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ABSTRACT

Many problems of image processing lead to the minimization

of an energy, which is a function of one or several given im-

ages, with respect to a binary or multi-label image. When this

energy is made of unary data terms and of pairwise regular-

ization terms, and when the pairwise regularization term is a

metric, the multi-label energy can be minimized quite rapidly,

using the so-called α-expansion algorithm. α-expansion con-

sists in decomposing the multi-label optimization into a series

of binary sub-problems called move. Depending on the cho-

sen decomposition, a different condition on the regularization

term applies. The metric condition for α-expansion move is

rather restrictive. In many cases, the statistical model of the

problem leads to an energy which is not a metric. Based on

the enlightening article [1], we derive another condition for β-

jump move. Finally, we propose an alternated scheme which

can be used even if the energy fulfills neither the α-expansion

nor β-jump condition. The proposed scheme applies to a

much larger class of regularization functions, compared to α-

expansion. This opens many possibilities of improvements on

diverse image processing problems. We illustrate the advan-

tages of the proposed optimization scheme on the image noise

reduction problem.

Index Terms— Minimization, Discrete optimization,

Regularization, Markov Random Field, α-expansion, Graph-

cuts, Denoising,Noise reduction.

1. INTRODUCTION

Image processing problems are usually set as the minimiza-

tion of an energy with respect to the unknown variables of the

problem. The Bayesian approach provides ways to derive the

energy of the problem from its statistical model. This energy

is a function of the observations and of the unknown variables

which are both numerous. In image processing, the used sta-

tistical models are generally Markov Random Fields. If sev-

eral optimization methods for large problems are available,

each method has its own field of application due to restrictive
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conditions of use on the energy. Matching between the energy

derived from the Bayesian approach and the conditions of use

of the optimization method is often tricky.

α-expansion is a discrete multi-label optimization method,

introduced by [2, 3], where successive binary sub-problems

are solved. The sub-problem, which is parametrized by α,

consists in deciding for every pixels if setting the current

pixel label to α allows to decrease the total energy. When

the energy of the sub-problem is sub-modular, the binary

sub-problem can be minimized to a global minimum. Never-

theless the α-expansion algorithm only converges towards a

local minimum of the energy w.r.t α-expansion move space,

as a succession of decreasing steps of the energy. α-expansion

is well known as one of the fastest algorithm to optimize an

energy on a graph, with unary data terms and pairwise regu-

larization data terms. However, the condition on the energy

for α-expansion to be applied, is that the regularization term

must be a metric. Examples of metric pairwise terms are con-

cave functions of the absolute difference of the two labels.

This condition is rather restrictive. For instance, α-

expansion can not cope with the standard Gaussian prior.

Indeed, when a Gaussian pairwise prior is used, the regular-

ization term is a quadratic function of the difference of the

two labels. When the pairwise term is a concave continuous

function of the absolute difference of two labels, this implies

that the regularization function is not smooth when the two

labels are equals. This is an important limitation, since due to

the presence of Gaussian noise or slow variations, it is useful

to have a locally quadratic shape at the zero of the function

which applies to the two labels difference. As pointed in [3],

this property is also important in disparity reconstruction

from stereo images of thin objects without filling the hole

between them.

Our objective is thus to find ways to extend α-expansion

to a larger set of energies. In Sec. 2, from the enlightening

theory summarized in [1], a simple implementation of the α-

expansion algorithm is obtained and the condition the regu-

larization term must fulfill is again derived. Then, the same

kind of derivation is performed, for a different case, where the

sub-problem is now a β-jump. A sufficient condition of use



is that the pairwise regularization term is a convex function

of the label difference. Then, we propose in Sec. 3, a scheme

to optimize an energy where the pairwise regularization term

is neither a concave nor a convex function of the label differ-

ence. In Sec. 4, we illustrate the advantage of the proposed

optimization scheme on the image noise reduction problem.

