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The Guided Bilateral Filter: When the Joint/Cross

Bilateral Filter Becomes Robust
Laurent Caraffa, Jean-Philippe Tarel∗, Member, IEEE, Pierre Charbonnier

Abstract—The bilateral filter and its variants such as the
Joint/Cross bilateral filter are well known edge-preserving image
smoothing tools used in many applications. The reason of this
success is its simple definition and the possibility of many
adaptations. The bilateral filter is known to be related to robust
estimation. This link is lost by the ad hoc introduction of the
guide image in the Joint/Cross bilateral filter. We here propose a
new way to derive the Joint/Cross bilateral filter as a particular
case of a more generic filter which we name the Guided bilateral
filter. This new filter is iterative, generic, inherits the robustness
properties of the Robust bilateral filter and uses a guide image.
The link with robust estimation allows us to relate the filter
parameters with the statistics of input images. A scheme based on
Graduated Non Convexity is proposed, which allows converging
to an interesting local minimum even when the cost function
is non-convex. With this scheme, the Guided bilateral filter
can handle non-Gaussian noise on the image to be filtered. A
complementary scheme is proposed to handle also non-Gaussian
noise on the guide image even if both are strongly correlated.
This allows the Guided bilateral filter to handle situations with
more noise than the Joint/Cross bilateral filter can work with
and leads to high Peak Signal to Noise Ratio PSNR values as
shown experimentally.

Index Terms—image filtering, image smoothing, Bilateral filter,
Joint bilateral filter, Cross bilateral filter, Dual bilateral filter.

I. INTRODUCTION

The bilateral filter [1] is a well known edge-preserving

image smoothing tool. The key idea of the bilateral filter

consists in introducing a photometric weight into the stan-

dard Gaussian filter. The effect of this weight is to cancel

spatial interactions between pixels with an important intensity

difference. Thanks to its properties, the bilateral filter is now

used in many different applications, for instance: sharpness

enhancement [2], upsampling [3], depth map refinement [4],

image editing [5] and fog removal [6].

A good summary on bilateral filter, interpretations, improve-

ments and extensions is given in [7]. In our opinion, there

are five important points to recall. First, the bilateral filter is

connected to the robust estimation of the intensity average in

a neighborhood [8]. Second, the staircase effect which may

be observed in the results can be canceled by using linear

fitting rather constant fitting [9]. Third, the bilateral filter can
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be extended as the adaptive bilateral filter where the scale

parameter in the photometric weight is selected using the

intensities of the neighbor pixels [2]. Fourth, there are several

ways to improve the computation time of the bilateral filter, for

instance using a grid [10] or using distributive histograms [11].

Fifth, in some situations, information about the structure of the

target image is available under the form of a similar image,

called the guide image. The latter may be used to define a

guide weight which may be introduced, either in place of

the photometric weight (leading to the Joint/Cross bilateral

filter [12], [13]) or in conjunction with it (Dual bilateral

filter [14]). Note that the guide image has also been used alone

in [6], but in a framework different from bilateral filtering.

While the improvements proposed in the second to fourth

points only slightly impact the interpretation of the bilateral

filter in terms of robust estimation, the ad hoc introduction

of the guide in the joint/cross bilateral filter calls for a new

statistical interpretation.

In this paper, we first recall in Section II the link between

the bilateral filter and robust estimation, but we also show,

experimentally, that neither the bilateral filter nor its iterative

version are really robust. In contrast, applying a full Iterative

Reweighted Least Squares (IRLS) iteration leads to the so-

called Robust bilateral filter [15]. In the same spirit, we

propose in Section III to connect the Joint/Cross bilateral and

Dual bilateral filters to robust estimation. This leads us to

extend these filters into a novel one, iterative and robust, the

Guided bilateral filter. All the filters we use or introduce here

are listed in Table I with their main features recalled.

TABLE I
CHARACTERISTICS OF THE FILTERS USED OR INTRODUCED IN THE PAPER.

Filter name Spatial Photo. Guide Ref.
weight weight weight Iterative Robust or eq.

