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We study in this paper the phase transition in a mobile Potts model by the use of Monte Carlo
simulation. The mobile Potts model is related to a diluted Potts model which is also studied here
by a mean-field approximation. We consider a lattice where each site is either vacant or occupied
by a q-state Potts spin. The Potts spin can move from one site to a nearby vacant site. In order to
study the surface sublimation, we consider a system of Potts spins contained in a recipient with a
concentration c defined as the ratio of the number of Potts spins Ns to the total number of lattice
sites NL = Nx × Ny × Nz. Taking into account the attractive interaction between the nearest-
neighboring Potts spins, we study the phase transition as functions of various physical parameters
such as the temperature, the shape of the recipient and the spin concentration. We show that as
the temperature increases, surface spins are detached from the solid phase to form a gas in the
empty space. Surface order parameters indicate different behaviors depending on the distance to
the surface. At high temperatures, if the concentration is high enough, the interior spins undergo
a first-order phase transition to an orientationally disordered phase. The mean-field results are
shown as functions of temperature, pressure and chemical potential, which confirm in particular the
first-order character of the transition.

PACS numbers: 05.50.+q ; 05.70.Fh ; 64.60.De

I. INTRODUCTION

Phase transition is a fascinating subject that has at-
tracted an enormous number of investigations in various
areas during the last fifty years. Much of progress has
been achieved in the seventies in the understanding of
mechanisms which characterize a phase transition: the
renormalization group shows that the nature of a phase
transition depends on a few parameters such as the space
dimension, the symmetry of the order parameter and the
nature of the interaction between particles [1–3].

There has been recently a growing interest in using
spin systems to describe properties of dimers and liquid
crystals [4]. Spin systems are used in statistical physics
to describe various systems where a mapping to a spin
language is possible. In two dimensions (2D) Ising-Potts
models were studied extensively [5–7]. Interesting results
such as hybrid transitions on defect lines were predicted
with renormalizaton group and confirmed with Monte
Carlo (MC) simulations [8]. Unfortunately, as for other
systems of interacting particles, exact solutions can be
obtained only for systems up to 2D with short-range in-
teractions [9, 10]. We will focus in this paper on the q-
state Potts model in three dimensions (3D) where Baza-
vova et al. have recently shown precise results for various
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values of q for the localized Potts models [11]. High-
temperature series expansions for random Potts mod-
els have been studied by Hellmund and co-workers [12].
Other investigations have been carried out on critical
properties in the 3D site-diluted Potts model [13] and
Potts spin glasses [14–18].

We are interested here in the problem of moving parti-
cles such as atoms or molecules in a crystal. To simplify,
we consider the case of mobile q-state Potts spins moving
from one lattice site to a nearby one. The q states ex-
press the number of internal degrees of freedom of each
particle, such as molecular local orientations. We sim-
ulate the mobile 6-state Potts model on a cubic lattice.
It is known that the pure Potts model in three dimen-
sions undergoes a continuous transition for q = 2 and a
first-order transition for q=3, 4, ... We use here MC sim-
ulation and a theoretical analysis to elucidate properties
of such a system. The mobility depends on the temper-
ature. At low temperatures, all spins gather in a solid,
compact phase. As the temperature increases, spins at
the surface are detached from the solid to go to the empty
space forming a gaseous phase. We show that the phase
transformation goes through several steps and depends
on the concentration of the Potts spins in the crystal.

