
HAL Id: hal-01215845
https://hal.science/hal-01215845v1

Submitted on 15 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HAL Authorization

Double-Speed Barrett Moduli
Rémi Géraud, Diana Maimuţ, David Naccache

To cite this version:
Rémi Géraud, Diana Maimuţ, David Naccache. Double-Speed Barrett Moduli. [Technical Report]
Cryptology ePrint Archive: Report 2015/785, Ecole normale supérieure. 2015. �hal-01215845�

https://hal.science/hal-01215845v1
https://about.hal.science/hal-authorisation-v1/
https://about.hal.science/hal-authorisation-v1/
https://hal.archives-ouvertes.fr


Double-Speed Barrett Moduli

Rémi Géraud, Diana Maimuţ, and David Naccache

École normale supérieure
Équipe de cryptographie, 45 rue d’Ulm, f-75230 Paris cedex 05, France

given_name.family_name@ens.fr

Abstract. Modular multiplication and modular reduction are the atomic
constituents of most public-key cryptosystems. Amongst the numerous
algorithms for performing these operations, a particularly elegant method
was proposed by Barrett. This method builds the operation a mod b from
bit shifts, multiplications and additions in Z. This allows to build modular
reduction at very marginal code or silicon costs by leveraging existing
hardware or software multipliers.
This paper presents a method allowing to double the speed of Barrett’s
algorithm by using specific composite moduli. This is particularly useful
for lightweight devices where such an optimization can make a difference in
terms of power consumption, cost and processing time. The generation of
composite moduli with a predetermined portion is a well-known technique
and the use of such moduli is considered, in statu scientiæ, as safe as
using randomly generated composite moduli.

1 Introduction

Modular multiplication and modular reduction are the atomic constituents of
most public-key cryptosystems. Amongst the numerous algorithms for performing
these operations (e.g. [3, 4, 9, 12]), a particularly elegant method was proposed
by Barrett in [1]. This method assembles the operation a mod b from bit shifts,
multiplications and additions in Z. This allows to build modular reduction at
very marginal code or silicon costs by leveraging existing hardware or software
multipliers. For a very detailed comparison of the principal modular reduction
strategies, we refer the reader to [3].

This paper presents a method allowing to double the speed of Barrett’s
algorithm by using specific composite moduli. This is particularly useful for
lightweight devices where such an optimization can make a difference in terms
of power consumption, cost and processing time. The generation of composite
moduli with a predetermined portion is a well-known technique [6, 10, 17] and
the use of such moduli is considered, in statu scientiæ, as safe as using randomly
generated composite moduli.

Related work: Douguet and Dupaquis [5] describe a modified Barrett modular
reduction algorithm whose purpose is the acceleration of this type of operation



in certain (elliptic curve) groups of known moduli. Thus, the approach they
consider implies moduli with a given form, e.g. the recommended ones from [13].
Estimations of the speed-ups are not provided, but the resistance of various
architectures to different physical attacks is discussed. A general form of the
Barrett constant and of the quotients (when certain moduli are used) are described.
As an example of the proposed techniques, the Elliptic Curve Digital Signature
Algorithm (ECDSA) [14] is taken into account.

We stress that no specific modulus generation algorithm is presented in [5].
The approach of [5] is rather a practical one, whereas our goal is to provide formal
mathematical models for moduli with a predetermined portion generation.

Knežević, Batina and Verbauwhede [7] propose two sets of moduli for which
Barrett’s modular reduction algorithm can be implemented by avoiding the pre-
computation of the Barrett constant. The types of moduli considered throughout
this paper do not fall into those sets.

Structure of the paper: Section 2 starts by introducing notations and de-
scribing Barrett’s original algorithm. Section 3 recalls background concerning
composite moduli a predetermined portion. Section 4 introduces our core idea,
that leverages Section 3 to generate Barrett-friendly RSA moduli. In Section 5,
we apply this idea to other cryptographic primitives, such as DSA [14].

