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On Controlling Unknown Scalar Systems with Low Gain Feedback

Mazen Alamir, CNRS, University of Grenoble. (mazen.alamir@grenoble-inp.fr, http://www.mazenalamir.fr)

I
n this paper, a new feedback law if proposed
to force a highly uncertain system to track a
desired set-point using saturated control. The

proposed feedback is not based on high gain con-
cept, rather, a saturated integrator is used. Stabil-
ity analysis is performed under realistic feasibility
assumption.

Problem Statement
Let us consider the following scalar system:

ẋ = α [u− h] (α, h(·)) unknown (1)

where α ∈ [αmin, αmax] is an unknown parameter with
known bounds αmin, αmax, u is the control input, h is an
unknown variable while x is the output of interest one
would like to make it track some desired value xd.

Regarding the unknown term h, the following assumption
is assumed to hold:

Assumption 1 (Bounded unknown h). There is a known
pair of lower and upper bounds hmin and hmax such that
for all t the following inequalties hold:

h(t) ∈ [hmin, hmax] (2)

In order for the regulation problem to be feasible, it is
assumed that the input control u can always dominate the
term h had the latter be known. This is expressed through
the following assumption which expresses also that u is
constrained by lower and upper bounds:

Assumption 2 (u is authoritative enough). There exists
lower and upper bound umin and umax such that for all t:

u(t) ∈ [umin, umax] (3)

Moreover, these bounds relate to the bound of h through
the following inequalities:

umax − hmax ≥ %+ > 0 (4)

hmin − umin ≥ %− > 0 (5)

Note that if this assumption is not satisfied, the sign of
x cannot be guaranteed to be imposed by the control.

The problem we are interested in here is the follow-
ing:

Define a dynamic state feedback law of the form:

ż = f(z, x, xd) (6)

u = K(z, x, xd) (7)

such that the tracking error e = x− xd is stabilized
to a neighborhood of 0 that is as small as required.

Problem Statement

Discussion Regarding Alternative
Solutions
There are obviously two intuitive approaches to solve the
tracking part of the problem. These are, high gain solu-
tion and observer-based solutions. These are sketched in
the following sections and then compared to the solution
proposed in this paper.

Elementary High-Gain Solution
The idea here is to kill the unknown term h by a high gain
control. This is done by using very high value of λ in the
following feedback expression:

u = λ(xd − x) (8)

By doing so, the equation of the error e = x− xd becomes
(assuming constant xd):

ė = −αλe− αh (9)

which steers the errors towards the set:

E :=

{
e s.t. e ≤ max{|hmin|, |hmax|}

λ

}
(10)

which can be made as small as required by taking high
values of λ. The problem with this simple solution is that
the transient of the input variable u cannot be guaranteed
to meet the saturation constraints (3).

Observer Based Control
In this options, the idea is not to blindly kill the unknown
term but to estimate it through a dynamic observer using
the measurement of both u and x. More precisely, the
observer is given by the following dynamic system. Unfor-
tunately, the fact that α is supposed to be unknown makes
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the quantity h non observable. Indeed, α and h have to be
both reconstructed and a simple examination of equation
(1) leads to the fact that each pair of possibilities:

(α1, h1) and (α2, h2) (11)

are non distinguishable as soon as they are linked through
the following relationships:

α1 = βα2 and h2 = (1− β)u+ βh1 (12)

which means that observability is rigorously lost as soon
as u becomes almost constant. This is never a good news.

In what follows, a solution that avoid the explicit
use of both explicit observer and high gain principle is
proposed while α is still completely unknown.

The Proposed Solution

Define the saturation map according to:

S(v) :=

 umax if v ≥ umax
umin if v ≤ umin
v otherwise

(13)

The proposed feedback is defined by:

ż = λf [S(λ(xd − x) + z)− z] (14)

u = S(λ(xd − x) + z) (15)

where λ > 0 and λf > 0 are two design parameters to
be appropriately chosen.

This control law if obviously of the form (6)-(7). In the
following section, the properties of the resulting closed-loop
are analyzed.