The mobile Potts model presented here is expected to
be equivalent to the dilute Potts model in as far as the
bulk thermodynamics is concerned. The kinematics at
the interface between the solid and the gas phases may
be affected by the constraint that atoms move only to
empty neighboring cells in the mobile model as opposed
to the case where atoms move to any other vacant cell in



2

the diluted model.
At a sufficiently high concentration, spins are not en-

tirely evaporated and the remaining solid core undergoes
a transition to the orientationally disordered phase. We
anticipate here that there is only one phase transition
in the model, a first-order transition from higher-density
(solid) phase with non-zero Potts order parameter to a
lower-density phase with vanishing Potts order param-
eter. The sublimation observed below is analogous to
surface melting, which in the melting of a solid can be-
gin well below the bulk melting temperature. Details are
shown and discussed in terms of surface sublimation and
melting. We note in passing that direct studies of melt-
ing using continuous atomic motions are efficient for bulk
melting [19–21] but they have often many difficulties to
provide clear results for complicated situations such as
surface melting (see references cited in Ref. 22). Us-
ing discrete spin displacements as in the present model
we show that bulk melting and surface sublimation can
be clearly observed. We believe that these results bear
essential features of real systems.
Section II is devoted to the description of our mobile

Potts model. The mobile Potts model is related to a di-
luted Potts model. The latter model is analyzed within
the mean-field approximation for bulk properties in sec-
tion III below. The two models are not identical. While
in the mobile Pots model a spin can move to a void loca-
tion nearby, in the diluted model there is no constraint
on the proximity of the locations of the spin and the va-
cancy. The thermodynamics of two models may be iden-
tical in the long run, even though the kinematics may
be different. Section IV is devoted to the presentation of
MC simulation results. Concluding remarks are given in
section V.

II. MOBILE POTTS MODEL

We consider a lattice of NL sites. A site i can be
vacant or occupied at most by a Potts spin σi of q states:
σi = 1, 2, ..., q. Potts spins can move from one site to a
neighboring vacant site under effects of mutual spin-spin
interaction and/or of temperature T . In order to allow
for spin mobility, the number Ns of Potts spins should
be smaller than NL. Let us define the spin concentration
c by c = Ns/NL. The Hamiltonian is given by the Potts
model:

H = −J
∑

i,j

δ(σi, σj) (1)

where J is the interaction constant between nearest
neighbors (NN) and the sum is taken over NN spin pairs.
To this simple Hamiltonian, we can add a chemical po-
tential term when we deal with the system in the grand-
canonical description [23] and an interaction term be-
tween neighboring vacancies (see below).
The ground state (GS) of the system described by Eq.

(1) is the one with the minimum of interaction energy:

FIG. 1: (Color online) Ground state of the system with Nx =
Ny < Nz.

each spin maximizes the number of NN of the same val-
ues. As a consequence, all spins have the same value
and form a compact solid. If the lattice is a recipient of
dimension Nx × Ny × Nz, then the GS is a solid with
a minimum of surface spins (surface spins have higher
energies than interior spins due to a smaller number of
NN). In a recipient with Nx = Ny < Nz with periodic
boundary conditions in the xy plane and close limits on
the z direction for example, the free surface is the xy
surface. We show in Fig. 1 such an example.
When T is increased, surface spins are detached from

the solid to go to the empty space. At high T , the solid
becomes a gas. The path to go to the final gaseous phase
will be shown in this paper. We start with the bulk case
and examine the surface behavior in what follows.

III. MEAN-FIELD THEORY

In this section, we present the mean-field theory for
the mobile Potts model. It is more convenient to work
in the grand-canonical description. The results do not
depend on the approaches for large systems [23]. To that
end we consider a vacancy as a spin with value zero. The
model becomes (q + 1)-state model. In addition, we add
a chemical term in the Hamiltonian and rewrite it in a
more general manner in the following.

A. Hamiltonian

We divide the space into M cells, of equal volume v,
centered each on a site of a cubic lattice. Any cell is ei-
ther vacant or occupied by a single particle characterized
by a q-value spin. Neighboring particles that have the
same spin value get a lower interaction energy −J than
if they have different spin values. Zero energy is assigned
to neighboring cells that have at least a vacancy. We as-
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sign an energy −K to neighboring cells that are occupied
irrespective of their spin values. In the grand canonical
ensemble we allow for fluctuating number of particles and
include in the Hamiltonian a single site (cell) term pro-
portional to the chemical potential H if there is a particle
at the cell. This model can be described by assigning at
each site a (q+1)-Potts spin σ = 0, 1, , q. The zero value
corresponds to vacancy while the values 1, 2,..., q cor-
respond to a particle having a spin. The Hamiltonian
is

−
H

kBT
= J

∑

i,j

δ(σi, σj)[1− δ(σi, 0)][1− δ(σj , 0)]

+K
∑

i,j

[1− δ(σi, 0)][1− δ(σj , 0)]

+H
∑

i

[1− δ(σi, 0)] (2)

This corresponds to the grand canonical ensemble: fixed
temperature T , chemical potential H = µ/kBT and vol-
ume V .