2 Barrett’s Algorithm

For a given a, let ‖a‖ = 1 + blog2 ac = dlog2 (a+ 1)e. That is, ‖a‖ will denote
the bit-length of a throughout this paper. a|b will represent the concatenation of
the bit-strings a and b.

x� y will denote binary shift-to-the-right of x by y places i.e.:

x� y =
⌊ x

2y
⌋

Barrett’s algorithm (Algorithm 1) approximates the result c = d mod n by
a quasi-reduced number c+ εn where 0 ≤ ε ≤ 2. We denote N = ‖n‖ , D = ‖d‖
and set a maximal bit-length reduction capacity L such that N ≤ D ≤ L. The
algorithm will function as long as D ≤ L. In most implementations D = L = 2N .
The algorithm uses the pre-computed constant κ = b2L/nc that depends only on
n and L. The reader is referred to [1] for a proof and a thorough analysis of this
algorithm.

Work Factor: ‖c1‖ = D − N + 1 ' D − N and ‖κ‖ = L − N hence their
product requires w = (D − N)(L − N) elementary operations. ‖c3‖ = (D −
N) + (L − N) − (L − N + 1) = D − N − 1 ' D − N . The product nc3 will
therefore claim w′ = (D −N)N elementary operations. All in all, work amounts
to w + w′ = (D −N)(L−N) + (D −N)N = (D −N)L. The goal of this paper
is to halve this work factor.



Algorithm 1: Barrett’s Algorithm

Input: n < 2N , d < 2D, κ =
⌊

2L

n

⌋
where N ≤ D ≤ L

Output: c = d mod n
1 c1 ← d� (N − 1);
2 c2 ← c1κ;
3 c3 ← c2 � (L−N + 1);
4 c4 ← d− nc3;
5 while c4 ≥ n do
6 c4 ← c4 − n;
7 end while
8 return c4

3 Moduli with a Predetermined Portion

RSA [15] moduli with a predetermined portion are used to reduce storage
requirements or computations. As mentioned before, such moduli are presently
not known to be cryptographically weaker than randomly chosen ones. The first
techniques for generating composite moduli were proposed by Vanstone and
Zuccherato [17] who presented various ways of specifying N/4 ≤ ` ≤ N/2 bits
of n. Lenstra [10] proposed more advanced techniques for specifying up to N/2
bits. Based on Lenstra’s algorithms, Joye proposed new techniques in [6]. Further
works in the area include, for instance, [8, 11, 16]. We will hereafter recall the
folklore method described by Joye (Algorithm 2), that perfectly fits our purpose1.

Folklore method. The purpose of the folklore technique recalled by Joye is
to obtain an RSA modulus n with a predetermined leading part nh. Letting
‖nh‖ = H, we have:

n = nh2N−H + n`, for some 0 < n` < 2N−H (1)
The algorithm uses the function NextPrime(x) that returns the prime follow-

ing x (if x is prime then x = NextPrime(x)). Note that because the gap between
x and NextPrime(x) is unpredictable, the algorithm may fail to return an n of
the form n = nh2N−H + n` and will have to be re-launched. We refer the reader
to [10] for a more formal analysis of this process.

Lemma 1 (Bounding n and ω). Consider the parameters used in Algorithm 2
and let m = q − ω. Then, n < nh2N−H + (1 +m)(2N−H − 1) and ω < 2H+1 + 1.

Proof. By definition:

ω =
⌈
η

p

⌉
⇒ ∃α < p such that ω = η

p
+ α

p

1 For the sake of clarity we remove all tests meant to enforce the condition
GCD(e, φ(n)) = 1.



τ 0 1 2 3 4
‖n̄h‖ 503 502 501 500 499

success rate 85.66% 97.96% 99.96% 100% 100%

Fig. 1. Success rates of Algorithm 2 for N = 1024, H = 512 and 104 experiments.

Substituting the value of η, we get:

ω = nh2N−H

p
+ α

p
⇒ q = ω +m = nh2N−H

p
+ α

p
+m

Thus:

n = pq = nh2N−H+α+mp < nh2N−H+(1+m)p < nh2N−H+(1+m)(2N−H−1)

And upper bounding ω we get:

ω <
η

p
+ 1 = nh2N−H

p
+ 1 < nh2N−H

2N−H−1 + 1 = 2nh + 1 < 2H+1 + 1

Note that the most significant bit of p must be set to 1, i.e. 2N−H−1 < p <
2N−H − 1. ut

It follows directly from Lemma 1 that:

q = NextPrime[ω] ≤ NextPrime[2H+1 + 1].

