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Abstract 
This paper focuses on the derivation of analytical formulae to estimate the effective capacity 
at freeway merges. It extends previous works by proposing a generic framework able to 
account for (i) heterogeneous vehicle characteristics and (ii) refined description of the 
physical interactions between upstream waves and downstream voids created by inserting 
vehicles within the merge area. The provided analytical formulae permit to directly compute 
the capacity values when the merge is self-active, i.e. when both upstream roads are 
congested while downstream traffic conditions are free-flow. They show that accounting for 
vehicle heterogeneity is not necessary when only the mean capacity is targeted. Calculations 
with the proper mean value for all parameters provide accurate estimates. This result is 
appealing because the shape of the parameter distributions does not need to be calibrated. 
However, this paper also shows that vehicle heterogeneity plays a major role in the flow 
dynamics just upstream of the merge. 
 
 
 
Keywords:  
Active bottleneck, Capacity Drop, Freeway Merge, Kinemactic Wave, Heterogeneous 
Vehicles. 
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1. Introduction  
Determing the effective merge capacity, i.e. the maximum flow that can be observed just downstream 
of freeway merges, is crucial for traffic operations. This is not only important for simulation purpose 
but also to develop better control strategies. Effective capacity is referred in some papers as the queue 
discharge rate. Experimental findings show that capacity drops are often observed at merges even if 
downstream traffic conditions are in free-flow, e.g. (Cassidy and Bertini, 1999; Kerner, 2002; Chung 
et al., 2007; Sarvi et al., 2007; Zheng et al., 2011). The magnitude of the capacity drops is mentioned 
to be between 10 to 30% of the maximal observed flow. The main physical explanations for such a 
phenomenon are lower speeds for merging vehicles combined with bounded acceleration, e.g. 
(Cassidy and Rudjanakanoknad, 2005; Laval et al., 2005; Treiber et al., 2006; Laval and Daganzo, 
2006), and the impacts of driver behaviors, e.g. (Cassidy and Ahn, 2005; Coifman and Kim, 2011; 
Chen et al., 2014). In a nutshell, slower vehicles create voids in front of them that locally reduce the 
available capacity and lead to temporal flow restrictions. 

Except for direct experimental observations, the most common way to determine the effective merge 
capacity is to use a traffic model able to reproduce the underlying physical mechanisms, e.g. (Laval 
and Daganzo, 2006; Srivastava and Geroliminis, 2013). This requires running a simulation for every 
new set of parameters and is not really convenient when looking for a first and quick approximation of 
how a merge behaves or to determine which parameters are the most influential, e.g. for sensitivity 
analysis. To the authors’ knowledge, (Leclercq et al., 2011) is the only attempt to derive an analytical 
expression that explicitly relates the effective capacity to the different parameters. This expression is 
derived by considering that inserting vehicles act as moving bottlenecks (Newell, 1998; Leclercq et 
al., 2004) with bounded acceleration while mainstream vehicles behave according to the kinematic 
wave model (Lighthill and Whitham, 1955; Richards, 1956) with a triangular fundamental diagram. 
The central point of this contribution is to handle the interactions between moving bottlenecks when 
vehicles insert at different location along the on-ramp. 

This first attempt has two main shortcomings. First, vehicle characteristics are supposed 
homogeneous, i.e. same acceleration, same jam spacing… Second, interactions of upstream 
propagating traffic waves with downstream propagating voids created downstream of moving 
bottlenecks are neglected. This paper proposes new analytical investigations that tackle these two 
shortcomings. Notably heterogeneous vehicle characteristics will be introduced to account for traffic 
composition (trucks and cars) but also for driver behaviors (random maximal acceleration). As a major 
result an updated expression for the effective capacity defined by eq. (5) in (Leclercq et al., 2011) will 
be established. In this paper, we will assume that both the on-ramp and the freeway are congested 
upstream of the merge. (Leclercq et al., 2011) provides all the materials to extend the results to 
situations when the on-ramp is in free-flow. Furthermore, we will consider that the inserting flow q0 is 
given when calculating the merge effective capacity C. One more time, the major challenge is to 
derive an update version of eq. (5) in (Leclercq et al., 2011). Then, all methodology already presented 
in (Leclercq et al., 2011) can be directly applied. Notably, when the merge ratio α is given (Daganzo, 
1995), q0 can be derived by solving (1+1/α)q0=C(q0). This provides both equilibrium traffic states 
upstream of a self-active merge, i.e. when the congestion is not coming from downstream. Finally, 
note that we will restrict our investigations here to a one-lane freeway. Extensions to multi-lane 
freeways have already been discussed in (Leclercq et al., 2011). The corresponding methods are 
directly applicable to the extended expression of the effective capacity. 