Gaussian Yes No No one step No
Bilateral Yes Yes No one step No [1], (1)

Iterated bilateral Yes Yes No several steps No (1)
Robust bilateral Yes Yes No IRLS steps Yes [15], (3)

Joint/Cross bilateral Yes No Yes one step No [13], [12]
Dual bilateral No Yes Yes one step No [14]

Guided No No Yes one step No [6]
Guided bilateral Yes Yes Yes IRLS steps Yes (8)

In Section IV, a convergence scheme based on Graduated

Non Convexity is proposed for the Guided bilateral filter.

Then, in Section V, we show how the input images statistics

can be used to set the filter parameters and we experiment

with the proposed filter under different kinds of added noise.

These results compare advantageously with results obtained
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with bilateral, Joint/Cross bilateral, Dual bilateral, and Guided

filters. Finally, in Section VI, the interest of the proposed

filter is illustrated on three applications: flash/no-flash filtering,

depth map refinement and fog removal.

II. BILATERAL FILTER

The bilateral filter proposed in [1] is an extension of the

linear smoothing of images where a photometric weight wp

is introduced as a factor of the spatial weight ws. From the

original image E, the result of the bilateral filter is the image

F given by:

F (x) =

∑

t∈Sm
ws(‖t‖)wp(E(x)− E(x+ t))E(x+ t)

∑

t∈Sm
ws(‖t‖)wp(E(x)− E(x+ t))

(1)

where Sm is, typically, a square window [−m,m]× [−m,m].
ws is a symmetrical, decreasing function of the distance ‖t‖
from the center of Sm. Usually, wp is also an even and

decreasing function of the intensity.

A. Robust bilateral filter

According to [8], the image F resulting from the bilateral

filter can be interpreted as the first step of the minimization,

with respect to F (x), of the local cost:
∑

t∈Sm

ws(‖t‖)φ((F (x)− E(x+ t))2) (2)

When ws(‖t‖) = 1, the minimizer F (x) of the cost is the

robust average of the values E(x+ t), t ∈ Sm. In such a case,

φ characterizes the average noise model on the intensities in

the neighborhood Sm. By canceling the derivative of the sum

in (2) with respect to F (x), we have:
∑

t∈Sm

ws(‖t‖)φ
′((F (x)− E(x+ t))2)(F (x)− E(x+ t)) = 0

After rearranging the terms and fixing non-linear terms to their

previously computed value, the well-known IRLS algorithm is

obtained, which iteratively minimizes (2):

Fk+1(x) =

∑

t∈Sm

ws(‖t‖)φ
′((Fk(x)− E(x+ t))2)E(x+ t)

∑

t∈Sm

ws(‖t‖)φ
′((Fk(x)− E(x+ t))2)

(3)

Derivation and proofs of convergence of the IRLS iterations

may be found for instance in [16], [17]. By comparing (1)

with (3), we see that the bilateral filter is the first step of

the IRLS algorithm when wp(u) = φ′(u2) and when it

is initialized with the original image (i.e. F0(x) = E(x)).
We name Robust bilateral filter, the IRLS iterations until

convergence.

B. Robustness assessment

On Fig. 1, an original image, chosen for its difficulty

(presence of thin image structures) is shown, along with the

image to be processed, where a Gaussian noise (std s = 5) and

a Salt and Pepper (10%) noise were added. The result with the

Fig. 1. Comparison between bilateral filter, iterated bilateral filter and Robust
bilateral filter. First row: left, the original image and right, the noisy image
(PSNR = 14.5dB). Second row: result with the bilateral filter after 1 and
100 iterations (αp = −1, sp = 70, PSNR = 15.5dB and αp = −1, sp =
5, PSNR = 14.6dB, respectively). Third row: result of the Robust bilateral
filter with 10 and 100 iterations (αp = 0.5, sp = 5, PSNR = 28.9dB and
28.8dB, respectively).

bilateral filter and after 100 iterations of the bilateral filter is

shown on the second row. Despite the fact that it is related to

robust estimation as previously explained, the bilateral filter

is not robust to non-Gaussian noise in the original image.

The iterative application of the bilateral filter is not robust

to outliers either.