B. Mean-Field Theory

The mean-field theory of the diluted Potts model [24]
is exact for the equivalent-neighbor lattice. The thermo-
dynamic potential divided by M is proportional to the
pressure:

−pv =
Ω

M
= −kBT

lnZ

M
= kBT min(Ψ) (3)

where

Ψ =
J

2
(m2

1 +m2
2 +m2

q + ...)

− ln(1 + eJm1+H + eJm2+H + ...+ eJmq+H)(4)

Note that the above equations is for K = 0. The opti-
mization equations are

ma =
eJma+H

1 + eJm1+H + eJm2+H + ...+ eJmq+H
(5)

for a = 1, ..., q. The ma gives the average number of par-
ticles of spin a normalized by the total number of sites
(cells) M . The number of particles normalized by M is

n =

q∑

a=1

ma =

q∑

a=1

eJma+H

1 + eJm1+H + eJm2+H + ...+ eJmq+H

(6)
Assuming the ordering of the Potts spin to occur in state
1, we parameterize the m′s as follows

m1 =
n

q
+(q−1)m ; m2 = m3 = ... = mq =

n

q
−m (7)

The optimization equations (5)-(6) are now

qm

n
=

eJqm − 1

eJqm + q − 1
(8)

n =
eJ(n/q−m)+H(eJqm + q − 1)

eJ(n/q−m)+H(eJqm + q − 1) + 1
(9)

In the following we denote mq/n = X . The energy U
scaled by M , number of cells, is

U = −
1

2

q∑

a=1

m2
a = −

n2

2q
−

(q − 1)n2X2

2q
(10)

The specific heat at fixed number of particles n is

Cv =
dU

dT
= −

q − 1

2q
n2 dX

2

dT
(11)

The second optimization equation, Eq. (9), provides a
formula for the chemical potential, since H = µ/T ,

µ = T ln
n

1− n
+ T ln

1−X

q
−

n(1−X)

q
(12)

The pressure p is obtained from Eq. (3)

pv = −
n2

2q
[1 + (q − 1)X2]− T ln(1− n) (13)

Note in the disordered (gas) phase X = 0 and n << 1.
The equation of state reduces to the ideal gas equation
pv = nT . The entropy S normalized by M is obtained
from the thermodynamic Euler equation

S =
u+ pv − µn

T
= −n ln(n)− (1− n) ln(1− n)

−n ln
1−X

q
−

n2

qT
[(q − 1)X2 +X ] (14)

The model exhibits a first-order phase transition tied
to the Potts q-state transition. In Fig. 2 we show n by
curve 1 (red) and the order parameter Q = qm [see Eq.
(7)] by curve 2 (blue) as functions of T for fixed chemical
potential µ = −0.4 (Fig. 2b). Increasing the chemical
potential reduces the discontinuity in n as seen for µ =
−0.3 (Fig. 2a). While, decreasing the chemical potential
below µ = −0.5 destroys order at all temperatures as
seen for µ = −0.51 (Fig. 2c).
This is understood by comparing the energy of any pair

(i, j) in the ordered (solid) phase Ei,j = J + 2H to the
energy in the disordered (gaseous) phase Ei,j = 0. The
two energies cross when H = −0.5J , or when µ = −0.5.
The phase diagram in the (T, µ) plane shown in Fig. 3

includes an ordered (solid) phase (low T and high µ) and
a disordered (gas) phase. The two phases are separated
by a line of first-order transitions.
In the limit of large chemical potential the number of

vacancies becomes negligible and thus the model reduces
to the q-state Potts model. As a result the transition line
approaches T = 0.25.
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FIG. 2: (Color online) Average number of particles per site
n (curve 1, red, left scale) and order parameter Q (curve 2,
blue, right scale) versus temperature T with (a) µ = −0.3,
(b) µ = −0.4, (c) µ = −0.51. See text for comments.