Applying the Prime Number Theorem, we find that m ' ln (2H+1 + 1) '
0.7(H + 1). In other words, the log2(m+ 1) ' log2(0.7H + 1.7) < log2 H least
significant bits of nh are likely to get polluted. We hence rectify the size of nh
to H − τ − log2 H where τ ∈ N is a parameter allowing to reduce the failure
probability of Algorithm 2 at the cost of further shortening nh. For the sake of
clarity, we do not integrate these fine-tunings in the description of Algorithm 2
but consider that nh is composed of a “real” prescribed pattern n̄h of size
H − τ − dlog2 He bits right-padded with τ + dlog2 He zero bits. Various success
rates for N = 1024, H = 512 are given in Figure 1. Based on those we recommend
to set τ = 0 or τ = 1 and re-launch the generation process if the algorithm fails.

Note: The algorithm’s theoretical analysis could be simplified and the failure
rate improved if step (4) of Figure 1 is replaced by: “If ω is composite then goto
1; else q ← ω”. The quality of the generated primes will also become theoretically
uniform because NextPrime favors primes pi whose distance from the previous
prime pi−1 is large. This modification will, however, come at the cost of more
computation time. The same note is applicable to Algorithm 3 as well.



Algorithm 2: Folklore method
Input: N,H ≤ N/2, nh < 2H
Output: n = nh2N−H + n`, such that 0 < n` < 2N−H

1 Generate a random prime p, such that 2N−H−1 < p < 2N−H − 1;
2 η ← nh2N−H ;
3 ω ←

⌈
η
p

⌉
;

4 q ← NextPrime(ω);
5 n← pq;
6 return n

Algorithm 3: Barrett-friendly modulus generator
Input: L = 2N = 4U
Output: n, an RSA modulus such that 2N−1 < n < 2N−1 + (0.7U + 2)(2U − 1)

whose associated κ is such that 2N+1 − 2U+1(1 + 0.7U) < κ < 2N+1

1 Generate a random integer r such that 2U−1 < r < 2U − 1;
2 η ← 2N−1 + r;
3 Generate a random prime p such that 2U−1 < p < 2U − 1;
4 ω ←

⌈
η
p

⌉
;

5 q ← NextPrime(ω);
6 n← pq;
7 return n

4 Barrett-Friendly Moduli

We note that both multiplications in Algorithm 1 are multiplications by constants.
Namely by n and κ. It is known (e.g. [2]) that multiplications by constants can
be performed faster than multiplications by arbitrary integers. Our goal is to
generate 1 a composite n 2 whose leading bits do not need to be multiplied and
3 whose associated κ also features a most significant part that does not need to
be multiplied. As for the least significant parts of n and κ, these are constants and
can hence independently benefit of speedup techniques such as [2]. The algorithm
is given for the very common setting L = D = 2N . For convenience we introduce
a bitlength unit U such that L = 2N = 4U .

Example 1. Let N = 100 and L = 200:
r = 1ace38e78e29f η = 8000000000001ace38e78e29f
p = 322a28626f0a7 ω = 28d356763fe4a
q = 51a6acec7fcd5 n = 80000000000a8c93071ac14d9

κ = 1ffffffffffd5cdb3e394fe440

Lemma 2. If 0 < x < 2P/2−1, then
⌊

22P

2P −1+x

⌋
= 2P+1 − 4x.



Proof. Observe that:

22P

2P−1 + x
− (2P+1 − 4x) = 4x2

2P−1 + x
. (2)

Furthermore,
4x2

2P−1 + x
< 1⇔ 4x2 − x < 2P−1

This is a polynomial of degree 2, that has one positive and one negative root. We
assumed x > 0, therefore we only need to consider the positive root xmax:

xmax = 1
8

(
1 +

√
1 + 2P+4

)
> 2P/2−1

Therefore, if x < 2P/2−1, then the fraction in eq. (2) is smaller than one. As a
consequence, we have⌊

22P

2P−1 + x
− (2P+1 − 4x)

⌋
=
⌊

22P

2P−1 + x

⌋
− (2P+1 − 4x) = 0,

as 2P+1 − 4x is an integer. ut

Lemma 3 (Bounding n, ω and κ in Algorithm 3). Consider the parameters
used in Algorithm 3 and let m = q − ω. Then, n < 2N−1 + (2 + m)(2U − 1),
2N+1 − 2U+1(1 +m) < κ < 2N+1 and ω < 2U + 2.