This paper is organized as follow: the first section proposes a generic expression for the effective 
capacity. Section 2 deals with proper consideration of voids downstream of moving bottlenecks while 
section 3 addresses the question of heterogeneous vehicle characteristics. The main work in these two 
sections is to derive the characteristics of the statistical distributions that appear in the generic 
expression. The main challenge is to maintain analytical tractability from end-to-end. Analytical 
expressions will be compared to numerical simulations to test the relevance of the required 
approximations. The last section presents a brief discussion. 
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2. Generic expression for the effective capacity 
Consider a merge with two one-lane roads. Vehicle i inserts from the on-ramp at time ti and location xi 
(0≤xi≤L), where L is the length of the insertion lane, see Figure 1a. The time headway hi=ti+1-ti between 
two successive insertions follows an unknown distribution H(h0,sH) with mean h0=1/q0 and standard 
deviation sH. Inserting vehicles are considered as moving bottlenecks (Newell, 1998; Leclercq et al., 
2004) on the freeway with initial speed v0,i and bounded acceleration ai. The distributions of these 
parameters are respectively described by V0(v0,sV0) and A(a,sA). Note that capital letters will be used 
for defining the distributions associated to random variables labeled with lower case letters. Platoons 
of vehicles upstream of each moving bottleneck on the main road are described by the kinematic wave 
model (Lighthill and Whitham, 1955; Richards, 1956) and a triangular fundamental diagram with 
wave speed w and jam density κi. Free-flow speed has no influence here and it seems reasonable for 
freeway traffic to assume same wave speeds for all platoons (Chiabaut et al., 2010). A different jam 
density value is assigned to each inserting vehicles following Κ(κ,sK). In this paper, we will assume 
that this value also characterize the mean jam density of the platoons leaded by the inserting vehicle. 

 
Figure 1: (a) Sketch of the merge (b) Inserting process when L=0 (c) Inserting process when L>0, no interaction 
between waves and voids (d) Accounting for interactions between waves and voids. 

To establish the generic expression for the effective capacity C, vehicles are first assumed to all insert 
at x=0, i.e. L=0, see Figure 1b. Let δi be the cumulative number of vehicles that have crossed x=0 
between time ti and ti+1. Variational theory (Daganzo, 2005) states that δi can be equally calculated on 
the paths A→B or A→C→B, see Fig. 1b. No vehicle can pass the bottleneck between A and C, so δi is 
equal to wκi(hi-τi), where τi is the time duration between points A and C. The effective capacity C 
corresponds to the ratio between the sum of δi and the total duration of the process, i.e. the sum of hi, 
when the number of insertion tends to infinity. It is then given by: 
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(1)  

Note that the unit of ν is consistent with a speed but this expression is not related to any physical 
definition. The law of large numbers tells us that (1/n)Σδi and (1/n)Σhi respectively converge to Δ and 
h0, i.e. the mean of the corresponding distributions. Δ can be approximated using the multivariate 
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generalization of the Delta method (Oehlert, 1992). This method consists in performing a second-order 
Taylor expansion of δi around the mean values h0, v0, a and κ before applying the sum operator. First 
order terms disappear because the sum of each parameters divided by n converges to the mean. Only 
second order terms remain and are weighted by either the standard deviation sX of each distribution X 
or the covariance θX,Y between all X and Y. Thus, Δ is given by: 

Δ
𝑤
=   𝛿 ℎ!, 𝑣!, 𝑎, 𝜅 +

1
2

𝑠!!

!∈ !,!!,!,!

𝜕!𝛿!
𝜕𝑋!

+ 𝜃!,!
𝜕!𝛿!
𝜕𝑋𝜕𝑌

!,! ∈ !,!!,!,! ,!!!