Analysis of The Closed-Loop Properties

The closed-loop system equations can be written as follows:

ẋ = α [S(λ(xd − x) + z)− h] (16)

ż = λf [S(λ(xd − x) + z)− z] (17)

Let us write these equations in the three different configu-
ration given by the definition (13), namely:

Case (u = umax)

ẋ = α [umax − h] (18)

ż = λf [umax − z] (19)

Case (u = umin)

ẋ = α [umin − h] (20)

ż = λf [umin − z] (21)

Case (no saturation)[
ẋ
ż

]
=

[
−αλ α
−λfλ 0

] [
x
z

]
+

[
αλ −α
λλf 0

] [
xd
h

]
(22)

or equivalently:[
ẋ
ż

]
=

[
−αλ α
−λfλ 0

] [
x− xd
z − h

]
(23)

Note that the above three cases defines three regions in
the 2D plan defined by the coordinates (x− xd, z) as it is
shown in Figure 1. More precisely, these three regions are
defined by:

A+ := {(ξ, z) | z − λξ ≥ umax} (24)

A− := {(ξ, z) | z − λξ ≤ umin} (25)

A0 := {(ξ, z) | z − λξ ∈ (umin, umax)} (26)

Figure 1 shows also some information regarding the in-
clinations of the vector fields in the different regions that
enable the following results to be proved.

Lemma 1. For any λ > 0 used in (14)-(15), if λf satisfies
the following inequality:

λf <

[
%+

umax − umin

]
λ (27)

then the set A0 is attractive for all initial state such that
(x− xd, z) ∈ A+. ∆

Proof. This can be proved if one can prove that the
angle θ depicted in Figure 1 is lower than arctan(λ). But
Assumptions (4)-(5) together with the fact that z neces-
sarily belongs to [umin, umax] enable to write (see Figure
1):

tan θ ≤ λf (umax − umin)

%+
(28)

which obviously gives the result. �

Using the same arguments, the following Lemma
follows:

Lemma 2. For any λ > 0 used in (14)-(15), if λf satisfies
the following inequality:

λf <

[
%−

umax − umin

]
λ (29)

then the set A0 is attractive for all initial state such that
(x− xd, z) ∈ A−. ∆

The previous two Lemmas obviously lead to the following
corollary:

Corollary 1. For any λ > 0 used in (14)-(15), if λf
satisfies the following inequality:

λf <

[
min{%+, %−}
umax − umin

]
λ (30)

then A0 is globally attractive and invariant. ∆
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x− xd

z
z − λ(x− xd) = umax

z − λ(x− xd) = umin

A0A+

A−

≥ %+

≤ λf (umax − umin)
θ

≥ %−

≤ λf (umax − umin)

Figure 1: Definition of the three regions A0, A+ and A− used in the analysis of the stability of the closed-loop system with the
proposed feedback law.

Proof. The attractivity is a direct consequence of
Lemmas 1 and 2. The invariance results from the simple
facts that when the state approaches the boundaries of A0

with any of A+ or A−, it is repulsed back before reaching
the boundary whenever the requirements of these Lemmas
hold. This is precisely implied by the condition (30). �

The direct consequence of Corollary 1 is that the
only thing that remains to be analyzed regarding the
stability of the closed-loop behavior is related to the
behavior of the closed-loop system inside the region A0.
But the behavior inside A0 is determined by the dynamic
equation (23). This enables the following result to be
established:

Lemma 3. For any λ, if λf satisfies:

λf = r ×
[
αminλ

4

]
; r ∈ (0, 1) (31)

then the matrix:

A0 :=

[
−αλ α
−λfλ 0

]
(32)

possesses two real and strictly negative eigenvalues p1,2.
More precisely:

p1,2 = −αλ
[
1±
√

1− r
]

(33)

Proof. Straightforward since the discriminant of the
characteristic equation is given by:

∆ = αλ [αλ− 4λf ] (34)

the remaining facts directly follows. ∆

The previous results lead to the following Proposi-
tion:

Proposition 1. Take some λ > 0. If the following condi-
tions holds:

1. λf is such that

λf <

[
min

{
min{%+, %−}
umax − umin

,
αmin

4

}]
× λ (35)

2. xd is constant and

3. the dynamic of the unknown term h satisfies:∣∣∣∣dhdt
∣∣∣∣ ≤ δ (36)

then the tracking error ex = x − xd and the estimation
error eh = z − h asymptotically satisfy the following in-
equalities:

lim
t→∞

|x(t)− xd| ≤
δ

λλf
; lim
t→∞

|z(t)− h(t)| ≤ δ

λf
(37)

