,m} we select some ri ∈ V (Ti)
to be the root of the tree Ti. For every vertex v ∈ V (Ti), the height of v is defined by
h(v) = d(ri, v).

We define P(F ) as the set of paths of length 4 between two leafs of F . We say that a
vertex d ∈ V (F ) is a dangerous center after k ≥ 0 moves, if the followings holds.

• The vertex d is the center of a path P in P(F ).

• All the vertices of P are in Wk.

The set of dangerous centers after k ≥ 0 moves will be denoted by Dk(F ). When
F will be clear from the context, we will only write Dk. Because no new white leaf
is created in the residual forests along the game (see Lemma 2.1), the two following
results clearly hold.

Lemma 2.6 If k′ ≥ k ≥ 0 then Dk′ ⊆ Dk, that is no new dangerous center is created
during the game.

Lemma 2.7 If a vertex in Wk does not belong to Dk, with k ≥ 0, then it could not be
a critical center at the end of any turn k′ > k.

The following lemma is important, because it gives an alternative definition of the class
of weakly S(K1,3)-free forests.

Lemma 2.8 If F is a weakly S(K1,3)-free forest and d is a dangerous center in D0(F ),
then there are exactly two vertices a1, a2 ∈ N(d), such that any path in P(F ) whose
center is d contains a1 and a2.

Proof. Let l1a1da2l2 be a path in P(F ) whose center is the dangerous center d. Let f
be a leaf of a path P in P(F ) whose center is also d. We have to prove that the unique
neighbor u of f is either a1 or a2. By way of contradiction, assume that P contains
neither a1 nor a2. Then the subtree induced by {l1, l2, f, a1, a2, u} is clearly isomorphic
to S(K1,3). Since l1, l2 and f are leafs of F , the forest is not weakly S(K1,3)-free. A
contradiction. �

At least one of the two vertices a1, a2 defined in Lemma 2.8 has a height strictly
greater than d. Without lost of generality, we always assume that h(a2) > h(d) and
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we say that a2 is the P5-child of d. We introduce now the breaking-P5 strategy. The
notation a1 and a2 will always refer to the two vertices defined in the above lemma.
We will say that a1 is the vertex related to the dangerous center d.

Breaking-P5 strategy.

• Phase 1.0: if Dk−1 is not empty at his turn k ≥ 1, Dominator selects a vertex
d ∈ Dk−1 with maximum height and he plays the vertex a1 related to d. To
emphasize that d is not the vertex played during this turn, we will always say
that d is elected.

• Phase 1.1: at his turn, Dominator gets at least 7 points and at least two vertices
turn red.

• Phases 2 to 4: these phases are the same as for the greedy strategy.

The phases follow one another in the same way as for the greedy strategy. We write
k∗∗ ≥ 0 for the number of turns in Phase 1.1, c∗∗ for the number of critical centers at
the end of turn k∗∗ and e∗∗ = e1 + · · · + ek∗∗ . If k∗∗ = 0, then we are in the settings
of Bujtás’ proof. Hence, we assume now that k∗∗ ≥ 1. As we will see in the following
proposition, the breaking-P5 strategy is also a greedy strategy and we have a result
similar to Proposition 2.5.

Proposition 2.9 Let F be an isolate-free forest on n vertices. If Dominator plays
D-game according to the breaking-P5 strategy, then the number of turns will be at most
3n − e∗∗ + c∗∗

5
.

Proof. Let d be the dangerous center elected by Dominator according to the rules of
Phase 1.0. Let a1 be the neighbor of d defined in Lemma 2.8. Since Dominator plays
according to the breaking-P5 strategy, he plays a1. This vertex and at least one of
its white leaf neighbors turn from white to red. Moreover, the elected vertex d turns
from white to blue. Hence Dominator sizes at least 7 points, which in turn implies that
the breaking-P5 strategy is a greedy strategy. Applying Proposition 2.5, we have that

D-game will end in at most
3n− e∗ + c∗

5
turns. Moreover, any critical center created at

turn k > k∗∗ must belong to Dk−1. But Dk = ∅, for all k ≥ k∗∗. Hence, by Lemma 2.7,
we have c∗ = c∗∗. Finally, it is obvious that e∗ ≥ e∗∗. In conclusion, if Dominator

follows the breaking-P5 strategy, D-game ends in at most
3n− e∗∗ + c∗∗

5
turns. �

2.2 The proof for D-game

We now prove that if F is a weakly S(K1,3)-free forest on n vertices, then γg(F ) ≤
3n

5
.

