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Abstract 

A convenient way to assess the traffic fuel consumption or pollutant emissions is to couple a microscopic traffic 

flow model with an instantaneous emission model. Traffic models are usually calibrated using goodness of fit 

indicators that are related to the traffic behavior. Thus, this paper aims to investigate how such a calibration 

influences the accuracy of fuel consumption and NOx and PM estimations. Two traffic models are investigated: 

Newell’s and Gipps’ models. It appears that Gipps’ model provides the closest simulated trajectories when 

compared to real ones. Interestingly, a reverse ranking is observed for fuel consumption, NOx and PM 

emissions. For both models, the vehicle emissions of a single vehicle are very sensitive to the calibration. This is 

confirmed by a global sensitivity analysis of the Gipps model that shows that non-optimal parameters 

significantly increase the variance of the outputs. Fortunately, this is no longer the case when emissions are 

calculated for a group of many vehicles. Indeed, the mean errors for platoons are close to 10% for the Gipps 

model and always lower than 4% for the Newell’s model. This latter model then clearly outperforms the first one 

for emission calculations. Another interesting property is that optimal parameters for each vehicle can be 

replaced by the mean values with no discrepancy for the Newell model and low discrepancies for the Gipps 

model when calculating the different emission outputs. Finally, this study presents preliminary results that show 

that multi-objective calibration methods are certainly the best direction for future works on the Gipps model. 

Indeed, the accuracy of vehicle emissions can be highly improved with negligible counterparts on the traffic 

model accuracy.  

 

Keywords: Microscopic traffic model, car-following, vehicle emissions, fuel consumption, calibration, sensitivity 

analysis 
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1. Introduction 

The assessment of the environmental impact of intelligent transportation systems is a key issue in the context of 

sustainable mobility. Thus most of the traffic micro-simulation models available on the market include tools for 

modelling exhaust emissions of vehicles and, in particular, instantaneous (modal) emission models. These 

models use high frequency measurements to map emissions at a time to their generating engine state, thus 

providing specific emission factors (also) for new, unmeasured driving cycles. Once such models are fed with 

real world driving cycles of a traffic flow, calculations are expected to capture the impact on emissions of those 

specific traffic conditions and control schemes. Unfortunately driving cycles of all the vehicles within a time-

space domain are hardly ever available, e.g. the data collected in the NGSIM program, (Federal Highway 

Administration, 2006). Their intrinsic complexity, also due to the increasing impact of new technologies, e.g. 

time responses of the engine electronic management system to the lambda sensor, which considerably differ 

among vehicles, is the other major drawback of instantaneous modelling. However, the massive development of 

traffic flow micro-simulation, and hence the chance to simulate driving cycles of all the vehicles on a network, is 

promoting the adoption of such integrated dynamic traffic-emissions modelling. 

Yet the problem with the use of micro-simulation to derive driving cycles is that the whole approach must be 

validated, e.g. (Int Panis et al, 2006), but at present, the accuracy of the trajectories drawn by the model remains 

unknown for such an application. Preliminary results (Vieira da Rocha et al, 2013) show that simplified driving 

cycles classically provided by traffic simulators introduce bias when calculating the fuel consumption. 

Fortunately, such errors remain relatively low for a given cycle and vanish when lots of cycles are gathered to 

determine the total fuel consumption. However, this study has not considered the specific influence of the traffic 

model: simplified driving cycles are directly derived from real measures by using filtering techniques. 

Furthermore, traffic models are generally calibrated against aggregate measurements and the objective of 

calibration is to improve the reproduction of aggregate traffic dynamics rather than individual driving cycles, e.g. 

(Ciuffo et al, 2008; Toledo et al, 2004). Thus, car-following models have generally underperformed in 

reproducing real world behaviors of individual vehicles, e.g. (Brockfeld et al, 2004; Punzo and Simonelli, 2005). 

The problem of reproducing trajectories for emission calculation is even more complex, since the way in which 

car-following models are calibrated (even when detailed trajectory data are used) may not be the most 

appropriate with a view to calculating traffic-related externalities. Note that because driving cycles correspond to 

the derivative of the trajectories, both terminologies are used indifferently in this paper. 
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This work investigates the accuracy of results when atmospheric emissions and fuel consumption are calculated 

from simulated trajectories instead of the real ones. A set of 90 vehicle trajectories corresponding to nine 

different platoons gathered from the NGSIM database (Federal Highway Administration, 2006) is used as 

reference. These trajectories are filtered to remove measurements noise. Two car-following models are used to 

generate simulated trajectories from the leader one: Newell’s (Newell, 2002) and Gipps’ (Gipps, 1981) models. 