On the contrary, the Robust bilateral filter introduced in the

previous section is robust as illustrated by the results with

10 and 100 iterations, shown on the third row of Fig. 1. It

is important to distinguish between the iterated bilateral filter

and the Robust bilateral filter. Indeed, in the Robust bilateral

filter (3), Fk is compared to the fixed values of E, while, in

the iterative application of the bilateral filter, Fk is compared

to the value obtained from the previous filter application.

Due to its derivation, the Robust bilateral filter is robust to

outliers in the original image, provided that the noise model

is suited to the input and that the correct convergence scheme

is used.
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Fig. 2. Plots of Smooth Exponential Family (SEF) functions. From top to
bottom, for different values of α: the pdf exp(−φα(b2)), the error function
φα(b2), and the corresponding weight φ′

α
(b2).

C. Noise model

For modeling different kinds of centered additive noise, the

following parametric probability density function (pdf) will be

used:

pα,s(b) ∝
1

s
e−φα(( b

s
)2) (4)

where φα(t) =
1
2α ((1+ t)α−1). This is the so-called Smooth

Exponential Family (SEF) introduced in [18], [15]. The shape

of the pdf is tuned by two parameters: s, the scale of the noise

and α, which allows a continuous transition between different

kinds of useful pdfs, see Fig. 2. In particular, the Gaussian pdf

is obtained for α = 1. The Laplace pdf is approximated with

α = 0.5, and Geman & McClure’s pdf [19] is obtained for

α = −1. The Cauchy/T-student pdfs are obtained when α → 0
as a limit case by integration of φ′ [15]. The robustness of the

Maximum Likelihood Estimator (MLE) derived from the SEF

family is studied in [15], where it is shown that the robustness

is increasing when α is decreasing from 1. The maximum 50%
robustness is achieved for α ≤ 0.

The cost (2) can be derived as a MLE from the probability

of the residual b = F (x)− E(x+ t):

p(b) ∝ (
1

s
e−φα(( b

s
)2))qt (5)

where qt is an indicator of the similarity of the noiseless

intensities at pixels locations x and (x + t). The value of

this similarity indicator qt is assumed to lie in the interval

[0, 1]. The value qt = 1, indicates that the random variables at

locations x and (x + t) have the same center values. In that

case, p(b), the pdf of b in (5), is within the SEF model (4). A

value of qt close to zero indicates that the random variables

at locations x and (x + t) have very different center values.

In that case, p(b) becomes closer to the uniform distribution,

so the contribution of this pair to the overall likelihood is

neutralized. This pair is not informative. In the bilateral filter,

the similarity indicator qt is assumed to be known and is set

to the spatial weight ws(‖t‖).

D. Graduated Non Convexity

As explained in [15], the convergence to a good local

minimum requires a careful convergence scheme, based on the

Graduated Non Convexity (GNC) [20], [15] strategy. When the

SEF family φαp,sp is used, the GNC consists in:

• applying first iterations using αp = 1 or αp = 0.5, to

enforce convexity of the minimized cost,

• performing a sequence of fits with a stepwise decreasing

αp in continuation, i.e. each time using the current output

image as an initial value for the next filtering step. This

is performed until the target value of αp is achieved.

For values αp ≥ 0.5, the cost function (2) is always

convex as the sum of convex functions. Such an example

is shown in the third row of Fig. 1. For values αp < 0.5,

it is not necessarily convex, so several local minima may

exist. Alternatively, the cost (2) can be minimized exhaustively

(by enumeration of gray level values) to achieve the global

minimum. Using the GNC, we observed in practice that a

minimum very close to the global one is obtained at a lower

cost. Indeed the number of iterations to achieve convergence

is reduced by a factor between 5 and 30.

In our experimentations, we observed that, during the first

steps of the GNC, outliers are attenuated in the current result

but image details are also lost. During the next ten steps of

the GNC, the details are progressively restored, but without

reintroducing outliers. However, one may observe that fine

structures are not perfectly restored. We will see in Sec. III

that using a guide image may be very beneficial from this

point of view.
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E. Linear fitting

Due to the modeling by a constant in (2), the iterated

bilateral and Robust bilateral filters are subject to staircase

effects in regions with smooth gradient of gray level or colors.