For this purpose, we introduce two new processes for each turn of the game. These
processes come in addition to the coloring and values defined in the greedy strategy
and they only concern blue vertices. When turning blue, some vertices will also be
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highlighted. We denote by Hk the set of highlighted vertices at the end of turn k ≥
1. The highlighting process will only occur at Dominator’s turns. Moreover all blue
vertices will get either weight 0 or 1. We denote by wk : Bk → {0, 1} the weight function
at the end of turn k ≥ 1. For v ∈ V (F ) and X,Y ∈ {B,R,W}, we write v : X  Y to
indicate that the color of v changes from X to Y during the current turn.

Highlighting Process.

• When Dominator elects the dangerous center d ∈ Dk−1 at turn k ≥ 1, d is
highlighted.

Note that Hk ⊆ Bk, because the elected vertex always turns blue during the turn where
it is elected.

Weighting Process.

• Dominator’s turn k, k ≥ 1. All new blue vertices which are not highlighted get
weight 1. The new highlighted vertex d gets weight 0.

• Staller’s turn k, k ≥ 1. She selects vertex v.

(A) v : W  R and v is not the P5-child of a vertex d ∈ Hk−1. All new blue
vertices get weight 1.

(B) v : W  R and v is the P5-child of a vertex d ∈ Hk−1. All new blue vertices
get weight 0 and the vertex d gets weight 1.

(C) v : B  R, v 6∈ Hk−1 and v is not the P5-child of a vertex d ∈ Hk−1. All
new blue vertices get a weight equal to the weight of v.

(D) v : B  R, v 6∈ Hk−1 and v is the P5-child of a vertex d ∈ Hk−1. All new
blue vertices get weight 0 and d get weight 1.

(E) v : B  R and v ∈ Hk−1. In particular v is in D0. Let a2 be the P5-child of
v.

(a) If a2 ∈ Wk−1, all new blue vertices but a2 get weight 1 and a2 gets
weight 0.

(b) If a2 ∈ Bk−1, all new blue vertices get weight 1 and a2 gets new weight
0.

(c) If a2 ∈ Rk−1, all new blue vertices get weight 1.

• Additional process for turn k, k ≥ 1. This process is applied after the two former
processes. If the P5-child of a vertex d ∈ Hk−1 turns from blue to red without
being played by one of the player, then d gets a weight of 1.

Before being able to complete the proof, we need some technical definitions and
lemmas. Until the end of this subsection, we always assume that Dominator plays
according to the breaking-P5 strategy.

Definition 2.10 Let u be a vertex of a rooted forest F . For each turn k ≥ 0, we define
the following connected subtrees of F \Rk.
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• Ck(u) is the largest connected subtree of F \Rk which contains u.

• C+
k
(u) is the largest connected subtree of F \ Rk which contains u and whose

vertices have height greater or equal to h(u).

• C−
k (u) = Ck(u) \ C

+
k (u).

Remark that all these three sequences are non increasing with respect to inclusion. The
following result follows directly from the definition.

Lemma 2.11 Let F be a rooted forest. For all k ≥ 0 and all u, v ∈ V (F ), if v is in
C+
k (u) (resp. in C−

k (u)), then C+
k (v) ⊆ C+

k (u) (resp. C−
k (v) ⊆ C−

k (u)).

Lemma 2.12 Let F be a rooted forest and d be a vertex in D0(F ), which is highlighted
at turn k ≥ 1. Then C+

k′
(d) ∩Dk′ = ∅, for all k′ ≥ k.