 (2)  

We first assume that H and V0 are respectively independent from A and K because they depend on the 
on-ramp traffic conditions and not on the vehicle characteristics. The covariance between these 
distributions is then zero. It can easily be verified that the second derivative of δi with respect to K is 
zero. Interestingly, this means that the K-distribution has no influence on C, only the correlation 
between K and A does. Finally, all the derivatives of δi can be expressed using the derivatives of τ. We 
then obtain the following generic expression for C: 
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(3)  

The derivatives of τ are provided in eq. (4). We will show in section 3 and 4 that introducing more 
relevant physical hypothesis like L>0, interactions between voids and waves or random vehicle 
characteristics is “just” a question of properly calculating the moments of all distributions. 
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(4)  

3. Considering interactions between waves and voids 
In this section, we now consider that insertions can happen anywhere between 0 and L (L>0). Vehicle 
characteristics are still homogeneous (sA=0 and sK=0). We first show that the physical process with 
random inserting position can still be described with the generic expression. Second, we look for the 
analytical expression for the relevant moments in eq. (3). Finally, we will derive the full analytical 
expression. 

3.1. Applying the generic expression 

The general principle for considering insertions at different locations between x=0 and x=L has already 
been presented in (Leclercq et al., 2011). When vehicle i is inserting at time ti and location xi, it 
generates a wave whose speed is w and which carries the speed v0,i. This wave reaches x=0 at time t’i, 
see Figure 1c. (Leclercq et al., 2011) explains in details what clearly appears in Figure 1c: the process 
for determining the effective capacity at x=0 is the same when considering L>0 or L=0. Indeed, the 
cumulative number of vehicles can be calculated on either on paths A→C→D→B or A→D’→B. 
Calculation on path A→D’→B is exactly the same for the path A→C→B when L=0, see Figure 1b&c. 
To determine C, we only have to replace the distribution H by the distribution H’ where h’i= t*

i+1-t*
i 

and t*
 is the ordered series gained from the realizations of t’, see Figure 1c. This result resorts to a 

restrictive assumption: waves coming for moving bottlenecks are not influenced by voids created 
upstream by other bottlenecks, e.g. wave coming from vehicle 1 propagates until x=0 without 
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considering the void created downstream of vehicle 2, see Figure 1c. (Leclercq et al., 2011) mentioned 
that this assumption helps to keep the analytical calculation simple but they do not investigate how it 
influences the effective capacity values. This will now be done. Note that (Leclercq et al., 2011) 
provides the analytical expression for sH’ when the time between two insertions is set to h0, i.e. sH=0, 
and when the distribution of inserting positions in congestion is uniform as suggested by experimental 
evidence (Daamen et al., 2010): 

𝑠!! =
𝐿 6𝑤                                                                                                                                             if  𝐿 ≤   𝑤ℎ!
ℎ! 𝐿 − 𝑤ℎ! 6 𝐿 + 6 − 2 𝑤ℎ!                       if  𝐿 > 𝑤ℎ!  

 (5)  

Figure 1d shows what happens when considering the interactions between voids and waves. The wave 
coming from vehicle l meets the void created downstream of vehicle i. The void progressively 
vanishes and the wave can only propagate further downstream when the void has disappeared, i.e. at 
time T’ in Figure 1d. This changes the time t’l when the wave reaches x=0 and potentially influences 
the H’ distribution that is now simply relabeled H. This also modifies the V0 distribution. In fact, the 
initial speed when calculating the cumulative vehicle number between t’l and the time when the next 
wave arrives at x=0 is no longer equal to v0,l but is now equal to v1,l, see Figure 1d. v1,l corresponds to 
the speed carried by the wave coming from vehicle l and that goes through the point C where the void 
created by i disappears. The position of this point depends on the initial speed v1,k of the void 
downstream boundary. This last speed can be determined by identifying the vehicle k that determines 
the speed profile when i is inserting, see Figure 1d. 
All the challenge is to maintain analytical tractability when calculating the new moments of the H and 
V0 distributions considering the extended physical process with voids. In order to validate the 
analytical simplifications that we will made, we have developed a numerical code that, for a given 
h0=1/q0, (i) randomly draws the inserting positions for a set of 5000 vehicles, (ii) matches each vehicle 
l with the corresponding vehicles i and k, (iii) makes the proper calculation for the vehicle i void 
boundaries, (iv) determines the modified values for t’l and v0,l. Note that the wave coming from l not 
necessarily meets a void and is then unaffected. Such numerical simulations provide samples for H 
and V0 distributions and also allow us to directly estimate C. We perform extensive simulation runs 
but for illustration purposes, most figures of this article are drawn with the following parameters: 
w=19.4 km/h, κ=130 veh/km, a=1.8 m/s2, q0=0.174 veh/s. 