Following [9], the staircase effect can be removed by using

a local linear fitting in the neighborhood of each pixel. The

iteration consists now in an IRLS on the parameters of the

local 2D plane:

(
Hk+1(x)
Fk+1(x)

)

=

(

R+
∑

t∈Sm

ws(‖t‖)wp,k

(
t

1

)(
t

1

)T
)−1

∑

t∈Sm

ws(‖t‖)wp,kE(x+ t)

(
t

1

)

(6)

with wp,k = φ′((HT
k (x)t + Fk(x) − E(x + t))2), where R

is a diagonal matrix chosen to enforce the positivity of the

inverse matrix in (6), and with T for transpose. Hk(x) is the

slope of the 2D plane at iteration k, and the filter result is the

intercept Fk(x) of the 2D plane. As in the previous section,

the convergence towards an interesting local minimum requires

using the GNC approach.

III. GUIDED BILATERAL FILTER

In several applications, another image of the scene, taken

in different conditions or with a different spectral band, is

available in addition to the input image. This image is named

guide image. Note that its photometry is usually distorted or

different, see for instance Fig. 9. The Joint/Cross bilateral filter

was introduced in an ad hoc way simultaneously in [13],

[12], from the bilateral filter, by substituting the original

image E with the guide image G in the expression of the

photometric weight wp, in (1). The guide image G indicates

where similar pixels are located in each neighborhood. Due

to this substitution, the link with robust estimation is lost. To

restore this link, we here propose to keep wp and to introduce

the guide image G into a third weight wg , in cost (2). This

extra weight, we name guide weight, was introduced inside the

bilateral filter equation to obtain the Dual bilateral filter [14]

but not in the cost function as we do. In our opinion, and

contrary to [13], [12], this weight wg is a similarity indicator,

like the spatial weight, and not a photometric weight. Indeed,

the guide image can be seen as a label image which describes

the structure of similar pixels in each neighborhood. This leads

us to introduce a new filter which we name the Guided bilateral

filter, whose output is the value F (x) achieved at the minimum

of the following cost:

∑

t∈Sm

ws(‖t‖)wg(G(x)−G(x+ t))
︸ ︷︷ ︸

qt

φ((F (x)− E(x+ t))2)

(7)

where ws is still the spatial weight, wg is the guide weight

from the guide image, qt = wswg is the new similarity

indicator and φ characterizes the photometric noise model.

Like the Robust bilateral filter, the Guided bilateral filter is

iterative and derives as a MLE from (5) but with a different

form for qt. It thus can be written as:

Fk+1(x) =

∑

t∈Sm

qtφ
′((Fk(x)− E(x+ t))2)E(x+ t)

∑

t∈Sm

qt φ
′((Fk(x)− E(x+ t))2)
︸ ︷︷ ︸

wp(Fk(x)−E(x+t))

(8)

with: qt = ws(‖t‖)wg(G(x)−G(x+ t)).
The Robust bilateral filter is the particular case of the

Guided bilateral filter when wg = 1. The Joint/Cross bilateral

filter is the first iteration of (8) when wp = 1. The Dual

bilateral filter is the first iteration of the Guided bilateral filter,

when ws = 1. Contrary to the Cross/Joint bilateral and Dual

bilateral filters, the Guided bilateral filter is robust to non-

Gaussian noise on the original image if the weight wp or

equivalently if φ′ are adequately chosen w.r.t. the image noise.

A summary of the main features of these different filters is

shown in Tab. I.

The Guided bilateral filter is very flexible thanks to its

three weights. In practice, the spatial weight ws can be set

to 1 when a good quality guide G is provided. Indeed,

the guide weight wg is usually more informative about the

similarity between pixels than the spatial weight ws. When

the guide is not of good quality, a Gaussian function can be

used for the spatial weight, as we do in the experiments:

ws(‖t‖) = e−
1

2
(
‖t‖
ss

)2 where ss is the scale of the spatial

weight. In the experiments, we also found convenient to set

the function wg(c) to pαg,sg (c): wg(c) = e
−φαg ((

c
sg

)2)
where

αg and sg are the two parameters of the guide weight.