2. MULTI-LABEL MINIMIZATION

We consider the following energy E(l) to be minimized with

respect to the label image l:

E =
∑

u∈I

g(lu) +
∑

(u,v)∈N

f(lu, lv), (1)

where I is the set of sites in the image, N is the set of neigh-

borhood links, u and v are sites, f is the pairwise regulariza-

tion function and g is the unary data cost function. We assume

that function f is non-negative. lu denotes the label at the site

u. Labels are assumed in a set L of ordered labels.

Let us recall that the global minimum of such discrete en-

ergy can be obtained, when the function f is convex, as shown

in [4], using graph-cuts. However, this algorithm requires

many computations. In practice, approximate solutions, such

as [2], are usually preferred. In this latter approach, the ini-

tial multi-label problem is decomposed into successive binary

sub-problems, which are solved using graph-cuts. The binary

sub-problem consists in choosing or not a new label for each

site, given a rule. This is called a move. A set of moves which

spans the label entire set is named a move space. Different

rules and thus different move spaces were proposed such as:

α-expansion, jump, swap, relabeling [3]. The set of regular-

ization terms which can be used in the energy is different for

each type of move.

In [1], it was proposed to use the Quadratic Pseudo

Boolean Optimization (QPBO) theory to rewrite binary sub-

problems using a pseudo-Boolean function. When the ob-

tained quadratic pseudo-Boolean function is sub-modular,

i. e. coefficients before quadratic terms are all negative, a

graph can be built and the sub-problem can be minimized as a

maximum flow optimization on the associated graph [5]. As

a consequence, the QPBO theory gives us a way to derive the

condition the pairwise regularization term must fulfill to be

used with a given type of move spaces.

Let lu be the current label at site u, and l̂u the newly

proposed label at this site. The sub-modularity of the binary

problem implies, for the all pairs of sites (u, v) ∈ N :

f(lu, lv) + f(l̂u, l̂v) ≤ f(lu, l̂v) + f(l̂u, lv), (2)

Notice that this inequality is fulfilled when lu = l̂u or when

lv = l̂v . We now focus on two kinds of moves: α-expansion

and β-jump moves.

2.1. α-expansion

An α-expansion move consists in proposing a label α for ev-

ery site u, where α is given. This move can be formally writ-

ten as l̂u = α, ∀u ∈ I . In such a case, the condition of

sub-modularity (2) becomes:

f(lu, lv) + f(α, α) ≤ f(lu, α) + f(α, lv) (3)

If f(x, x) is a constant k, for all u, the previous condition is

fulfilled when the function f(x, y) − k is a metric. We now

consider a useful particular case, where f(lu, lv) is assumed

to be a function f∗ of the label difference, i.e, f(lu, lv) =
f∗(lu − lv), then the condition is :

f∗(x+ y) + f∗(0) ≤ f∗(x) + f∗(y), (4)

for all x, y ∈ R
2. This means that h(x) = f∗(x) − f∗(0)

is sub-additive on R. A sufficient condition for h(x) to be

sub-additive is to be even and concave on R
+. Such func-

tions can not be smooth in zero. As a consequence, f∗ is not

smooth on R. This is an important limitation in the usage of

α-expansion, since we are interested in using a smooth func-

tion for the pairwise regularization term.

In summary, a first sufficient condition of use of the α-

expansion is that the pair-wise regularization term is a metric.

A second sufficient condition is that it is an increasing con-

cave function of the label absolute difference. Following [1],

it is not difficult to derive the graph where max flow should

be applied to obtain the solution of each α-expansion binary

sub-problem.

2.2. β-jump move

A β-jump move consists in proposing an increment or decre-

ments of the current labels by value β, for every site u. For-

mally, l̂u = lu + β, ∀u ∈ I . For a β-jump, the condition of

sub-modularity (2) becomes:

f(lu, lv)+ f(lu + β, lv + β) ≤ f(lu, lv + β)+ f(lu + β, lv).
(5)

Like in the previous section, we now consider the particular

case, where f(lu, lv) is assumed to be a function f∗ of the

label difference. The previous inequality can be rewritten as:

2f∗(x) ≤ f∗(x+ β) + f∗(x− β), (6)

for all x, β. After substitution of x = (y + z)/2 and β =
(y − z)/2, we deduce that f∗ is mid-convex:

f∗(
y + z

2
) ≤

f∗(y) + f∗(z)

2
, (7)

From Bernstein-Doetsch theorem, f∗ being also upper bounded,

f∗(x) is a convex function on the label interval.