These two models are calibrated using standard goodness of fit indicators related to vehicle trajectories. 

Atmospheric emissions and fuel consumption are then calculated using the state-of-the-art PHEM (Passenger 

Car and Heavy Duty Emission Model) model (Hausberger et al, 2009; Luz et al, 2013). It is an instantaneous 

vehicle emission model developed by the TU Graz since 1999. In this paper, we will focus on fuel consumption, 

NOx and Particle Matters (PM) and investigate the accuracy of emission calculations at both individual (vehicle) 

and global (platoon) levels. 

The paper is organized as follows: Section 2 provides some background about the two traffic models, their 

calibration using classical goodness of fit and the emission model. Section 3 presents the different sensitivity 

tests that have been carried out to assess the influence of the traffic model calibration on the accuracy of the 

emission calculations. Section 4 presents the results for the 90 vehicles and 9 platoons and investigates the 

connections between the traffic model parameters and the emission estimation. A global sensitivity analysis is 

also proposed. Finally, section 5 proposes a brief discussion. It notably shows that a multi-objective calibration 

method clearly improves the emission results while it only slightly deteriorates the accuracy of simulated 

trajectories. 

2. Background  

2.1.  Traffic data 

Vehicle trajectories come from the I-80 NGSIM dataset (Federal Highway Administration, 2006). Video 

recordings were performed on a 500 m length section of the interstate 80 in Emeryville (California, USA) during 

the peak hour (congested traffic conditions with speed always lower than 50 km/h). Nine platoons of 10 vehicles 

were extracted from the whole data with the following requirements: (i) no lane changings should happen within 

the platoon when crossing the whole section and (ii) the platoon should entail at least 10 vehicles. This 

guarantees that the interactions between a vehicle and its leader can be characterized by a car-following rule 

without any external distractions (Chiabaut et al, 2009). 
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Vehicle positions were automatically extracted from the video recording with a frequency of 10Hz. This 

introduces measurement errors that may lead to significant bias when performing the calibration of car-following 

models, e.g. (Ossen and Hoogendoorn, 2008; Punzo et al, 2011). The bias are even greater when differential 

variables, like speed or acceleration are calculated. Thus, Treiber et al (2008) and Rakha et al (2001) have shown 

that using the raw data without filtering leads to arbitrarily high estimates for fuel consumption. 

Trajectories data should then be filtered before performing (i) the car-following model calibration and (ii) the 

emission calculations. The following filtering process was applied to reduce the measurement noise. First, a 

filtered trajectory is defined as a succession of n quadratic functions. Such functions continuously connect at n-1 

time points named knots (Marczak and Buisson, 2012; Xin et al, 2008). Derivatives are also continuous at knots. 

Thus, the trajectories are approximated by a function with piecewise constant accelerations and continuous 

speed. These assumptions seem physically reasonable. Second, a genetic algorithm is applied to determine the 

optimal positions of knots for n between 6 and 20. The objective function for this global optimization process is 

the root mean square error (RMSE) between filtered and original positions. Note that for a given set of knot 

positions, the parameters of the quadratic functions can simply be derived using a quadratic regression. A 

supplementary constraint is also introduced to avoid time intervals between two knots that lead to acceleration 

values lower than -2 m/s-2 or higher than 2 m/s2. Third, n values are tested in increasing order. The optimal n 

value is considered reached when no significant RMSE improvements are observed compared to the previous 

step. 
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Fig. 1. Position, speed and acceleration profiles before and after filtering 
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Fig. 1 presents the results of the filtering for a particular trajectory. The vertical lines on the figure correspond to 

the knot locations. The mean RSME for the 90 filtered trajectories is 0.3 m. The individual RMSE varies from 

0.1 to 0.8 m. 80% of the filtered trajectories experiment RMSE between 0.2 and 0.6 m. 

2.2. Calibration of Newell’s and Gipps’ car-following models 

The Newell model (Newell, 2002) is certainly the simplest car-following rule and only requires two parameters 

in congestion: the wave speed w and the jam spacing s. The position xj(t+∆t) of vehicle j at time t+∆t can be 

derived from its position xj(t) and that of its leader xj-1(t)  at time t: 

 x t t x t x t w t w s t1 ( ) ( )   with  1j j j j j j j j j1_ _ _( )( )+ 6 = < + < 6 = 6 )<  (1) 

Newell’s model has been proven (Leclercq et al, 2007) to be equivalent to the macroscopic LWR model 

(Lighthill & Whitham, 1955; Richards, 1956). The calibration of the Newell model is performed for each vehicle 

pair following the methodology described in Chiabaut et al (2010) that will not be recapped here. This task 

provides the optimal values wj and sj for all vehicles. 