Proof. This is because condition (35) implies that
the set A0 is globally attractive. Therefore, the dynamic
defined by (23) prevails after a finite time t0. Therefore,
one has for all t ≥ t0:[
ex(t)
ez(t)

]
= eA0(t−t0)

[
ex(t0)
ez(t0)

]
−
∫ t

t0

eA0(t−τ)
[

0

ḣ(τ)

]
dτ (38)
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and since (35) makes A0 hurwitz invertible, the last ex-
pression asymptotically behaves like:

A−10

[
0

ḣ(t)

]
=

1

λf

[
0 − 1

λ
λf

α −1

] [
0

ḣ(t)

]
=

[
− 1
λλf

− 1
λf

]
ḣ(t) (39)

This together with (36) obviously gives the result. ∆

Illustrative Simulations
Consider the unknown signal h given by:

h(t) = 5− 1.3 cos(1.2t)− 1.6 sin(2t+ π/6); (40)

The time evolution of h on the time interval [0, 10] is
shown in Figure 2. Straightforward computation shows
that δ = 4.76 satisfies the inequality (36). Moreover, hmin
and hmax are given by:

hmin = 2 ; hmax = 8 (41)

Se take the unknown α = 1 which is not used in the
feedback design although it changes the dynamics of the
closed-loop system. Let assume however that one knows
that αmin = 0.2 and that the control bounds are given by:

umin = 1 ; umax = 10 (42)

so that %− = 1 and %+ = 2 can be guaranteed in (4)-(5).
It results that the condition (35) on λ and λf becomes:

λf <

[
min

{
min{1, 2}

10− 1
,

0.2

4

}]
× λ

< 0.05× λ (43)

In the simulation, λf = {0.04, 0.001} × λ are usedfor
several values of λ are used to illustrate the properties of
the closed-loop systems.

The results are shown on Figure 3, 4 and 5. More
precisely:

Figure 3 uses λ = 400 and λf = 0.04λ = 16.

Figure 4 uses λ = 4000 and λf = 0.04λ = 160.

Figure 5 uses λ = 4000 and λf = 0.001λ = 4.

The message from these simulations are the following:

1. The theoretical predicted bounds given by (37) of
Proposition 1 seems not only correct but rather tight
(no over conservatism) as the effectively encountered
levels get very close to the bound regularly.

2. Very small error can be achieved without uncontrol-
lable transient on the control as the latter respects
the saturation constraints anyway.

3. Low time derivative of u can be obtained low values
of λf as it can be observed by comparing Figures 4
and Figure 5

4. The better estimation of h is obtained through u and
not necessarily z. This is especially true for low values
of λf . This can be confirmed by observing Figures 6,
7 and 8 that show the evolution of u and h as well as
their difference |u− h| for the same scenarios.
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time

Evolution of the unknown signal

Figure 2: Illustrative simulation: Evolution of the unknown
signal h(·) used in the simulation of ẋ = α(u − h)
under the proposed feedback which ignores α and h.
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Figure 3: Illustrative simulation: Evolution of the closed-loop
system with the feedback defined by λ = 400 and
λf = 0.04λ. The dashed red lines in the bottom
plots represents the asymptotic bounds predicted by
the theory through (37) of Proposition 1.
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Figure 4: Illustrative simulation: Evolution of the closed-loop
system with the feedback defined by λ = 4000 and
λf = 0.04λ. The dashed red lines in the bottom plots
represents the asymptotic bounds predicted by the
theory through (37) of Proposition 1.
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Figure 5: Illustrative simulation: Evolution of u and h and
their difference when λ = 4000 and λf = 0.001λ
is used. in the bottom plots represents the asymp-
totic bounds predicted by the theory through (37) of
Proposition 1.
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Figure 6: Illustrative simulation: Comparison between u and
h when λ = 400 and λf = 0.04λ are used.
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Figure 7: Illustrative simulation: Comparison between u and
h when λ = 4000 and λf = 0.04λ are used.
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Figure 8: Illustrative simulation: Comparison between u and
h when λ = 4000 and λf = 0.001λ are used.
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