T

FIG. 3: (Color online) Phase diagram in the plane (T, µ). The
solid line is a first-order transition line.

The phase diagram in the temperature-pressure plane
is shown in Fig. 4.

Isotherms pressure p vs n are shown in Fig. 5. For
T = 0.25 there is no phase transition while for T = 0.23,

T

p

FIG. 4: (Color online) Phase diagram in the plane (T, p).

0.2, 0.18 the first order-transitions line is crossed. As a
result, we see the gap in the density n.

p

n
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1

2

3

4

n
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FIG. 5: (Color online) Isotherms (p, n) are shown by thick
curves for T = 0.25 (curve 1, violet), 0.23 (curve 2, green),
0.2 (curve 3, blue) and 0.18 (curve 4, red). Thin broken lines
indicate discontinuities of n.

The higher n branch corresponds to the ordered solid.
Note that the solid exists only for n large enough (n >
0.95). In other words the presence of 5% vacancies de-
stroys the solid. This is summarized in the phase diagram
in the (T, n) plane shown in Fig. 6. The two lines rep-
resent the densities of the solid (red squares) and of the
gas (blue circles). The two branches coalesce at a tem-
perature of 0.25. Note that this is not a critical point but
the end of the thermodynamic space as it occurs in the
limit of infinite chemical potential (i.e. no vacancies).

Entropy and energy versus temperature and chemical
potential are shown in Fig. 7.

The fundamental equation, chemical potential as a
function of temperature and pressure, is concave as re-
quired by the second law of thermodynamics (thermo-
dynamic stability). It is a continuous function and the
first-order transitions manifest as discontinuities in slope
of the chemical potential when graphed against temper-
ature and pressure (Fig. 8).



5

FIG. 6: (Color online) Phase diagram in the plane (T, n). See
text for comments.

T T

FIG. 7: (Color online) Entropy (left) and energy (right) as
functions of temperature and chemical potential.

T

FIG. 8: (Color online) Surface in the space “temperature,
pressure and chemical potential”.

IV. MONTE CARLO RESULTS

In this section, we present our results from MC simu-
lations. The method can be briefly described as follows.
At a given T , we take a spin and calculate its interaction
energy with its NN. We then move it to one of nearby
vacant sites chosen at random, change its state chosen at

random among q states. We calculate its “new energy”.
If this is lower than its old energy, then the new spin
state and new position are accepted. Otherwise, we use
the Metropolis criterion [25] to accept or reject its new
situation. We repeat this update procedure for all spins:
such a system sweeping is called one MC step (MCS).
In our simulations, we used 105 MCS/spin to equi-

librate the system before averaging physical quantities
over the following 106 MCS/spin. We have verified that
longer MC run times do not change the results. We used
various system sizes and shapes to examine finite-size and
shape effects on the results.

A. Transition

We study here the melting behavior of a solid contained
in a recipient described in section II. The recipient has
the dimension Nx = Ny < Nz and is filled with molecules
(Potts spins) in the lower part of the recipient. The num-
ber of filled layers is smaller than Nz (Fig. 1). Molecules
under thermal effect can be evaporated from the upper
surface to the empty space. To study the behavior of
such a system, we choose to heat the system from low to
high T . Cooling the system from a random initial config-
uration, namely molecules in a gas state with positions
distributed over all space, will result in a compact solid
phase at low temperature but the surface of this solid is
not so flat so that the system energy is about 5% higher
than the GS energy shown in Fig. 1. However, the sys-
tem behavior at higher T as well as the phase transition
are the same as obtained by heating. We will show this
later.
Let us show now results for a lattice of 15 × 15 × 30