The Gippsmodel (Gipps, 1981) is a safety-based model. The speed vj(t+τj) of vehicle j at time t+τj is derived 

from its leader speed and position according to the current driving modes: free-flow, see eq. (3) or congestion, 

see eq. (4). τj is the reaction time of driver j. Note that even if our data are always congested the Gipps model 

may sometimes switch to the free-flow mode for short time periods. Thus, both modes and the switching rule 

have to be considered: 
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where: 

vj(t) and vj-1(t) are respectively the speed of the following and leading vehicle at time t; 

amax,j, vmax,j, dmax,j are respectively the maximum acceleration, speed and deceleration for vehicle j and 

dmax,j-1 is the maximum deceleration for vehicle j-1 as perceived by vehicle j; 

τj is the apparent reaction time; 
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θ is an additional comfort time lag that allows the follower not to brake always at his or her maximum 

desired rate, usually θj=τj/2; 

sj-1 is the jam spacing. 

For further details on the simulation setup and the initialization conditions adopted in this paper, please refer to 

Wilson (2001). The Gipps model calibration was performed for the following six parameters: τ, sj-1, vmax,j, amax,j, 

dmax,j, dmax,j-1. This task consists in solving an optimization problem for each vehicle pair that minimizes the speed 

RMSE between the simulated and the original trajectories of the followers. All details are provided in (Ciuffo et 

al, 2012) and will not be recapped here. 
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Fig. 2. Original and simulated trajectories using (a) Newell's model and (b) Gipps's model 

Fig. 2 presents the real and simulated trajectories after calibration for a given platoon and both models. A visual 

inspection shows that the simulated trajectories with the optimal parameters are globally close to the 

experimental data for both models. A refined investigation consists in comparing the speed RMSE for both 

models and all vehicle pairs. Fig. 3 presents the resulting cumulative distribution for all pairs. It appears that the 

calibration of the Gipps model provides more accurate results than the calibration of the Newell model with 

respect to the driving cycle. The mean RMSE is equal to 0.5 m/s for Gipps compared to 0.7 m/s for Newell. This 

is not surprising because Gipps’ model has 6 parameters while Newell’s model has only two. Anyway, from a 

traffic point of view, these two models can be considered as accurate, because the RMSE 95th percentile is never 

higher than 0.7 m/s for Gipps and than 1.1 m/s for Newell. 
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Fig. 3. RMSE cumulative distribution for all vehicle pairs 

2.3. Emission model: PHEM 

In this study, we use a well-established instantaneous emission model in Europe: the Passenger car and Heavy 

duty Emission Model (PHEM). This model has been developed by the Graz University of Technology since 

1999, within the FP 7 project ARTEMIS, COST 346 and the HBEFA development. PHEM is based on an 

extensive European set of vehicle measurements and covers passenger cars, light duty vehicles and heavy duty 

vehicles from city buses up to 40 ton semi-trailers. 

PHEM calculates the engine power in 1 Hz based on the given courses of vehicle speed and road gradient, the 

driving resistances and the losses in the transmission system. The 1 Hz course of engine speed is simulated based 

on the transmission ratios and a gear-shift model. The model results then are the 1 Hz courses of engine power, 

engine speed, fuel consumption and emissions of CO2, CO, HC, NOx, NO, particle mass (PM) and particle 

number (PN). The supporting data-set includes gasoline and diesel vehicles from EURO 0 to EURO 6 

(Hausberger et al, 2009). 

In this paper, we will restrict our investigation to passenger cars and the most common pollutants: CO2 (or 

equivalently fuel consumption), NOx and Particle Matters (PM). The fleet composition corresponds to the 

national projection for 2015 in France (CETU, 2012), see Tab. 1. 

 
Euro 0 Euro 1 Euro 2 Euro 3 Euro 4 Euro 5 Euro 6 

Diesel 0.2% 0.7% 2.4% 12.9% 34.1% 49.7% 0.0% 

Gazole 0.3% 1.9% 6.9% 20.0% 35.4 35.5 0.0% 

Tab. 1: Passenger car fleet scenario for 2015 in France: 86% of diesel car (CETU, 2012) 
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3. Method 

Different tests will be undertaken to assess the impact of the car-following parameters on the vehicle emissions. 

The first group of tests focuses on the car-following process at a local (vehicle pair) and a global (platoon) level. 

The second study corresponds to a global sensitivity analysis based on the classical method firstly introduced by 

Sobol (1990). 

3.1.  Different tests to investigate the influence of car-following laws 

Let denote T the generic function that provides the follower trajectory from the leader one. T may correspond 

either to the Newell or to the Gipps model. The calibration task provides the optimal set of parameters Cj for 

each vehicle j of all platoons. Let us remember that the number of parameters is 6 for Gipps and 2 for Newell 

and that the leader of j is j-1. 