In summary, considering pair-wise regularization with the

label difference, a sufficient and necessary condition of use of



the β-jump is that the pair-wise regularization term is convex.

Following [1], it is also not difficult to derive the graph where

max flow should be applied to obtain the solution of each β-

jump binary sub-problem.

2.3. Extended Smooth Exponential Family

Given a problem, the choice of the energy can be interpreted,

in the Bayesian approach, as the implicit choice of a statistical

model of the problem. As explained in [6, 7], a useful fam-

ily of probability distribution functions (pdf) named Smooth

Exponential Family (SEF) can be used to help in the statis-

tical modeling. The advantage of the SEF family is that it

is parameterized by only two parameters: the shape parame-

ter a and the scale parameter s. To better fit observed data,

we proposed an Extended SEF family (ESEF) where an ex-

tra parameter k is added. The ESEF pdf is defined, up to a

normalization factor, as exp(−ESEF (b)) where:

ESEF (b) =
k

a
((1 +

b2

2s2
)a − 1). (8)

All functions in the ESEF family are smooth and several well

known distributions can be found for particular values of a,

for instance: Gaussian pdf for a = 1, smooth Laplace pdf

for a = 0.5, Cauchy and T pdfs as a limit case when a
goes towards 0, Geman&Maclure pdf for a = −1. Using

the Bayesian approach, it is the minus of the log of the pdf

which appears in the energy, i.e ESEF (b) defined in (8).

The behavior of the ESEF function around zero is al-

ways quadratic. Therefore, α-expansion can not be used.

When the ESEF function is convex, i.e when a ≥ 0.5, the

β-jump can be used, but not in the other cases. Another exam-

ple of useful regularization function which can not be used,

neither with α-expansion nor with β-jump, is the truncated

quadratic function.

3. PROPOSED APPROACH

To be able to cope with a large set of pairwise regulariza-

tion terms, we propose an alternated scheme between an α-

expansion move space and a β-jump move space. Since the

condition of use of each decreasing energy algorithm is not

always fulfilled, the optimization is limited to sites where the

problem is sub-modular.

For a site where the sub-modularity condition (2) is veri-

fied for all its links, a new label is proposed. But, when this

condition is not fulfilled, the same label as the current label

is proposed. As a consequence, during an α-expansion move

or a β-jump move, only the sites where the sub-modularity

condition is verified can be modified. We call this variant as

partial. This means that, if the energy is decreased at each

step, the energy will not necessarily converge to a local mini-

mum due to the possibility of sites with a fixed label. The ad-

vantage of alternating between partial α-expansion and partial

Algorithm 1 AlternatedOptimization

Initialize labels

E0 ← ComputeEnergy
while EnergyIsStrictlyDecreasing do

for α ∈ L do

PartialAlphaExpansion(α)
for β ∈ L do

PartialBetaJump(β)
PartialBetaJump(−β)

Algorithm 2 PartialAlphaExpansion(α)

for i ∈ I do

flagi ← AllLinksSubmodular
for i ∈ I do

if flagi then

l̂i ← α
else

l̂i ← li
DoGraphCut

Algorithm 3 PartialBetaJump(β)

for i ∈ I do

flagi ← AllLinksSubmodular
for i ∈ I do

if flagi & (li + β) ∈ L then

l̂i ← li + β
else

l̂i ← li
DoGraphCut

β-jump moves is to try to minimize the number of sites with a

fixed label due to the difference in their conditions of use. The

alternated optimization is stopped when neither α-expansion

nor β-jump move spaces strictly decrease the energy.