The photometric weight wp is related to the nature of the

noise on the image E, as for the Robust bilateral filter. We

now suppose that the function wp(b) is chosen as SEF weight

wp(b) = φ′

αp
(( b

sp
)2), and thus parameterized by two values αp

and sp. This assumption is important to derive the convergence

scheme using GNC. Notice that when the noise is Gaussian,

this implies αp = 1 and thus wp(b) equals one. In case of color

or multi-components images, the squared difference which is

in the photometric and guide weights is substituted by a sum

over the components of squared differences. As in Sec. II-E, a

local fitting by a linear model can be used rather than a fitting

by a constant model in wp to cancel the staircase effect.

As in Sec. II-B, when the function φ is not convex, the

convergence towards an interesting local minimum requires

the GNC approach, as detailed in the next section.

The Guided bilateral filter is applied to the same original

image as in Fig. 1 where Gaussian (std s = 5) plus SP (10%)

noise is added. The guide image is, in this example, a gamma

transform of the original image without added noise. On the

second row of Fig. 3 are shown the results of the Joint/Cross

bilateral filter and after 100 iterations (with ss = 1, αg =
1, sg = 5). In the first case, the outliers are not completely

removed: the Joint/Cross bilateral filter is not really a robust

filter. With 100 iterations, the outliers are better removed, but

small details are also removed due to the iterations, which

involve spatial convolutions of increasing scale. On the third

row are shown the results of the Guided bilateral filter (with

ws = 1, αg = 0, αp = −1, sg = sp = 5) when a local fitting
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Fig. 3. Comparison between the Joint/Cross bilateral filter and the Guided
bilateral filter, in case of a noiseless guide. First row: left, the noisy image E
to be processed (PSNR = 14.5dB) and right, the guide image G, which in
this example is a noiseless gamma-transformed version of the original image
(PSNR = 13.1dB). Second row: result of the Joint/Cross bilateral filter after
1 and 100 iterations (PSNR = 27.4dB and PSNR = 20.7dB). Third row:
result of the Guided bilateral filter with constant (PSNR = 39.6dB) and
with linear local fitting (PSNR = 38.5dB).

is used with constant and linear models. The results obtained

with the Guided bilateral filter are drastically superior in terms

of PSNR compared to the results of the Joint/Cross bilateral

filter, iterated or not. This can be explained by the fact that

no spatial convolution of increasing scale is involved.

IV. CONVERGENCE SCHEME

We now provide a scheme for a convergence towards an

interesting local minimum when the guide image is free of

noise. Then, we consider the case where a noise is also

added to the guide image, and even more difficult, when both

observed noises are the same.

A. Small noise on the guide

Without noise on the guide, the scheme we found to

converge quickly towards an interesting local minimum in 8

iterations consists in the following heuristic:

• set the power αg and the scale sg as a function of the

intensities of the details to be kept, select the power αp

and the scale sp as a function of the noise in the image

E, and assume the spatial weight to be one;

• apply one step of the Guided bilateral filter with wp = 1
to the noisy image;

• on the result, apply one iteration of the Guided bilateral

filter using the previous set of parameters but with a

temporary αp = 0.5;

• if the chosen value of αp is lower than zero, then apply

one extra iteration of the Guided bilateral filter using a

temporary αp = 0;

• finally, apply extra iterations of the Guided bilateral filter

using the value αp chosen in the first step until the

maximum number of 8 iterations is achieved.

We ran experiments with added synthetic noise. For constant

model and parameters (αg = 0.5, αp = −1, and sg = sp = 5),

the energy obtained using the GNC scheme is, on 10 images

with Gaussian plus SP noise, on average 1.0022 times the

energy of the global solution. The achieved energy using GNC

and exhaustive enumeration are thus very close. On these

images, the PSNR obtained by exhaustive enumeration is

37.2±0.5dB. Surprisingly with the GNC, the obtained PSNR

is higher: 39.2±0.2dB, with a smaller variance. Indeed, when

the number of iterations increases, the PSNR first increases

rapidly then decreases slowly, after 10 iterations. The smaller

variance can be explained by the use of the same initialization

during the GNC, which biases the result towards the local

minimum closest to the initialization. Similar conclusions are

obtained when a Cauchy noise is added.