Test 1 and test 2 compare the fuel consumption, the NOx and PM emissions associated to the real and the 

simulated trajectory of vehicle j for both traffic models. Optimal parameters are used for all vehicles. The only 

difference is that test 2 propagates the errors within the platoon by using the simulated trajectory for vehicle j-1 

instead of the real trajectory like in test 1. 

Test Description 

Test 
1 

The simulated trajectory Sj is calculated from the leader real trajectory Xj-1 and the optimal set Cj of parameters 
associated to j: Sj=T(Xj-1,Cj) 

Test 
2 

Sj is calculated from the leader simulated trajectory Sj-1 and Cj: Sj=T(Sj-1,Cj) 

Test 
3 

Sj is calculated from the leader simulated trajectory Sj-1 and the set C of parameters defined by the mean value of the 
optimal parameters for all the vehicles: Sj=T(Sj-1,C) 

Tab. 2: Definition of the different tests about the influence of car-following model calibration 

Test 3 investigates how non-optimal parameters worsen the estimation of the emissions. Indeed, in practice when 

using a microscopic traffic simulator, the optimal parameters for each particular vehicle are unknown. At best, 

parameters are drawn from a calibrated distribution and assigned to the generated vehicles. At least, only the 

mean value of the distribution is available. Thus, in test 3, the optimal parameters are replaced by the mean value 

of the parameters for all the available vehicles. Note that test 3 is only performed for the Gipps model. Indeed, 

for the Newell model the follower trajectory corresponds to the leader one translated by a vector that depends on 

the car-following parameters. Such parameters influence the traffic wave propagation but not the simulated 

speed profile of the follower. Thus, the emissions are the same for a vehicle j whatever the Newell model’s 

parameters are. The results for test 3 will be the same as for test 2 for the Newell model as far as the emission 

calculations are concerned. All the tests are recapped in Tab. 2. 
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3.2. Global sensitivity analysis 

Another way to study the influence of the car-following parameters on the estimation of vehicle emissions is to 

perform a global sensitivity analysis. This method was firstly introduced by Sobol (1990) and consists in 

quantifying the contribution of each input parameters to the output variances. A full description of the method 

can be found in (Saltelli et al, 2008) or (Punzo and Ciuffo, 2011). Here, the outputs are the difference of the fuel 

consumption, the level of NOx and PM emissions between the real and the simulated trajectory for vehicle j. We 

have restricted the global sensitivity analysis to the Gipps model because the Newell model has too few 

parameters. Thus, the considered inputs are the Gipps parameters with lower and upper bounds defined in Tab. 3. 

We have introduced a last input that corresponds to the vehicle number j. Indeed, because the optimal parameters 

for a specific vehicle are not accessible in practice, we have decided to assess the influence of the parameters for 

a randomly drawn vehicle. In practice, this is the case when a traffic simulator affects to a vehicle a set of 

parameters drawn from the correlated distributions of the calibrated ones. The simple way to implement this 

option is to incorporate the vehicle identification as an input for the global sensitivity analysis. 

Two indicators will be used to analyze the results. The first is the first order sensitivity index Si for each 

parameter i and a given output. This indicator represents the ratio between the variance of this output when 

parameter i is fixed and the total variance. It describes the direct contribution of parameter i to the total variance. 

Note that the sum of Si should be equal to 1. A low Si means that the parameter i weakly influences the 

considered output. The second indicator is the total effect index STi. This indicator jointly characterizes the direct 

contribution of parameter i and its combined contribution with all the other parameters (second order 

interactions). Low Si but high STi reveals that parameter i has a low contribution by itself but is more highly 

involved in joined contributions with other parameters. 

Parameters Lower bound Upper bound 

τj [s] 0.1 3.0 

vmax,j [m/s] 12,0 50.0 

amax,j [m/s²] 0.4 8.0 

dmax,j (m/s²) and dmax,j-1 [m/s²] 0.4 10.0 

sj [m] 4 10 

j (first vehicle of each platoon are disregarded) 2 90 

Tab. 3: Lower and upper bounds for the global sensitivity analysis 
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4. Results 

The local error ε [%] is defined as the relative difference in emissions between real and simulated trajectories for 

each individual follower. The global error Ε [%] corresponds to the relative difference in emissions for all the 

vehicles of a platoon except for the first leader. Local and global errors are calculated for fuel consumption (FC), 

NOx and PM emissions. The speed RMSE between real and simulated trajectories is also monitored for analysis. 