Proof. According to the prescribed strategy for Dominator, a dangerous center is
highlighted at turn k ≥ 1 only if it has a maximum height among all the dangerous
center from Dk−1. In other words, C+

k−1(d)∩Dk−1 = {d}. Moreover, C+
k′
(d) ⊆ C+

k−1(d)

and Dk′ ⊆ Dk−1, for all k
′ ≥ k. Hence, C+

k′
(d) ∩Dk′ ⊆ {d}. Finally, since d belongs to

Bk, it is not in Dk′ . We conclude that C+
k′
(d) ∩Dk′ = ∅. �

Lemma 2.13 Let F be a rooted forest. Let d and d′ be two vertices in D0(F ) which
are respectively highlighted at turns k and k′ ≥ 1. Then the following hold.

(i) The P5-child a2 of the vertex d belongs to Wk. Moreover, if a2 is going to turn
red or blue during Phase 1.0, this could be only during a turn of Staller.

(ii) The vertex d is not the P5-child of d′.

Proof. We prove (i) first. Let d be a dangerous center highlighted at turn k. The
vertex d has to belong to Dk−1. By definition of the sets of dangerous centers, this
implies that its P5-child a2 is in Wk−1. Since d is highlighted at turn k this turn belongs
to Dominator and during this turn he plays the vertex a1 related to d. This vertex
is not adjacent to the white vertex a2. Hence a2 remains white at the end of turn k.
Moreover, by Lemma 2.12, we have C+

k
(d)∩Dk = ∅. This implies that Dominator will

not play in C+
k (d) until the end of Phase 1.0. In other words, Dominator will play all

his remaining moves in Phase 1.0 in C−
k (d). But a2 ∈ Wk is not adjacent to any vertex

in D−
k (d). Hence, Dominator’s further moves in Phase 1.0 will not change the color of

a2.

We now prove (ii). Assume first that k′ > k. By (i), the P5-child of d′ belongs to Wk′.
But d has turned blue at turn k. Hence d cannot be the P5-child of d′. Suppose now
that k′ < k. By Lemma 2.12, C+

k−1(d
′) ∩Dk−1 is empty. Therefore the P5-child of d′

does not belong to Dk−1. But to be highlighted at turn k, d has to belongs to Dk−1.
We conclude as previously. �

We are now ready to state the following proposition, which will directly imply our
main result for D-game.
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Proposition 2.14 Let F be a weakly S(K1,3)-free forest. For all k ∈ {0, ..., k∗∗}, define

Sk =
k

∑

i=1

ei and Kk =
∑

v∈Bk

wk(v). The following statements are true.

• Ik : Kk ≤ Sk.

• IIk : ∀v ∈ Bk \Hk, if wk(v) = 0, then C−
k (v) = ∅ and C+

k (v) ∩Dk = ∅.

• IIIk : ∀v ∈ Bk, if wk(v) = 0, then v is not a critical center at the end of turn k.

Proof. We will proceed by induction on k. Since B0 is empty and K0 = S0 = 0, the
three statements are trivially true for k = 0. Suppose that Ik, IIk and IIIk are true
for some k ∈ {0, ..., k∗∗−1}. We denote by bk+1 the number of vertices which turn blue
during turn k + 1.

First, we deal with the weighting process for Dominator’s turn. We assume that
turn k + 1 belongs to Dominator. At least two vertices turn from white to red and
Dominator earns 6 points with these two vertices. Hence, ek+1 ≥ bk+1−1, which implies
that Sk+1 ≥ Sk + bk+1 − 1. During this turn the weight of the vertices in Bk does not
change and only bk+1 − 1 new blue vertices get weight 1 (the highlighted vertex gets
weight 0). Therefore, Kk+1 ≤ Kk + bk+1 − 1. Using the induction hypothesis, it yields
Kk+1 ≤ Sk+1. We conclude that Ik+1 is true.