3.2. Determining the moments of the different distributions 

We further assume that all vehicles have the same speed v0 when inserting. This speed is associated to 
q0 through the fundamental diagram. This assumption is reasonable because the on-ramp is congested. 
Section 5 will explain how this can be relaxed. Note that mathematical expectation (mean) of a 
distribution X is further labeled E(X). 
H-distribution. Considering interactions between voids and waves does not change the number of 
waves created. Thus E(H) remains unchanged and is equal to h0. The ordering processing when 
switching from t’ to t* makes inaccessible the analytical derivation of the H-distribution from the 
distributions of the inserting position and time. In (Leclercq et al., 2011), the analytical expression of 
sH’ eq. (5) has been obtained by considering extreme case when L is very small and very high and by 
fitting the global expression using extensive numerical simulations. Notably, it appeared that H’ 
follow an exponential distribution when L tends to infinity. Here, we apply the same approach. Figure 
2 shows an example for the evolution of sH with respect to L when interactions between voids and 
wave are considered or not. This figure highlights that the standard deviation of H is unaffected by the 
modification of t’l when waves encounter interactions with upstream voids. The analytical expression 
eq. (5) remains fully accurate. This has been confirmed by multiple simulation runs using a wide range 
of parameter values. 
Probability for interacting pint. Not all waves meet voids before reaching x=0. Before going further 
in the calculation of the moments, we need to establish an analytical formulation for the probability pint 
that a wave starting from a moving bottleneck experiments interactions. Consider a vehicle i that is 
inserting at time ti and location xi. The wave starting from i can interact with a void created by a 
vehicle that inserted in the close past or that will insert in the near future, see diamond dots in Figure 
2c. To maintain the analytical tractability, we will only consider the closest neighbors, i.e. vehicle i-1 
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and i+1, see the shaded area in Figure 2c. There will be no interactions if the starting point of vehicle i-
1 makes it arrive above xi at time ti and if vehicle i+1 is created above the wave coming from i at time 
ti+1. These two conditions should jointly be true and correspond to initial inserting positions for vehicle 
i-1 and i+1 along the two green lines in Figure 2c. This means that xi-1>xi-0.5ah0

2-v0h0 and xi+1>xi-wh0. 
Let denote b1 and b2 respectively the min and the max between xi-0.5ah0

2-v0h0 and xi-wh0. As the 
inserting position for all vehicles obeys to a uniform distribution, it comes that the conditional 
probability P(no|xi) of no interaction given xi is: 

𝑃 no 𝑥! =

1                                                                                                                          if 𝑥! ≤ 𝑏!

𝐿 − 𝑥! − 𝑏! 𝐿                                                                   if 𝑏! < 𝑥! ≤ 𝑏!  

𝐿 − 𝑥! − 𝑏! 𝐿 − 𝑥! − 𝑏! 𝐿!             if 𝑥! > 𝑏!

 (6)  

The law of total probability makes it possible to determine pint with respect to P(no|xi) noticing that the 
probability for vehicle i to insert at position xi is 1/L: 

𝑝int = 1 −
1
𝐿

𝑃 no 𝑥!

!

!

𝑑𝑥! (7)  

The black curve in Figure 2b compares the numerical and analytical results for pint and different L 
values in our example case. It appears that the analytical expression is close to the numerical results 
even if we only consider the two closest neighbors. pint is underestimated because our approximation 
neglects interactions with farer neighbors. This result has also been confirmed by extensive simulation 
runs. 

 
Figure 2: Analytical approximations for (a) the standard deviation of H with and without considering void 
interactions (b) the mean and the standard deviation of V0 and the probability pint for waves to interact with voids (c) 
Process for approximating the probability pint. 