4.1.  Test 1 

Test 1 only focuses on the influence of the car-following law at a local level (vehicle pairs). The results of the 

calibration from a traffic point of view has been presented in section 2.2, see Fig. 3. Both models appear accurate 

while Gipps provides the lowest speed RMSE at the cost of four extra parameters. The cumulative distributions 

of ε and Ε for the three considered emission outputs are presented in Fig. 4. For each distribution, the mean value 

m, the standard deviation σ, the 5th and the 95th percentiles (q5% and q95%) are given in Tab. 4. This table also 

provides for the same statistics the absolute values of the real and the simulated emissions. 
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Fig. 4. Cumulative distribution for the local and global errors - Test 1 

The analysis of the local errors shows that the Newell model appears significantly more accurate than the Gipps 

model for all the outputs. Indeed, the mean ε for fuel consumption (respectively NOx and PM emissions) is equal 

to 0.9% (respectively 2.6% and 1.7%) for the Newell model and to -7.3% (respectively -11% and -9.7%) for the 
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Gipps model. The individual local errors can be much larger with an ε value for fuel consumption from -9.1% to 

17.3% for Newell and from -20.7% to 3.1% for Gipps. Note that these interval bounds correspond to the 5th and 

the 95th percentiles and not to the minimum and maximum values. This notation will be applied in the whole 

sequel of the paper. The lengths of these intervals are even higher for the NOx and PM emissions: 58% and 

32.4% for Newell and 35.8% and 32.9% for Gipps. Thus, we can conclude from this first observation that even 

with optimal parameters, both car-following models may lead to significant errors when estimating the fuel 

consumption or the NOx and the PM emissions of a single vehicle. Fortunately, the mean error is very low for 

Newell’s model and not too high for the Gipps’s model. That means that errors compensate when considering 

enough vehicles. This is confirmed in Fig. 4 when the global error is calculated. The mean E for fuel 

consumption is equal to 0.6% for the Newell model (-0.7< E <5.2%) and to -7.4% for the Gipps model (-11.7%< 

E <-4.1%). The same trends are observed for the NOx and PM global errors, see Tab. 4. 

 

 
Newell’s model Gipps’s model 

 

 
m σ q5% q95% m σ q5% q95% 

FC 

Real [g] 36,8 8,3 27,4 51,7 35,8 8,1 26,8 49,6 

Sim. [g] 37,0 8,2 28,2 50,9 33,1 7,8 24,3 47,9 

ε [%] 0,9 7,3 -9,1 17,3 -7,3 8,4 -20,7 3,1 

Ε [%] 0,6 1,8 -0,7 5,2 -7,4 2,9 -11,7 -4,1 

NOx 

Real [mg] 304 86 201 478 295 82 198 448 

Sim. [mg] 308 84 212 472 262 79 174 418 

ε [%] 2,6 15,6 -20,1 37,9 -11,0 12,8 -32,5 3,2 

Ε [%] 1,4 3,9 -1,6 11,3 -11,6 3,6 -15,9 -5,8 

PM 

Real [mg] 12,5 2,9 9,0 18,1 12,2 2,8 8,9 17,6 

Sim. [mg] 12,6 2,9 9,2 17,7 10,9 2,7 7,8 16,5 

ε [%] 1,7 12,0 -16,2 26,2 -9,7 11,9 -29,2 3,7 

Ε [%] 1,0 2,8 -0,9 8,4 -10,1 3,9 -16,3 -5,4 

Tab. 4: Emission results for Test 1 

The results from this first test are quite surprising because the Gipps model outperforms the Newell model from 

a traffic point of view but clearly underperforms when vehicle emissions are considered. The most immediate 

explanation is that the speed profiles are more smoothed when calculated with the Gipps model. Indeed, 

Newell’s model only translates the leader trajectory following the direction of traffic wave propagation. A 

detailed and synchronized analysis of the speed profiles and the evolution would be necessary to fully identify 

the reasons why Gipps’ model underperforms, see (Vieira da Rocha et al, 2013 for the methodology. This is out 

of the scope of the present paper. Note that further comments will be provided in the discussion. 
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4.2. Test 2 

Test 2 investigates the influence of the car-following law at a platoon level. Now, the vehicle’s trajectory is 

simulated using the simulated trajectory of its leader as an input. Thus, the traffic model is recursively applied 

from vehicle 3 to n within a platoon and errors may propagate. This is confirmed by studying the mean RMSE, 

see Fig. 5. It increases from 0.5 to 0.6 m/s for the Gipps model and from 0.7 to 1.1 m/s for the Newell model. It 

seems that the Gipps model is less sensitive to the error propagation. One more time, from a traffic point of view 

the results globally remain good because the upper bound of the RMSE interval is 0.9 m/s (2.1 m/s) for the 