The proposed scheme is shown in Algo. 1, with the partial

α-expansion in Algo. 2 and the partial β-jump in Algo. 3. No-

tice that since α-expansion and β-jump moves are performed

on the same graph structure, every graph-cut steps only need

to update the graph values and not to rebuild the graph.

4. IMAGE NOISE REDUCTION

We test the proposed schemes on the image noise reduction

problem. On each image, we compute the intensity differ-

ence histogram over all neighbors. A ESEF model is fitted

on the observed distribution to estimate f , using Maximum

Likelihood (ML) criterion. Then a Gaussian noise (with std

10) is added to the images, so g is set as -log of this pdf, i.e a

square function.

4.1. Fixed sites

Fig. 1(a) shows the ”Lena” image. The used regularization

function is a ESEF function with a = 0.4, s = 10 and k = 1.



(a) (b) (c)

Fig. 1: (a) Lena image, (b) in gray, pixels where intensity

value may be fixed during α-expansion (multiplied by 4), (c)

fixed pixels during β-jump (multiplied by 2).

This function is locally convex around zero and concave for

higher values. In Fig. 1(b), the number of fixed labels during

the α-expansion move is shown, with α ∈ L. Fig. 1(c) shows

the β-jump case. We remark that fixed pixels are mainly along

objects edges in both cases. This can be explained by the con-

cave part of the ESEF function when β-jump is used. When

α-expansion is used, fixed pixels only occur when the value

of α is between the two neighbor label values. This case is

thus more likely to happen at edges. Notice that on the edges,

the numbers of fixed labels during α-expansion are lower than

for β-jump in our experiments.

4.2. Optimization scheme comparison

A pairwise L1 regularization is used in order to compare per-

formances of α-expansion, β-jump and alternated scheme on

the same energy. Indeed, L1 regularization fulfills both condi-

tions (3) and (5), and thus there is no pixel with a fixed label.

Over 7 tested images, the 3 optimization schemes give the

same final energy. This illustrates the consistancy between

the different schemes.

4.3. Image noise reduction comparison

The comparison of the previous different methods with bilat-

eral filter, in term of Peak Signal-to-Noise Ratios (PSNR), af-

ter parameter optimization, leads to quite similar PSNR. Nev-

ertheless, obtained results differ in terms of smoothness. For

instance, Fig. 2 presents details obtained from ”Cameraman”

and ”Lena” images using α-expansion (first column) and al-

ternated scheme (second column). In the two first lines, the

regularization term for the alternated scheme comes from the

ESEF pdf fitting. To apply α-expansion, the previous ESEF

pdf is approximated by the closest concave function on R
+.

In the third line, a L1 regularization is used with α-expansion

(left), and a smoothed L1 (ESEF a = 0.5, s = 3, k = 1)

function with the alternated scheme. One can notice the dif-

ferences in areas of slow intensity variation, such as the sky

in ”Cameraman” or Lena’s cheek. α-expansion leads to a

staircase effect due to the concave regularization. Results

are smoother with alternated scheme, thanks to a regulariza-

tion function which is locally convex around zero, even if the

noise is a little less decreased in flat areas. On seven images,

Fig. 2: Noise reduction obtained with α-expansion (fist col-

umn) and Alternated scheme (second column), on line 1 and

2 for approximated ESEF and ESEF model, on line 3 for L1

and Smoothed-L1 model.

alternated scheme is slower by a factor between 1.1 to 2.5,

compared to α-expansion.

5. CONCLUSION

From [1], we derive again that concave functions of the ab-

solute labels difference can be used with α-expansion and we

obtain that convex functions can be used with β-jump. This

leads us to the idea to alternated between α-expansion and

β-jump to minimize an energy where regularization function

is neither concave nor convex. The proposed optimization

scheme can be applied to a set of energies which is much

larger that the usable set for α-expansion. We illustrated the

advantages of the proposed scheme for image noise reduction.

This opens many possibilities of improvements on diverse im-

age processing problems.
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