V0-distribution. The initial speed when wave i arrives at x=0 may either be equal to v1,l or v0 
depending on whether an interaction happens or not. We first only consider cases with an interaction. 
Let denote A(ti,xi) the point where the void is created, B(T,xT) the point where the wave meet the 
downstream void boundary and C(T’,xT’) the point where the void disappears, see Figure 1d. C is the 
intersection point of two parabolas corresponding to bounded acceleration trajectories (curves BC and 
AC). Solving the associated equations leads to T’=T+(v1,k-v0)/a. Equation of curve BC also tell us that 
v1,l=a(T’-T)+v0. It comes then a very simple result when v0 is constant: v1,l=v1,k. Finally, v1,l is given by: 
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𝑣!,! = 𝑎𝜏 ℎ! , 𝑣!, 𝑎 + 𝑣! (8)  
Eq. (8) means that the V1-distribution of only depends on the distribution of τ(H). Its two first 
moments are then given by: 

𝐸 𝑉! = 𝑎𝐸 𝜏(𝐻) + 𝑣!
  𝐸 𝑉!! =   𝑣!! + 2𝑎𝐸 𝜏(𝐻) + 𝑎!𝐸 𝜏!(𝐻)

 (9)  

The mean and standard deviation of the V0-distribution can then be derived by applying the law of 
total expectation with condition probability depending on whether an interaction appears or not: 
 

𝐸 𝑉! = 1 − 𝑝int 𝑣! + 𝑝int𝐸 𝑉!
  𝑠!!
! =   𝐸 𝑉!! −   𝐸 𝑉! !;     𝐸 𝑉!! = 1 − 𝑝int 𝑣!! + 𝑝int𝐸(𝑉!!)

 

⇒
𝐸 𝑉! = 𝑣! + 𝑎𝑝int𝐸 𝜏(𝐻)
  𝑠!!
! = 𝑎𝑝int 2𝐸 𝜏(𝐻) + 𝑎𝐸(𝜏!(𝐻))  

(10)  

The last thing we need to finalize is the calculation of the mathematical expectation of τ and τ2. This 
can be achieved by again applying the Delta method (Oehlert, 1992): 

𝐸 𝜏 =   𝜏 ℎ!, 𝑣!, 𝑎 +
1
2
𝑠!!

𝜕!𝜏
𝜕𝐻! ;     

𝜕!𝜏
𝜕𝐻! → (4)

  𝐸 𝜏! =    𝜏! ℎ!, 𝑣!, 𝑎 +
1
2
𝑠!!
𝜕!𝜏!

𝜕𝐻! ;     
𝜕!𝜏!

𝜕𝐻! =   
2𝑤! 𝑤 + 𝑣!
𝑣! ℎ!, 𝑣!, 𝑎

 (11)  

Figure 2b shows the comparison between the analytical and the numerical calculations for E(V0) and 
sV0 and the example case. The results are quite good except for some discrepancies for low L values 
(between 60 and 150 m). The reason is that v1,l=v1,k and eq. (8) hold only if vehicle l inserts outside the 
void created by vehicle i. Otherwise, the void disappears more quickly and v1,l<v1,k. Such situations are 
properly handled in the numerical code but can hardly be introduced in the analytical derivation. Of 
course, they happen more frequently if the insertion length is small. This explains why the analytical 
formulas overestimate E(V0) and sV0 when L is quite small. As usual, extensive simulation runs have 
been performed to verify that the errors remain in the same level of magnitude. Furthermore, we will 
see later that such discrepancies have few impacts when calculating C. 
Covariance between H and V0. To apply eq. (3) with homogeneous vehicle characteristics, the last 
missing term is θH,V0. The analytical derivation of this term is almost impossible because multiple 
interactions occur. Indeed, when a wave is delayed due to a void this change the time headways of 
both neighboring waves and the initial speed for one of them, see Figure 1d. This speed depends on the 
time headway of another wave associated to vehicle k. Because of the ordering process from t’ to t*, it 
is very difficult to analytically determine the headway index associated to an initial speed 
modification. Fortunately, when performing the extensive numerical tests it appears that the value of 
θH,V0 remains very low compared to the variances of other distributions whatever the parameters, q0 
and L are. H and V0 are clearly not independent but their covariance can be neglected. θH,V0 is then 
assumed equal to 0 for further analytical calculations. 