Gipps (Newell) model. 
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Fig. 5. RMSE cumulative distribution for all vehicle pairs – Test 2 

Let us first analyze the fuel consumption outputs. The results for test 2 and ε are very close to the results of test 

1, see Fig. 6 - upper line and Tab. 5. Indeed, the mean ε is equal to -2.2% for the Newell model (-16.9< ε 

<11.2%) and to -9% (-28.3< ε <4.2%) for the Gipps model. This means that the fuel consumptions are less 

sensitive than driving cycles to the propagation of errors related to the recursive application of the car-following 

model. This result is noticeable because test 2 is the common application case for traffic modeling. Fig. 6 also 

confirms that individual errors for fuel consumption may be very important (much more than for the RMSE) but 

this vanishes when the outputs are aggregated over all vehicles. This is confirmed by the analysis of the global 

error E whose mean is equal to -2.6% for Newell’s model and to -9.3% for Gipps’ model. The discrepancies with 

test 1 and the same outputs are low. A very good point for the Newell model is that the length of the boundary 

interval (5th and 95th percentiles) for E remains small, i.e. 10.3% compared to 5.9% for test 1. This means that the 

compensation occurs for the Newell model even for a group of few vehicles (in the order of the size of a platoon, 

i.e. 10 vehicles). In comparison, the length of the same interval for Gipps’ model and test 2 is equal to 25.8%, 

which is a significantly worse score. 
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Fig. 6. Cumulative distribution for the local and global errors - Test 2 

The results for the other outputs (NOx and PM emissions) are provided in Fig. 6 and Tab. 5. They clearly 

confirm the previous conclusions, i.e. the Newell model provides accurate estimation at a platoon level while the 

Gipps model introduces more significant bias. Indeed, mean E for the Newell (respectively Gipps) model is 

equal to -2.2% (-14.1 %) for NOx and -2.8% (-12.8%) for PM. However, these two pollutants seem more 

sensitive to the errors generated by traffic models because the standard deviation values and the lengths of the 

boundary intervals either for ε and E are much higher than for the fuel consumption. This means that emission 

calculations should be aggregated over a higher number of vehicles than for fuel consumption to reach the same 

level of accuracy. 

   Newell’s model Gipps’s model 
 

 
m σ q5% q95% m σ q5% q95% 

FC 

Real [g] 31,5 6,8 23,9 43,1 34,9 7,7 26,2 47,5 

Sim. [g] 30,6 6,6 24,5 42,8 31,6 7,6 22,9 45,5 

ε [%] -2,2 8,2 -16,9 11,2 -9,0 9,4 -28,3 4,2 

Ε [%] -2,6 3,5 -8,9 2,4 -9,3 5,1 -21,1 -5,4 

NOx 

Real [mg] 261 70 170 380 286 76 191 414 

Sim. [mg] 255 68 169 381 244 72 165 382 

ε [%] -0,4 18,6 -28,1 37,1 -14,1 13,5 -38,1 5,4 

Ε [%] -2,2 11,3 -19,2 23,0 -15,0 6,7 -29,6 -7,4 
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PM 

Real [mg] 10,8 2,4 7,9 15,0 11,8 2,7 8,8 17,0 

Sim. [mg] 10,4 2,2 8,2 14,7 10,3 2,6 7,1 15,4 

ε [%] -2,8 13,7 -21,1 23,3 -12,3 12,5 -32,9 5,6 

Ε [%] -3,7 8,4 -11,8 14,5 -12,8 6,5 -26,8 -7,1 

Tab. 5: Emission results for Test 2 

To conclude the analysis of test 2, Fig. 7 presents the evolution of the mean value mk of ε over all the platoons 

for the same vehicle rank k. To highlight trends in the errors propagation, the absolute value of mk is plotted. The 

error increase between successive vehicles is clearly visible for the RMSE and the Newell model (see. Fig. 7a). 

Interestingly this is no longer the case for the Gipps model, which therefore proves to be significantly more 

robust from a traffic point of view. With regards to the different emission outputs, no clear tendency appears for 

the evolution of mk with respect to k. The evolution is slightly increasing for Gipps’ model and slightly 

decreasing for Newell’s model. The recursive application of the Newell model reduces the accuracy of the 

simulated trajectories but the associated driving cycles keep the key figures to provide accurate emission 

estimations. On the contrary, Gipps’ model leads to better speed RMSE but this does not mean that the 

corresponding emissions are also well reproduced. A corollary is that the speed RMSE is not a good indicator to 

ensure that vehicle emission calculations would be accurate. 
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Fig. 7. Error propagation within platoons (a) Speed RMSE, (b) to (d) Mean local errors |mk| with respect 
to k 