sites where only the fifteen first layers in the z direction
are filled (c = 50%) in the GS configuration shown in
Fig. 1. As said above, this configuration corresponds to
the one with a minimal free surface when the system is
in the solid state.
Our simulation in real time shows that when T in-

creases atoms on the surface are progressively evapo-
rated. The solid core of the system remains in a Potts
spin order, though its volume is little by little reduced
with increasing T . At a high enough value of T , say
Tc, the Potts orientational order of the solid core is bro-
ken. However, the spins still stay in the solid state up
to a very high T when the whole system melts to a gas
(or liquid) phase. We will show later evidence of such
a change of the system at several T with snapshots and
corresponding distributions of the NN number.
The magnetization M versus T is displayed in Fig. 9

where M indicates a perfect order at low T . When T is
increased M decreases linearly with T : a careful exam-
ination of the system dynamics reveals that this regime
corresponds to the evaporation of surface spins. This
regime ends with a discontinuity of M at a transition
temperature Tc ≃ 1.234.
The discontinuity at Tc indicates a first-order phase
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FIG. 9: (Color online) Magnetization M versus temperature
T (in unit of J/kB) for a lattice of 15×15×30 sites with a spin
concentration c = 50%. The system is completely ordered at
T = 0, then surface spins are little by little evaporated with
increasing T . The phase transition of spin orientations of the
solid core occurs at Tc ≃ 1.234.

FIG. 10: (Color online) Energy histogram P (U) recorded at
Tc = 1.234 for a lattice 15 × 15 × 30 with c = 50%. The
presence of the two peaks indicates that the transition is of
first order.

transition. We have verified this by recording the en-
ergy histogram P (U) at the transition temperature Tc =
1.234. The double-peak structure shown in Fig. 10 con-
firms the first-order character of the transition. Note that
disordered evaporated atoms, namely atoms outside the
system solid core, do not participate in the transition.
We have studied the finite-size effect on the transition

at c = 50%. Since the shape of the recipient has a strong
effect on the phase transition as seen below, we have kept
the same recipient shape to investigate the finite-size ef-
fect: to compare results at the same concentration with
those of the lattice 15×15×30 sites, we have used lattices
of 20×20×40, 25×25×50, 30×30×60 and 35×35×70
sites in which half of the recipient is filled with spins,
namely c = 50%. We show in Fig. 11 the magnetization
and the energy versus T for several sizes.
Figure 11 shows that the transition looks like a second-

order transition when the size of the box is small. This is
a well-known finite-size effect: when the linear size of a
system is smaller than the correlation length at the tran-
sition, the system behaves as a second-order transition.

(a)

(a)(b)

FIG. 11: (Color online) Comparison of the evolution of (a)
the magnetization and (b) the energy versus the temperature
of a half-filled lattice Nx × Ny × Nz for several sizes Nx =
Ny = Nz/2 = 20 (red void circles), 30 (blue filled circles), 40
(green void diamonds), 50 (black stars), 60 (magenta crosses)
and 70 (sky-blue void squares).

We have to use therefore a finite-size scaling to ensure
that the transition is of first order. To do this, let us
show the transition temperatures for systems at various
sizes in Fig. 12. By fitting simulation results with the
finite-scaling formula

Tc(L) = Tc(∞) +
A

Lα

we find the following best nonlinear least mean square fit
with the relative change of the last (8th) iteration less
than −1.30954× 10−10:

Tc(∞) = 1.35256± 0.004089 (0.3023%),

α = 2.9, A = −2335.24± 170.9 (7.316%).