B. Strong noise on the guide

On the original image of Fig. 1, we studied the cases

where Gaussian (std s = 5, PSNR = 13.1dB) or SP (10%,

PSNR = 11.1dB) noise is added both to the guide and to

the image. In both cases, we observed that difficulties arise at

pixels where the observed noise on the image E and on the

guide G are similar in value. This leads us to experiment with

the most difficult situation where the same observed SP noise

is added onto the original image and onto the guide, as shown

in the first row of Fig. 4. In the last row of Fig. 4, we see

that the SP noise is not removed by the Guided bilateral filter

(with αg = 0, αp = −1, sg = sp = 5). The Guided bilateral

filter is not robust to noise when it is correlated between the

input image and the guide. The solution is to pre-process the

guide by filtering it using for instance the Robust bilateral filter

(with ss = 1, αp = −1, sp = 5). After this pre-processing of

the guide, the previous GNC scheme is applied on the input

image, with one difference: ws is no longer one, but it is set

to a Gaussian function, with a small scale such as ss = 1.0 or

ss = 1.5. The spatial weight is used to account for the lower

reliability of the guide compared to the noiseless case.

On the image of Fig. 4, a rather good PSNR = 29.0dB
value is obtained using the proposed pre-processing. In com-

parison, with the Robust bilateral filtering with the same

parameters, the PSNR is equal to 27.4dB. Compared to

PSNR = 29.0dB, the results obtained using the Joint/Cross

bilateral filter are of lower PSNR in both cases, without

(ws = 1, αg = 0, sg = 70) and with pre-processing (ss = 1.5,

αg = 0, sg = 70).
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Fig. 4. Comparison between the Joint/Cross bilateral filter and the Guided
bilateral filter, in the presence of a noisy guide. First row: left, the image E
to be processed and right, guide image G with the same noise. Second row:
result of the Joint/Cross bilateral filter without (left, PSNR = 23.3dB) and
with (right, PSNR = 21.5dB) filtering of the guide. Third row: result of
the Guided bilateral filter without (PSNR = 14.5dB) and with (PSNR =
29.0dB) filtering of the guide.

V. TESTS

A. Influence of parameters

The parameters of the Guided filter are: the power αg and

the scale sg of the guide weight wg , the power αp and the

scale sp of the photometric weight wp, and possibly the scale

ss of the spatial weight ws, if the latter is assumed Gaussian.

On the original image, named Hudson Diatom, from which

the image of Fig. 1 was extracted, we studied the perfor-

mance changes as a function of the two parameters αp ∈
[−0.5, · · · , 1.0] and sp ∈ [1, · · · , 20], depending on the kind of

added noise. We use three different noises: Gaussian (α = 1),

Laplace (α = 0.5) and Cauchy (α = 0), with the same scale

parameter, s = 10. As shown on Fig. 5, the variations of the

PSNR with respect to αp and sp are relatively smooth. The

best PSNR value is achieved for αp = 1 in the Gaussian

noise case, as expected. When a Laplace noise is added, the

best PSNRs are achieved for αp = 0.5, for two values of the

scale: sp = 1 and sp around 8. When a Cauchy noise is added,

the best PSNRs are achieved when sp = 6 for αp = 0 and

also when sp = 1 for αp = 0.5. These two maxima can be
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Fig. 5. Variations of the PSNR for different parameter values of the
photometric weight. From top to bottom, three different kinds of noise are
added to the image Hudson Diatom: Gaussian (α = 1), Laplace (α = 0.5)
and Cauchy (α = 0) with same scale parameter (s = 10). PSNR variations
are relatively smooth.

explained by the fact that the intensity is thresholded between

0 and 255.

In Fig. 6, the PSNR variations are displayed for three

different images when the added noise is a Cauchy noise. In

the first column, PSNR variations are displayed w.r.t. αp and
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Fig. 6. Variations of the PSNR for different parameter values of the
photometric weight (first column) and of the guide weight (second column).
From top to bottom, three different images are used: Baboon, Fishing boat
and Peppers. A crop of these images can be see on Fig. 8. The added noise
is of Cauchy type (α = 0) with scale parameter s = 10. PSNR variations
are relatively smooth and similar from one image to another.

sp and in the second column, w.r.t. αg and sg . The shape of the

PSNR curves are rather similar from one image to another.