4.3.  Test 3 

Test 3 now investigates how non-optimal parameters influence the accuracy of fuel consumption and emission 

estimates. Parameter values are averaged over all vehicles. The resulting values are applied in both models as a 

single set of parameters for all individual vehicles. This corresponds to the classical case when traffic models are 
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used without knowing the individual characteristic of each generated vehicle. The mean RMSE only slightly 

increase from 0.6 to 0.8 m/s (respectively from 1.1 to 1.2 m/s) when comparing test 3 to test 2 for Gipps 

(respectively Newell). From a traffic point of view, this means that averaged parameters values provide a good 

approximation for the real behavior of individual vehicles. The upper bound of RMSE interval for Gipps is now 

1.3 m/s compared to 0.9 m/s in test 2, see Fig. 8. The upper bound for Newell is unchanged. This confirms the 

relevance of using a single set of mean parameters for all platoons and all vehicles. 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

RMSE [m/s]

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

 

 

Newell (T2)
Newell (T3)
Gipps (T2)
Gipps (T3)

 

Fig. 8. RMSE cumulative distribution for all vehicle pairs – Test 3 

The Newell model provides exactly the same emission outputs for tests 2 and 3, cf. section 3.1 for explanations. 

This is a very remarkable property of this model because using averaged instead of optimal parameter values 

only introduces discrepancies in the traffic behavior and not in the emission calculations. Indeed, the follower 

speed profile is not smoothed by the model and simply corresponds to the leader one. Newell’s model is the only 

traffic model with this particularity. It is therefore well adapted for environmental applications. 

Fig. 9 compares the cumulative distribution for tests 2 and 3 and the different emission outputs for the Gipps 

model. Surprisingly, the results are better for test 3 than for test 2 for all the outputs. This is confirmed when 

studying the different statistics provided in Tab. 6. For example, the mean ε is equal to -5.5% for fuel 

consumption, -7.2% for NOx emissions and -8.4% for PM emissions. The corresponding results for test 2 are -

9%, -14.1% and -12.3%. The mean parameters appear more robust when emissions are calculated on average 

over all vehicles. Thus, mean but relevant traffic parameters seem sufficient to provide accurate emission 

estimates when all vehicles are considered. Again, this is not the case when vehicles are individually considered 

because the ε intervals for this test are: from -24.7 to -16.3% for fuel consumption, from -32.9% to -22% for 

NOx and from -38 to -22.5% for PM. 
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These conclusions are confirmed when studying the global error E for all emission outputs, see Tab. 6. Mean E 

values are in the same order as mean ε values and are again more accurate for test 3 than for test 2. It is worth 

noticing that the Gipps model always underestimates emissions either at a vehicle or a platoon level. 
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Fig. 9. Cumulative distribution for the local and global errors - Test 3 

  Gipps’s model 
 

 
m σ q5% q95% 

FC 

Real [g] 34,9 7,7 26,2 47,5 

Sim. [g] 32,8 7,5 24,8 47,1 

ε [%] -5,5 10,2 -24,7 9,1 

Ε [%] -5,8 4,6 -16,3 -1,8 

NOx 

Real [g] 286 76 191 414 

Sim. [g] 261 73 185 414 

ε [%] -7,2 17,4 -32,9 26,6 

Ε [%] -8,6 5,7 -22,0 -3,2 

PM 

Real [g] 11,8 2,7 8,8 17,0 

Sim. [g] 10,7 2,6 7,7 16,3 

ε [%] -8,4 14,6 -38,0 16,1 

Ε [%] -9,2 5,9 -22,5 -3,7 

Tab. 6: Emission results for Test 3 



18 
 

4.4. Global sensitivity analysis 

A global sensitivity analysis is now performed at the vehicle level focusing on ε for the different emission 

outputs. Remember that the vehicle ID has been added as an input. Fig. 10a clearly shows that this last parameter 

overwhelms the others. Indeed, the associated Si is equal to 0.42 for FC, 0.49 for NOx and 0.49 for PM while the 

sum of all other Si only is respectively below 0.15, 0.18 and 0.14 see Fig. 10a2. This means that the calculation 

of a vehicle emissions is very sensitive to the use of the proper set of optimal parameters associated to this 

vehicle. It is not sufficient to apply a consistent set of parameters (in that case the optimal set of another vehicle). 