This is shown by the continued line in Fig. 12.
Several remarks are in order: (i) the value of α in-

dicates that, within statistical errors, Tc(L) does scale
with the system volume L3 as it should for a first-order
transition [11, 26], (ii) our value of Tc(∞) is in excel-
lent agreement with that found for the localized model
Tc = 1.35242±0.00001 obtained with the state-of-the-art
multi-canonical method [11] with periodic boundary con-
ditions in three directions (note that in the original paper
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FIG. 12: (Color online) Transition temperature versus lattice
size Nx ×Ny ×Nz at c = 50% where Nx = Ny = Nz/2, with
Nz = 30, 40, 50, 60, 70 and 80.

the authors have used a factor 2 in the Hamiltonian), (iii)
the fact that our system follows the same finite-size scal-
ing as the localized model confirms that the transition
observed in our mobile model is triggered by the orien-
tational disordering of Potts spins in the remaining solid
core at the transition temperature.
Following the last argument, it is then obvious that if

the quantity of matter remaining in the solid phase is so
small due to the evaporation, then there is no transition.
This should be seen if we lower the concentration.
Before showing the effect of concentration, let us show

a snapshot in the case of c = 50% in Fig. 13. The transi-
tion scenario discussed above is seen in these snapshots:
the observed transition is that of Potts orientational or-
der in the solid core.
Note that unlike the crystal melting where atoms sud-

denly quit their low-T equilibrium positions to be in a
liquid state, our model shows that the passage to the
gaseous phase takes place progressively with slow evapo-
ration, atom by atom, with increasing T .
Before showing the concentration effect let us compare

results of heating and cooling. As said above, cooling the
system from an initial configuration where molecules are
distributed at random over the whole space results in a
compact solid phase at low T shown in Fig. 1. However,
this is realized only if we do a slow cooling: the final
configuration at a temperature is used as initial config-
uration for a little bit lower temperature and so on. A
rapid cooling will result in a solid with an irregular form
having flat surfaces of various sizes.

B. Effect of concentration

Let us examine now results of simulations with smaller
concentrations. The absence of the phase transition
is seen when we decrease the concentration down to
c = 20%. As we can see in Fig. 14, at low tempera-
tures, in all cases the system is in a condensed state. As
T increases, the magnetization decreases faster at lower
concentrations. All atoms are evaporated for small con-

(a)

(b)

FIG. 13: (Color online) Simulation for a half filled lattice size
35× 35× 70 (c = 50%): (a) Snapshot at T = 1.3128 close to
the transition, (b) R vs Z, R being the percentage of lattice
sites having Z nearest neighbors, at T = 1.3128. Note that
the solid phase is well indicated by the number of sites with
6 neighbors.

centrations below the Potts transition temperature.

Note, however, that for low concentrations, there is no
transition but the magnetization disappears only when
the very small solid core disappears, namely at T ≃ 1.1.

C. Surface sublimation

Let us show the results using the system size 20×20×40
with c = 50%. To appreciate the surface sublimation,
we show also the results of the localized model where
spins stay each on its site. Figure 15 shows the total
magnetization and the energy per spin.
We show in Fig. 16 the diffusion coefficient D for the

cases where one, two and four layers are allowed to be mo-
bile. As seen, the evaporation is signaled by the change
of curvature of D. Only when all layers are allowed to be
mobile that the transition becomes really of first order
with a discontinuity.

The magnetic susceptibility and the heat capacity are
shown in Fig. 17 where the same observation is made:
only when all layers are allowed to be mobile that the sub-
limation is a first-order transition. Note that the small
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(a)(a)

(b)

FIG. 14: (Color online) Effect of concentration: (a) Magne-
tization versus temperature for a lattice 15 × 15 ×Nz where
Nz = 20 (red crosses), 30 (black stars), 40 (green diamonds),
50 (blue filled circles), 60 (red void circles). For each case,
only the fifteen first layers are filled, corresponding to con-
centrations 15/Nz , (b) Transition temperature versus the re-
cipient height Nz.

peaks at low T correspond to the surface evaporation.
We show in Fig. 18 the layer magnetization in the

cases where one, two and four surface layers are mobile.
As seen, the layer next to the solid substrate is “retained”
by the latter up to the bulk transition occurring at Tc ≃

1.330. Other layers are evaporated starting from the first
layer, at temperatures well below Tc.
To close this section let us compare the results obtained

for two system shapes 20× 20× 40 and 40× 20× 20 with
c = 50%. It is obvious that the second shape has a
larger free surface which facilitates the evaporation. As
a consequence, there is no first-order transition because
the solid core disappears at a temperature lower than
the Potts transition temperature Tc ≃ 1.330 at the size
20× 20× 40.