3.3. Calculating the effective capacity for different inserting flows 

Figure 3 presents the analytical and numerical results for the effective capacity C. Three values for the 
inserting flow are tested. The blue curve and dots correspond to the case when interactions are 
neglected and so to the results already stated in (Leclercq et al., 2011). The red curve and dots clearly 
show the importance of considering the interactions between voids and waves. The estimation of the 
effective capacity increases up to 15% when this phenomenon is taken into account. This is explained 
by the fact that voids created by upstream inserting vehicles reduce the impacts of other vehicles that 
insert downstream. This tends to increase the capacity. 
The effect of interactions starts being noticeable when L>50 m except for the lowest q0 value. This is 
because when all vehicles insert on a short distance, waves quickly reaches x=0 and do not interact 



Leclercq	
  et	
  al	
  
	
  

	
   9	
  

with voids. Another interesting result is that the effective capacity stops significantly increasing when 
L becomes higher than 150 m. However, the influence of L is important for the lowest values. For 
example, the effective capacity increases about 15 to 20% when L increases from 20 to 160 m. This 
may be interesting for road design. 
The most important insight in Figure 3 is that the extended analytical formula performed well whatever 
the q0 and L values are. The discrepancies with the numerical results are always below 3%. This 
means that eq. (3) provides a very good estimate for the effective capacity even if we resort to 
restrictive assumptions when determining the moment of some distributions. This is really appealing 
because this formula provides a direct estimate for the effective capacity without requiring any 
complex simulation runs. It will now be further extended to account for heterogeneous vehicle 
characteristics. 

 
Figure 3: Comparison between analytical and numerical results when considering or not the interactions between 
waves and voids. (a) regular inserting flow: q0=0.174 veh/s (b) low inserting flow: q0=0.08 veh/s (c) high inserting flow: 
q0=0.26 veh/s. 

4. Considering heterogeneous vehicle characteristics 
In this section, vehicle characteristics are no longer homogeneous, i.e. sA and sK ≠ 0. We still consider 
that the inserting speed is the same for all vehicles, i.e. v0. 

4.1. Applying the generic expression 

To mimic realistic traffic conditions, we consider that inserting vehicles can be categorized into trucks 
and cars. The truck ratio is denoted p*. Accelerations and jam densities are assumed to follow normal 
distributions for each vehicle class. Remember that the jam density formally describes in this 
framework the characteristics of the platoon upstream of an inserting vehicle. Because platoons are 
small, we distribute the jam density depending on the leader class, i.e. the inserting vehicle. 
Parameters related to trucks are identified using an asterisk (*) while those related to cars are 
identified using an apostrophe (’). For numerical examples, the following values will be applied: 
p*=0.2, a*=1 m/s2, sA*=0.2 m/s2, a’=2 m/s2, sA’=0.5 m/s2, κ*=67 veh/km, sK*=10 veh/km, 
κ’=145 veh/km, sK’=30 veh/km. 

Considering random accelerations and jam densities does not modify the global physical process 
described in section 2 and 3 when vehicles are inserting as far as the wave speed is constant, see Figure 
1d. Thus, eq. (3) can be directly applied as soon as the different moments are properly determined. 
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4.2. Determining the different moments 

K and A-distributions. Those distributions are defined given the vehicle class. Applying the law of 
total expectation to the two first moments makes it possible to determine their means and standard 
deviations for the total population: 

𝑎 = 𝑝∗𝑎∗ + 1 − 𝑝∗ 𝑎!;     𝜅 = 𝑝∗𝜅∗ + 1 − 𝑝∗ 𝜅!

𝑠!! = 𝐸 𝐴! − 𝑎!;     𝐸 𝐴! = 𝑝𝐸 𝐴∗! + 1 − 𝑝∗ 𝐸 𝐴!"  

𝐸 𝐴∗! = 𝑝∗ 𝑎∗! + 𝑠!∗! ;     𝐸 𝐴!" = 𝑎!" + 𝑠!!
!  