Let w be a vertex in Bk, such that wk(w) = 0. Since C+
k+1(w)∩Dk+1 ⊆ C+

k (w)∩Dk and

C−
k+1(w) ⊆ C−

k (w), the truth of statement IIk+1 is straightforward from the induction
hypothesis IIk for the old blue vertices whose weight remains 0. In other words, we
only have to pay attention to blue vertices, new or old, which get new weight 0 during
turn k + 1. Here, the weight of the former blue vertices does not change during this
turn and all the new blue vertices which are not in Hk+1 get weight 1. Hence IIk+1

is trivially true. By Observation 2.3, in order to prove IIIk+1, we only need to pay
attention to vertices whose weight turns to 0 during this turn. Here, it is the case for
an unique vertex, the dangerous center d ∈ Dk, which is elected by Dominator and
highlighted during turn k + 1. We emphasize that this is the only point of the whole
proof where the weakly S(K1,3)-free condition is used. Since Dominator follows the
breaking-P5 strategy, it implies that the vertex a1 (defined in Lemma 2.8) is played by
Dominator at turn k + 1. Hence, a1 belongs to Rk+1. Let now P be a path in P(F )
whose center is d. By Lemma 2.8, P goes through a1 which is in Rk. Therefore P
cannot be a critical P5 in the residual forest Fk+1, which in turn implies that d is not
a critical center at turn k + 1. In conclusion IIIk+1 holds.

Now, we prove the heredity of our statements for the weighting process of Staller’s
turn. We suppose that turn k+1 belongs to Staller and denote by v the vertex played
by her. We have to deal with the five different cases of the weighting process. We start
by proving Ik+1. For the two first cases, Staller earns 3 points with the vertex v which
turns from white to red. Hence ek+1 ≥ bk+1 and Sk+1 ≥ Sk + bk+1.

10



Case (A). Because all new blue vertices get weight 1 and the weight of former blue
vertices does not change, we haveKk+1 ≤ Kk+bk+1. By induction hypothesis, Kk ≤ Sk,
so we conclude that Wk+1 ≤ Sk+1.

Case (B). Since v is the P5-child of the vertex d ∈ Hk, it is adjacent to a leaf l of F .
Since v belongs to Wk, this leaf is also in Wk. Hence, at least two vertices, v and l turn
from white to red during turn k+1. It implies that ek+1 ≥ 3 and Sk+1 ≥ Sk +3. Since
all new blue vertices get weight 0 and d is the only former blue vertex whose weight is
increased to 1, we get Kk+1 ≤ Kk + 1 ≤ Sk + 1 < Sk+1.

For the three last cases, the vertex v played by Staller turns from blue to red and Staller
earns 2 points with this vertex. Hence, ek+1 ≥ bk+1 − 1 and Sk+1 ≥ Sk + bk+1 − 1.

Case (C). If wk(v) = 0, then all new blue vertices get weight 0 and Kk+1 ≤ Kk. By
induction, we get Kk+1 ≤ Sk ≤ Sk+1. Now, if wk(v) = 1, all new blue vertices get
weight 1. But v will not be blue anymore, that is to say v 6∈ Bk+1. Hence, its weight 1
will not count for Kk+1. Therefore, Kk+1 ≤ Kk + bk+1 − 1 ≤ Sk+1.

Case (D). As above, the weight of v will not count for Kk+1. Hence Kk+1 ≤ Kk +1−
wk(v). Since v is the P5-child of a vertex d ∈ Hk ⊆ Bk, C

−
k (v) contains at least d. By

Lemma 2.13 (ii), v is not in Hk. Hence, the induction hypothesis IIk yields wk(v) = 1.
In conclusion, Kk+1 ≤ Kk + 1− wk(v) ≤ Kk ≤ Sk ≤ Sk+1.

Case (E). Let a2 be the P5-child of v.

(a) If a2 ∈ Wk, then Kk+1 ≤ Kk + bk+1 − 1, because a2 gets weight 0. By induction,
Kk+1 ≤ Sk + bk+1 − 1 ≤ Sk+1.

(b) If a2 ∈ Bk, a2 gets new weight 0. Therefore, Kk+1 ≤ Kk + bk+1 − wk(a2). Since
v ∈ Hk ⊆ Bk, C

−
k (a2) contains v. By Lemma 2.13, a2 is not in Hk. Finally, IIk

implies that wk(a2) = 1, which in turn implies Kk+1 ≤ Kk + bk+1 − 1 ≤ Sk+1.