Proof. By definition:

ω =
⌈
η

p

⌉
, thus ∃α < p such that ω = η

p
+ α

p
.

Substituting the value of η, we get:

ω = 2N−1 + r

p
+ α

p
⇒ q = ω +m = 2N−1

p
+ r

p
+ α

p
+m.

Thus:
n = pq = 2N−1 + r + α+mp

⇓

n < 2N−1+r+(1+m)p < 2N−1+2U−1+(1+m)(2U−1) < 2N−1+(2+m)(2U−1).
We observe that

2N−1 + r+α+mp ≤ 2N−1 + r+mp⇒ 1
2N−1 + r + α+mp

≥ 1
2N−1 + r +mp

.

Bounding κ we obtain:

κ =
⌊

2L

n

⌋
>

2L

n
− 1 ≥ 2L

2N−1 + r +mp
− 1,



Now observe that r +mp < 2N−1, therefore we can write

2L

2N−1 + r +mp
= 22N

2N−1 + r +mp
= 2N+1 1

1 + 21−N (r +mp) = 2N+1
∞∑
`=0

(−2)`(1−N)(r+mp)`

This series is convergent, alternating, and the term is strictly decreasing, therefore
its sum is bounded below (resp. above) by the partial sum of odd (resp. even)
degree S`. As a consequence,

κ > S1−1 = 2N+1 (1− 21−N (r + pm)
)
−1 = 2N+1−4(r+pm)−1 > 2N+1−2U+1(1+m).

We observe that

2N−1 + r + α+mp > 2N−1 ⇒ 1
2N−1 + r + α+mp

<
1

2N−1 .

Thus:
κ ≤ 2L

n
= 2L

2N−1 + r + α+mp
<

2L

2N−1 < 2N+1.

Upper bounding ω we get:

ω <
η

p
+ 1 = 2N−1 + r

p
+ 1 < 2N−1 + 2U−1

2U−1 + 1 = 2N−1−U+1 + 1 + 1 < 2U + 2.

Note that the most significant bit of p must be set to 1, i.e. 2U−1 < p < 2U − 1.
ut

It follows directly from Lemma 3 that:

q = NextPrime[ω] ≤ NextPrime[2U + 2] = NextPrime[2U + 1].

Let nh denote the predetermined portion of n, i.e. nh = 2U−1. Applying the
Prime Number Theorem, we obtain m ' ln (2U + 1) ' 0.7U . Put differently, the
log2(m + 2) ' log2(0.7U + 2) < log2 U least significant bits of nh are likely to
get polluted. We hence rectify the size of nh to U − τ − log2 U where τ ∈ N
is a parameter allowing to reduce the failure probability of Algorithm 3 at the
cost of further shortening nh. For the sake of clarity, we do not integrate these
fine-tunings in the description of Algorithm 3 but consider that nh is composed
of a “real” prescribed pattern n̄h of size U − τ − dlog2 Ue bits right-padded with
τ + dlog2 Ue zero bits. Various success rates for N = 1024, U = 512 are given in
Figure 2. Based on those we recommend to set τ = 0 or τ = 1 and re-launch the
generation process if the algorithm fails.

It is easy to see that multiplication by both n and κ is not costly at all. To
be more specific, n and κ satisfy the inequalities:

2N−1 < n < 2N−1 +(0.7U +2)(2U −1) and 2N+1−2U+1(1+0.7U) < κ < 2N+1.

As a result, this can double the speed of Barrett reduction2.
2 A few more complexity bits can be grabbed if the variant described in the note at
the end of section 3 is used.



τ 0 1 2 3 4
‖n̄h‖ 503 502 501 500 499

success rate 85.16% 97.51% 99.91% 100% 100%

Fig. 2. Success rates of Algorithm 3 for N = 1024, U = 512 and 104 experiments.

Algorithm 4: DSA prime generation
Input: Key lengths P and Q ≤ P .
Output: Parameters (p, q).