V. CONCLUSION

In this paper, we studied the properties of the mobile
Potts model by the use of a mean-field theory and Monte
Carlo simulations. The two methods confirm the first-
order character of the phase transition in the bulk with
q = 6. As discussed in the Introduction, the mean-field
approach does not consider the real-time dynamics of the

(a)

(b)

FIG. 15: (Color online) (a) Total magnetization M and (b)
energy per spin U versus T . Red void circles indicate results
of localized spins and blue filled circles indicate those of the
completely mobile model. Between these two limits, green
void diamonds, black stars and magenta crosses correspond
respectively to the cases where one, two and four surface layers
are allowed to be mobile.

FIG. 16: (Color online) Diffusion coefficient D versus T . Red
void circles (lowest curve) indicate results of localized spins
and blue filled circles (topmost curve) indicate those of the
completely mobile model. Between these two limits, from
below green void diamonds, black stars and magenta crosses
correspond respectively to the cases where one, two and four
surface layers are allowed to be mobile.

particles on the lattice sites. Rather, it considers the av-
erage numbers of particles per site. In other words, it is
equivalent to taking the spatial average first before con-
sidering the interaction between the particles uniformly
distributed on lattice sites. Such a mean-field average
is often used while dealing with disordered systems (di-
lution, bond-disorder, ...). In MC simulations, the local
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(a)

(b)

FIG. 17: (Color online) (a) Magnetic susceptibility χ and (b)
heat capacity CV versus T . Red void circles indicate results
of localized spins and blue filled circles indicate those of the
completely mobile model. Between these two limits, green
void diamonds, black stars and magenta crosses correspond
respectively to the cases where one, two and four surface layers
are allowed to be mobile.

FIG. 18: (Color online) Layer magnetizations for the first four
layers. Red void circles, blue filled circles, green diamonds and
black stars are the magnetizations of the first, second, third
and fourth layers. See text for comments.

environment of each particle is first taken into account
before calculating its average over all particles. During
the MC averaging, all local situations are expected to be
taken into account in the final results. Hence the mean-
field approximation takes the spatial average before the
ensemble average, while in MC simulations the calcula-
tion is first done for each spatial particle configuration
and the statistical average is next made over configu-
rations. Furthermore the mean field approximation is

(a)

(b)

(c)

FIG. 19: (Color online) (a) Magnetization, (b) energy and (c)
diffusion coefficient for two system shapes 20 × 20 × 40 (red
void circles) and 40× 20× 20 (blue filled circles) at c = 50%.

applied to the diluted Potts model which is somewhat
different than the mobile Potts model. In the MC simu-
lations of the mobile Potts model a particle can be moved
to a nearby vacant site while in the diluted Potts model
a particle could be moved to a vacant site anywhere on
the lattice. This difference is expected to be important
for the kinetics but not for the thermodynamics of the
two models.
From a finite-size scaling we showed that the transi-

tion of an evaporating solid belongs to the q = 6 local-
ized Potts model. The reason is that a portion of the
low-T solid phase of the mobile Potts model still remains
solid at the transition temperature of the localized Potts
model so that the orientational disordering of Potts spins
occurs in this solid portion before the complete melting.
Mean-field results for various parameters in the phase
space are shown and discussed. In particular, we showed
that there exists a threshold value of the chemical poten-
tial above which there is a solid-gas transition. Monte
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Carlo simulations have been carried out to studied the
surface evaporation behavior: we found that atoms are
evaporated little by little from the surface at tempera-
tures much lower than the bulk transition. We believe
that the model presented in this paper, though simple,
possesses the essential evaporation properties.
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