This illustrates the fact that the parameter values should be

set as a function of the image noise and not as a function

of the image content. These PSNR variations are relatively

smooth w.r.t. the four parameters of the photometric and guide

weights. This illustrates that the Guided bilateral filter does not

need very accurate parameter tuning to provide almost optimal

performance.

B. Parameter values from image statistics

The statistical interpretation of the weights in the Robust

bilateral filter, described in the end of Sec.II-A, is interesting

since it suggests an approximate way to select the product

of the spatial and photometric weight. Indeed, if we forget

about the noise on the window center, the pdf p(b) in (5) can

be observed from the residuals E(x) − E(x + t), for every

‖t‖, from the input image. In Fig. 7, we show in red the

residual histogram for three additive noises (Gaussian, Laplace

and Cauchy with scale s = 10), on the same image. Each

histogram is fitted within the SEF. The estimated parameters

provide interesting values to set the parameters of the weights

of the Robust bilateral filter. In Fig. 7, the fit of each residual

histogram is shown in black. The fitted parameter (α, s)
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Fig. 7. Fits of the noise observed on the images. In red, the obtained histogram
of intensity residuals when different kinds of noise are added (from top to
bottom: Gaussian, Laplace and Cauchy with scale s = 10). In black, the fit
in the SEF.

values are (0.63, 13.6), (0.38, 9.6), (0.23, 15.4) respectively

for Gaussian, Laplace and Cauchy noise. Using these values

for the restoration of 10 different images, the resulting average

PSNR are 40.8dB, 41.2dB and 36.3dB respectively. Such

values almost correspond to the maximum PSNR achieved

in Fig. 5 (40.9dB, 41.3dB and 37.0dB respectively). The loss

in PSNR is thus in average 0.8% compared to the use of the

true parameters.
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Fig. 8. Comparison on four image crops. From left to right, column-wise: the original image, the image with Gaussian (std s = 5) plus SP (10%) noise, the
guide (gamma transform of the original, noiseless image with γ = 1.4), result of the Joint/Cross Bilateral filter, Dual Bilateral filter [14], Guided filter [6]
and Guided Bilateral filter. For each filter, parameter values are selected as the ones that achieve the best PSNR in average on the four images.

C. Comparison

The interesting performances of the Guided bilateral filter

are confirmed on several images in presence of SP (10%) noise

on the input image and in the presence of Gaussian (s = 5)

noise on the guide, see crops of Fig. 8. On this figure, the

Guided bilateral filter is compared to the Joint/Cross bilateral

filter and to the Guided filter introduced in [6]. The best

performance in terms of PSNR over a range of parameter

values is displayed in Tab. II. Notice that the Guided bilateral

filter always outperforms the three other filters, by several dBs.

TABLE II
BEST PSNR (IN dB) OVER A RANGE OF PARAMETER VALUES FOR THE

FOUR IMAGES OF FIG. 8 WITH JOINT/CROSS BILATERAL FILTER, DUAL

BILATERAL FILTER [14], GUIDED FILTER [6] AND GUIDED BILATERAL

FILTER.

Image Joint/cross Dual Guided
name bilateral bilateral Guided bilateral

filter filter filter filter

Hudson diatom 24.9 25.0 28.3 35.3
Baboon 13.4 24.1 28.7 31.6

Fishing boat 14.0 26.1 29.9 32.9
Peppers 14.2 25.5 28.6 34.03

VI. APPLICATIONS

To illustrate the practical interest of the proposed Guided

bilateral filter, we now provide a few examples of its applica-

tion to flash/no-flash filtering, depth map refinement and fog

removal.

A. Flash/no-flash filtering

Fig. 9. Example of flash/no flash filtering. First row: original images without
and with flash. Second row: left, result obtained following [13] using the
bilateral filter on the flash image and the Cross/Joint bilateral filter on the
no-flash image; right, result obtained using the Robust bilateral filter on the
flash image and the Guided bilateral filter on the no-flash image.