1 Choose a Q−bit prime q;
2 Choose a P−bit prime modulus p such that p− 1 is a multiple of q;
3 return (p, q)

5 Extensions

The parameter generation phase of DL cryptosystems requires the generation
of two primes (e.g. p and q). Computations modulo these two primes represent
important steps within the algorithms. Thus, a modular reduction speedup is
necessary. It is thus desirable that both p and q to contain significantly long
patterns (i.e. many successive 1s or 0s). We will now propose a Barrett-friendly
parameter generation approach to do so. For the sake of clarity, we choose a
particular algorithm to describe our method: the Digital Signature Algorithm
(DSA).

5.1 Barrett-Friendly DSA Parameters Generation

DSA’s parameter generation is presented in Algorithm 4. For the complete
description of the DSA, we refer the reader to [14].

We suggest a modified DSA prime generation process leveraging the idea of
Section 4. The procedure is described in Algorithm 5.

Lemma 4 (Structure of κq). Let κq be the κ associated to q. With the notations
of Algorithm 5, we have κq = 2Q+1 − 4ω, assuming that ω < 2

Q
2 −1.

Proof. Let z = p−1
q and ω = q − 2Q−1. We observe that ‖z‖ = P −Q and q =

2Q−1|ω. By definition, κq =
⌊

2Lq

q

⌋
, where Lq = 2Q. As we assumed ω < 2

Q
2 −1,

using Lemma 2 we have:

κq =
⌊

2LQ

q

⌋
=
⌊

22Q

2Q−1 + ω

⌋
= 2Q+1 − 4ω.

ut



Algorithm 5: Barrett-friendly DSA prime generation
Input: Key lengths P and Q ≤ P .
Output: Parameters (p, q).

1 Generate a Q−bit prime as follows:
2 q ← NextPrime(2Q−1) ;
3 Construct a P−bit prime modulus p such that p− 1 is a multiple of q in the

following way:
4 p← 4;
5 i← 1;
6 F ← 2P−Q−1;
7 while p is composite do
8 p← 2q(F + i) + 1;
9 i+ +;

10 end while
11 return (p, q)

The key consequence of Lemma 4 is that κq consists of a long pattern
concatenated to a short different sequence, with a predetermined portion that is
the complement of qh = 2Q−Ω . The computation of κq is easy.

Let Lp = 2P . By definition, κp =
⌊

2Lp

p

⌋
.

Lemma 5. Let m(n) = 1
8

(
n+
√
n2 + 2P+3n

)
. Let x be a positive integer such

that 0 < x < 2P−1 and m(n) ≤ x < m(n+ 1). Then,⌊
22P

2P−1 + x

⌋
= 2P+1 − 4x+ n and 0 ≤ n < 2P .

Proof. The proof consists of writing the fraction as a geometric series:

κ =
⌊

22P

2P−1 + x

⌋
=
⌊

2P+1
∞∑
n=0

(−x)n2n(1−P )

⌋
=
⌊
2P+1 (1− 21−Px+ 22−2Px2 − 23−3Px3 + . . .

)⌋
=
⌊
2P+1 − 4x+ 23−Px2 − 24−2Px3 + . . .

⌋
Now, 2P+1 − 4x is always a positive integer, it can therefore be safely taken out
of the floor function. None of the remaining terms of the sum is an integer. We
have:

κ = 2P+1 − 4x+
⌊ ∞∑
n=2

(−x)n2n(1−P )

⌋
.

The rightmost term is essentially a sum of shifted versions of powers of x. If x is
small, then this contribution quickly vanishes. We now provide an exact value



for this sum, by rewriting:

κ = 2P+1 − 4x+
⌊

22−Px2 2P−1

2P−1 + x

⌋
= 2P+1 − 4x+

⌊
4x2

2P−1 + x

⌋
.

For any positive integer n, we have:

4x2

2P−1 + x
= n⇔ x = 1

8

(
n+

√
n2 + 2P+3n

)
.

We assumed x > 0, thus we only need to consider the positive root. The leftmost
fraction is a strictly increasing function of x as its derivative is > 0. Therefore,
the rightmost formula strictly increases with n.
Let m(n) = 1

8

(
n+
√
n2 + 2P+3n

)
and assume that m(n) ≤ x < m(n+1). Then,

we have:
n ≤ 4x2

2P−1 + x
< n+ 1

Therefore: ⌊
4x2

2P−1 + x

⌋
= n.