(c) If a2 ∈ Rk, we have Kk+1 ≤ Kk+ bk+1−wk(v), because v does not belong to Bk+1.
By Lemma 2.13, we know that a2 has turned red some moves after the moment
v has been highlighted. Moreover, it happened during a Staller’s turn. There are
two possibilities. First, a2 has turned red because it has been played by Staller at
turn k′ < k + 1. Case B or Case D of the weighting process for Staller’s turn has
been applied. Hence, during this turn, v has gotten weight 1. Second, a2 might
have turned red without being played by Staller. The additional weighting process
ensures that d has also gotten weight 1. Moreover, the only weighting process,
which can change the former weight of a blue vertex into 0, is the second item of
Case E for Staller’s turn. But, this process is applied only if v is the P5-child of
another highlighted vertex. Once more, Lemma 2.13 ensures that it is impossible
because v is itself highlighted. In all the cases wk(v) = wk′(v) = 1 and we can
conclude as before.

We now prove IIk+1 and IIIk+1. As for Dominator’s turn, we only have to pay attention
to the blue vertices, whose weight becomes 0 during turn k + 1.
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Case (A). None of the new blue vertices gets weight 0 and no former blue vertex
weight change from 1 to 0. Then, IIk+1 and IIIk+1 are trivially true.

Case (B). The only vertices whose weight turn to 0 during the turn are the new blue
vertices in N(v). Let u be such a vertex. The vertex v is the P5-child of a vertex d ∈ Hk.
Note that because d was already blue at the beginning of turn k + 1, we have d 6= u.
The vertex d is the only neighbor of v whose height is strictly less than the height of v.
Hence h(u) > h(v) > h(d). Since v is now red, C−

k+1(u) is empty. The vertex d has been
highlighted during a Dominator’s turn, say turn k′ < k + 1. Since v and u are in Wk′,
u belongs to C+

k′
(d). By Lemma 2.11, C+

k+1(u) ∩Dk+1 ⊆ C+
k′
(u) ∩Dk′ ⊆ C+

k′
(d) ∩Dk′ .

By Lemma 2.12, the last set of these inclusion list is empty. Thus C+
k+1(u) ∩Dk+1 is

also empty. In conclusion IIk+1 is proved. Moreover, we have C+
k′
(d) ∩ Dk′ = ∅ and

u ∈ C+
k′
(d). Hence u is not in Dk′ , but it is in Wk′ . By Lemma 2.7, u is not a critical

center at the end of turn k + 1. In conclusion, IIIk+1 holds.

Case (C). If wk(v) = 1, then no blue vertices, old or new, would see their weight turn
to 0. In that case IIk+1 and IIIk+1 are trivially true. Suppose that wk(v) = 0 and let
u ∈ N(v) be a new blue vertex. The vertex v is not in Hk. By induction hypothesis IIk,
C−
k
(v) = ∅ and C+

k
(v)∩Dk = ∅. Hence, u has to belong to C+

k
(v)\Dk. By Lemma 2.7,

u cannot be a critical center at turn k + 1. That proves IIIk+1. By Lemma 2.11,
C+
k+1(u) ⊆ C+

k+1(v). Therefore C+
k+1(u) ∩Dk+1 = ∅. Finally C−

k+1(u) = ∅, because v is
red at the end of turn k + 1. In conclusion IIk+1 is true.

Case (D). The proof is the same as for Case (B).

Case (E). Let a2 be the P5-child of v. For subcases (a) and (b), this vertex is the only
blue vertex which gets weight 0 during this turn. The vertex a2 belongs to C+

k (v). It
implies that C+

k+1(a2) ⊆ C+
k (a2) ⊆ C+

k (v) and C+
k+1(a2)∩Dk+1 ⊆ C+

k (v)∩Dk. Since v

is an highlighted vertex, C+
k (v)∩Dk is empty by Lemma 2.12. Hence C+

k+1(a2)∩Dk+1 is

also empty. Moreover, because v is red at the end of turn k+1, we have C−
k+1(a2) = ∅.

That shows that IIk+1 holds. Since v ∈ Hk, this vertex has been highlighted during
a Dominator’s turn, say turn k′ ≤ k. We have C+

k′
(v) ∩ Dk′ = ∅. Hence, a2 does not

belongs to Dk′ . By Lemma 2.13, a2 belongs to Wk′ . Therefore, applying Lemma 2.7,
the vertex a2 is not a critical center at the end of turn k + 1. In conclusion IIIk+1 is
true. Finally, for subcase (c), no blue vertex get new weight 0, so there is nothing to
prove.