In Fig. 9, we used the original flash/no-flash images of [13]

and the same method to remove the noise in the no-flash image

with the flash image. To obtain the leftmost image on the

second row, the flash picture is first filtered using the bilateral

filter. Then the no-flash picture is filtered using the Joint/Cross

bilateral filter with the smooth flash image as a guide. Finally,
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the details of the flash image are introduced by multiplying

the previous result with the ratio of the flash image over the

smooth flash image. The rightmost image on the second row

of Fig. 9 is obtained by using the Robust bilateral filter with

parameters ws = 1, αg = 1, sg = 1, αp = −1, sp = 3
instead of a bilateral filter, and using the Guided bilateral

filter with parameters ws = 1, αg = 0, sg = 10, αp = −1,

sp = 40 rather than a Joint/Cross bilateral filter. Due to the

robustness of both filters, the result is smoother, and noise

is entirely removed. Moreover, the specularities of the flash

image are less transferred onto the no-flash image compared

to the previous result.

B. Depth map refinement

Fig. 10. Example of depth map refinement. First row: left, original image of
the stereo pair; right, disparity map obtained using a dense stereo reconstruc-
tion algorithm. Second row: the refined disparity maps after filtering by the
Joint/Cross bilateral filter (left) and after the Guided bilateral filter (right).

The Joint/Cross bilateral filter was used in [4] for depth map

refinement and interpolation using one of the original images

of the stereo pair as a guide. In Fig. 10, a disparity map is

obtained using a belief propagation algorithm on a Markov

random field model of the problem which was voluntarily

stopped before total convergence to save processing time.

Even if numerous outliers are present in the original image,

the refinement based on the Guided bilateral filter achieves

interesting results. To obtain these results, the GNC approach

was performed with parameters ws = 1, αg = 0, sg = 10,

αp = −1, sp = 40. The result obtained using the Joint/Cross

bilateral filter is less convincing, as shown on Fig. 10.

C. Single image fog removal

In this example, following [21], fog removal is performed in

two steps on a single image: first, atmospheric veil is estimated

from the color saturation (maximum over color channels for

each pixel) after median filtering; second, the veil is used

to remove the fog by reversing Koschmieder’s law, which

models fog effects. Between these two steps, the atmospheric

veil can be refined by applying the Guided bilateral filter on

the veil using the original color image as a guide. This extra

step allows better removing the fog between objects with thin

shapes such as leaves, as shown on Fig. 11. The parameters

of the Guided bilateral filter are ws = 1, αg = 0.5, sg = 30,

αp = 1, sp = 10 in this example.

VII. CONCLUSION

In this paper, we have reviewed the derivation of the

bilateral filter and several of its most efficient variants from

the point of view of robust statistics. In particular, we exper-

imentally shown that an IRLS implementation (called Robust

bilateral filter) is the only one that fully guarantees robust-

ness in the presence of noise and outliers. We proposed a

probabilistic interpretation of the weights that may be used

to unify the derivation of the filters and naturally leads to

the definition of a more generic filter, which we name the

Guided bilateral filter. The inputs of this filter are two images:

the image to be processed and the guide image. The Guided

bilateral filter requires four parameters if the guide is of

good quality or else five parameters. We provided insight

and recommendations for setting these parameters depending

on the input data. The proposed filter is iterative, hence we

provide a heuristic scheme, based on the Graduated Non

Convexity approach which helps converging towards a good

local minimum of the cost function, in a reduced number

of iterations. Experimentally, in terms of psnr, the Guided

bilateral filter outperforms the three other filters which take

into account a guide image. The proposed filter is robust to

outliers in the image to be processed but not to outliers in the

guide image. To overcome this limitation, simply we suggest

to pre-process the guide, using the Robust bilateral filter,

for instance. We show the interest of the proposed filter for

flash/no-flash filtering, depth map refinement and fog removal,

but many other applications could profit from its use, such as

visible/infrared filtering, sharpness enhancement, upsampling,

image editing, gray level image coloring, image recoloring, or

depth of field effect [22].
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