This result is quite trivial because it simply means that a careful calibration is required to obtain accurate results 

at a local (vehicle) level. What is interesting here is that we can quantify the need of calibration by looking at the 

relative importance of Si. Note that this analysis has important practical applications. Indeed, the optimal 

parameters for a particular vehicle are not known but drawn within distributions that are not necessarily 

correlated. This confirms the results obtained in tests 1 to 3: individual analyses for either fuel consumption or 

NOx and PM emissions are not relevant when a traffic model is used.  
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Fig. 10. Global sensitivity analysis (a) all vehicles (b) vehicle ID=2 (1) first order sensitivity index Si for all 

parameters except vehicle ID (2) Si for vehicle ID (3) Total effect index STi 
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When only analyzing the car-following parameters, it appears that the maximal deceleration of the follower dmax,j 

has the most influence on the emission calculations, see Fig. 10a1. Looking at the STi values in Fig. 10a3 

confirms this analysis. The reaction time τj seems also to be significant especially when considering its second 

order influence. Indeed, the STi value for this last parameter is high and close to the STi value of dmax,j. 

Finally, Fig. 10b presents the results of the global sensitivity analysis for a particular vehicle ID=2. This allows 

testing the relative influence of the traffic parameters only for this particular case. This confirms that dmax,j and τj 

are the most influential parameters. They should be calibrated in priority and with the lower uncertainty bounds 

as possible. 

5. Discussion 

The first main conclusion of this paper is that a precise calibration of the car-following rules is not sufficient to 

get accurate estimates of the fuel consumption, the NOx and PM emissions at a vehicle level. Indeed, tests 1 and 

2 show that the optimal parameters of both traffic models lead to highly distributed local errors (vehicle level) 

for all the emission outputs. A second result is that if Gipp’s model appears more accurate that Newell’s model 

from a traffic point of view this is no longer the case when the car-following rule is used to derive emission 

calculations. For such an application, the Newell model provides better results even if no model can be judged 

satisfactory when estimating the emission of individual vehicles if the calibration has been performed using 

goodness of fit indicator that are only related to the traffic behavior. 

A solution is to introduce in the goodness of fit indicator criteria that account for the accuracy of emission 

calculations. This consists in switching to a multi-objective calibration method. For example, we can define an 

objective function F that corresponds to a normalized mix between the speed RMSE and the local absolute error 

|ε| associated to a given output (FC, NOx or PM): 

 F RMSE
RMSE

(1 )
max max

l l l
¡

¡
( ) = < +  (5) 

Fig. 11 presents the results of such a calibration method for the first three vehicles of the first platoon (ID=1 to 3) 

and the fuel consumption. Two ρ values are tested: ρ=0.5 and ρ=1. Note that ρ=0 corresponds to the classical 

case studied in this paper. ρ=1 corresponds to a reverse situation where the accuracy from a traffic point of view 

is not considered. We use a classical global search algorithm provided by Matlab™ to find the optimum. Fig. 

11a shows that when ρ=0.5, the fuel consumption error is drastically reduced while the speed RMSE only 

slightly increases. Indeed ε is now always lower than 2% for the three considered vehicles while the maximal 

increase in the speed RMSE is 0.27 m/s. When ρ=1, the accuracy of the fuel consumption estimation is not really 
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improved while the speed RMSE highly worsens. A calibration only based on fuel consumption is not valid for 

traffic applications and is not even necessary because it does not provide significantly better results.  Fig. 11b 

highlights these conclusions by comparing the calibrated trajectories for vehicle ID=2 and ρ=0, 0.5 and 1. 

This preliminary result is really appealing because it tends to demonstrate that a multi-objective calibration 

method can well address the joined problem of accurate traffic and emission representations. It has to be 

confirmed with the extensive analysis of all vehicles and all emission outputs. This has not been realized yet 

because introducing the emission model in the optimization loop makes the calculation very slow (more than 2 

days for a single full run). The authors are currently investigating a solution that approximates the emission 

model by a Krigging meta-model (Kleijnen, 2009) to drastically speed up the calculations. 
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Fig. 11. Multi-objective calibration results for three particular vehicles (ID=1 to 3) 

The second main conclusion of this paper is that optimal or even averaged traffic parameters seem sufficient to 

estimate the fuel consumption and the NOx and PM emissions for a group with many vehicles (global or traffic 

level). Thus, if the emissions can hardly be estimated for a particular vehicle using model parameters only 

calibrated for traffic purpose, this is no longer the case for platoons or for the total traffic. Indeed, local errors on 

a driving cycle that have significant impact for the vehicle emissions at a local and individual scale compensate 

when lots of driving cycles are considered. This confirms the conclusions from a previous study that only 

focused on fuel consumption (Vieira da Rocha et al, 2013). This is particularly relevant as in the practice 

different strategies and investments on a transportation system are evaluated at the aggregated level rather than at 

the level of the single vehicle. 
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