Finally, we have to prove that applying the additional weighting process at the end
of turn k + 1 does not change the true of statement Ik+1, IIk+1 and IIIk+1. Since no
blue vertex gets weight 0 during this process, IIk+1 and IIIk+1 remain trivially true.
Let x1, ..., xm be the P5-children of some vertices in Hk, which turn red without being
played by one of the player. After applying this process, the new value of Kk+1 will
be less or equal to Kk+1 + m − wk(x1) − · · · − wk(xm). By the P5-child definition,
C−
k
(xi) ∩Hk is non empty, for any i ∈ {1, ...,m}. Moreover, by Lemma 2.13, we have

xi 6∈ Hk. Applying the induction hypothesis IIk, we get that wk(xi) = 1. That proves
that the value of Kk+1 is not increased by the application of the additional process.
We conclude that Ik+1 remains true. �
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Theorem 2.15 If F is a weakly S(K1,3)-free forest on n vertices, then γg(F ) ≤
3n

5
.

Proof. By Proposition 2.9, we only have to prove that c∗∗ ≤ e∗∗. Let Kk∗∗ and
Sk∗∗ be defined as in Proposition 2.14. Note that Sk∗∗ = e∗∗. Statement IIIk∗∗ from
Proposition 2.14 implies that c∗∗ ≤ Kk∗∗ . Moreover, statement Ik∗∗ implies that Kk∗∗ ≤
Sk∗∗ . We conclude that c∗∗ ≤ e∗∗. �

2.3 The proof for S-game

The proof for S-game will proceed in the same way as for D-game, except that now
we introduce Phase 0 of the game, which corresponds to the first move of Staller.
Hence, Phase 1.1 will now start at turn k = 2. We still write k∗∗ for the last turn
of Phase 1.1 and c∗∗ for the number of critical centers at the end of turn k∗∗. We
set e1 = p(F0) − p(F1) − 5. For k ≥ 2, ei is defined as for D-game. We also set
e∗∗ = e2 + · · ·+ ek∗∗ .

In the proof of [9, Theorem 2], it is proved that, by following the greedy strategy in
S-game for an isolate-free forest on n vertices, Dominator can force the game to end in

at most
3n− e1 − e∗ + c∗

5
turns. Here, e∗ is the amount of bonus point earned during

Phase 1 and c∗ is the number of critical centers at the end of this same phase. As for
D-game, this statement implies the following proposition.

Proposition 2.16 Let F be an isolate-free forest on n vertices. If Dominator plays
S-game according to the breaking-P5 strategy, then the number of turns will be at most
3n − e1 − e∗∗ + c∗∗

5
.

We can define the weighting and the highlighting process exactly in the same manner
as for D-game. We can state a proposition very similar to Proposition 2.14. Only
statement Ik will change. For this new proposition, we will have Kk ≤ Sk + 2, for all
k ≥ 0. Indeed e1 is equal to the number of blue vertices minus 2. Since all these blue
vertices will get weight 1, we have K1 ≤ S1 + 2. Finally, this new proposition will
directly prove that c∗∗ ≤ e1 + e∗∗ + 2. It clearly implies the below theorem.

Theorem 2.17 If F is a weakly S(K1,3)-free forest on n vertices, then γ′g(F ) ≤
3n + 2

5
.
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[6] B. Brešar, S. Klavžar, D. F. Ral, Domination game played on trees and spanning
subgraphs, Discrete Math. 313 (2013) 915–923.

[7] Cs. Bujtás, Domination game on trees without leaves at distance four, Proceed-
ings of the 8th Japanese-Hungarian Symposium on Discrete Mathematics and Its
Applications (A. Frank, A. Recski, G. Wiener, eds.) 73–78, (June 2013).

[8] Cs. Bujtás, On the game domination number of graphs with given minimum degree,
Electron. J. Combin., to appear.

[9] Cs. Bujtás, Domination game on forests, Discrete Math. 338 (2015) 2220–2228.
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