Finally, x < 2P−1 implies an upper bound on the value of n, which must therefore
be smaller than 2P .

An illustrative example for P = 1024 and Q = 160 is given next.
Example 2.

ω = 299

ip = 1

Lq = 2 · 160

q = 2159 + 299

κq = 2163 − 4 · 299

Lp = 2 · 1024 = 211

p = (2864 + 2)q + 1 = (2864 + 2)(2159 + 299) + 1

x = 260 + 299 · 2864 + 2 · 299 + 1

κp = 271∑5
k=0 2159k(−299)6−k − 2162 + 2387

Thus, multiplication by p, q, κp and κq is easy.



References

1. P. Barrett. Implementing the Rivest, Shamir and Adleman Public-Key Encryption
Algorithm on a Standard Digital Signal Processor. In Advances in Cryptology:
Proceedings of Crypto ’86, Lecture Notes in Computer Science, Vol. 263, Springer,
pp. 311–323, 1987.

2. R. Bernstein. Multiplication by Integer Constants. In Software - Practice and
Experience, 16(7), pp. 641–652, 1986.

3. A. Bosselaers, R. Govaerts, and J. Vandewalle. Comparison of Three Modular
Reduction Functions. In Advances in Cryptology: Proceedings of Crypto ’93, Lecture
Notes in Computer Science, Vol. 773, Springer, pp. 175–186, 1994.

4. E. F. Brickell. A Fast Modular Multiplication Algorithm with Applications to Two
Key Cryptography. In Advances in Cryptology: Proceedings of Crypto ’82, Plenum,
pp. 51–60, 1983.

5. M. Douguet and V. Dupaquis. Modular Reduction Using a Special Form of
the Modulus. In U.S. Patent Application 12/033,512, filed February 19, Atmel
Corporation, 2008.

6. M. Joye. RSA Moduli with a Predetermined Portion: Techniques and Applications.
In Information Security Practice and Experience, Lecture Notes in Computer
Science, Vol. 4991, Springer, pp. 116–130, 2008.

7. M. Knežević, L. Batina, I. Verbauwhede. Modular Reduction without Precomputa-
tional Phase. In Proceedings of the IEEE International Symposium on Circuits and
Systems (ISCAS), IEEE, pp. 1389–1392, 2009.

8. H.-J. Knobloch. A Smart Card Implementation of the Fiat-Shamir Identification
Scheme. In Advances in Cryptology: Proceedings of Eurocrypt ’88, Lecture Notes in
Computer Science, Vol. 330, Springer, pp. 87–95, 1988.

9. D. E. Knuth. The Art of Computer Programming. In Volume 2, Seminumerical
Algorithms, 2nd Edition, Addison Wesley, Reading, Mass., 1981.

10. A. K. Lenstra. Generating RSA Moduli with a Predetermined Portion. In Advances
in Cryptology: Proceedings of Asiacrypt ’98, Lecture Notes in Computer Science,
Vol. 1514, Springer, pp. 1–10, 1998.

11. G. Meister. On an Implementation of the Mohan-Adiga Algorithm. In Advances in
Cryptology: Proceedings of Eurocrypt ’90, Lecture Notes in Computer Science, Vol.
473, Springer, pp. 496–500, 1991.

12. P. L. Montgomery. Modular Multiplication Without Trial Division. In Mathematics
of Computation, Vol. 44, No. 170, pp. 519–521, 1985.

13. National Institute of Standards and Technology (NIST). Digital Signature Standard.
In FIPS PUB 186-2, 2013.

14. National Institute of Standards and Technology (NIST). Digital Signature Standard.
In FIPS PUB 186-4, 2013.

15. R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. In Communications of the Association
for Computing Machinery, 21(2), pp. 120–126, 1978.

16. I. E. Shparlinski. On RSA Moduli with Prescribed Bit Patterns. In Designs, Codes
and Cryptography, 39(1), pp. 113–122, 2006.

17. S. A. Vanstone and R. J. Zuccherato. Short RSA Keys and Their Generation. In
Journal of Cryptology, 8(2), pp. 101–114, 1995.


	Double-Speed Barrett Moduli