(12)  

Recall that there is no need to calculate sK because it has no influence on the effective capacity. 
Probability for interacting pint. The only modification when calculating pint is that the acceleration of 
the upstream closest neighbor is random. However, we can use at first glance the mean acceleration 
for this calculation. Eq. (6) and (7) remain unchanged, see Figure 4b. 

 
Figure 4: Integrating heterogeneous vehicle characteristics. (a) Standard deviation of H (b) Mean and standard 
deviation of V0, probability for interacting (c) Effective capacity C with respect to L (d) Effective capacity C with 
respect to the truck ratio. 

H-distribution. A new phenomenon occurs when looking at the H-distribution with heterogeneous 
vehicle characteristics: some voids never disappear. It is clear in Figure 1d that if ai>al the upstream 
void boundary will join the downstream void boundary because initial speed at points A and B are the 
same. In the reverse situation, some cases may happen where the curve BC has no intersection point 
with the curve AC. In that case, if a wave coming from vehicle l interacts with this void, it will never 
reach x=0 and should be disregarded. The effective occurrence of such a situation when ai<al depends 
on the relative position between B and A and thus depends on v1,k and the relative inserting positions 
of vehicle i and l. Using geometrical considerations, it can be derived that the condition for the void 
created by vehicle i not to disappear is: 

𝑎!! + 𝑎! − 𝑎! 𝑎! + 𝑎! + 2𝑎! 𝜏 ℎ! , 𝑣!, 𝑎! 𝜏 ℎ! , 𝑣!,! , 𝑎! < 0 (13a) 

By noticing that v1,k=akτ(hk,v0,ak)+v0 and using a first order Taylor expansion, it is possible to 
approximate the mean value for the ratio of τ-functions in Eq.(13a) by √2. Eq. (13a) can then be 
further simplified: 

2 2 − 1 𝑎! − 𝑎! 𝑎! > 𝑎!𝑎!  (13b) 

Deriving analytically the probability for eq. (13b) to be true with respect to the A-distribution is too 
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difficult. However, eq. (13b) provides an interesting insight. It appears that eq. (13b) will never be true 
if al is not considerably higher than ai. Thus and at first glance, we can consider that a condition for 
eq. (13b) to be true is that i is a truck while l is a car. Thus, the probability pv for a void not to 
disappear can roughly be estimated by: 

𝑝! =   𝑝∗ 1 − 𝑝∗  (14)  

Finally, to determine the H-distribution, we assume that its behavior remains similar after disregarding 
the fraction of waves that are not reaching x=0. Such fraction is equal to the product of pint and pv (a 
wave should interact with a void that does not disappear). The new mean of H is then equal to 
E(H)=h0/(1-pintpv). We verify that sH can still be estimated by eq. (5) when h0 is replaced by E(H). 
Figure 4a shows the numerical results for sH with and without considering heterogeneous vehicle 
characteristics. Wave disappearances lead to increased sH values compared to the homogeneous case. It 
appears that the updated analytical eq. (5) provides an accurate fit for sH in the heterogeneous case. 
This result has been confirmed for multiple simulation runs with different parameters. 

V0-distribution. Random accelerations and the appearance of persistent voids strongly complicate the 
calculation of these moments. We need then to resort to strong assumptions. First, we consider that the 
distributions of v1,l can still be described by the distribution of v1,k in order eq. (8) still holds with a=ak. 
Thus, the initial speed carried by the wave coming from vehicle l only depends on the characteristics 
of vehicle k. Eq. (9) remains unchanged. For eq. (10), we have to consider in case of interactions that 
some waves never reach x=0. For n inserting vehicles, only (1-pintpv)n waves crosses x=0. The fraction 
of waves carrying v0 is then r=(1-pint)/(1-pintpv) while the fraction of waves carrying a random speed 
given by V1 is 1-r=pint(1-pv)/(1-pintpv). Thus, eq. (10) should be updated into eq. (15). 

𝐸 𝑉! = 𝑣! + 𝑎𝑟𝐸 𝜏(𝐻)
  𝑠!!
! = 𝑎𝑟 2𝐸 𝜏(𝐻) + 𝑎𝐸(𝜏!(𝐻))  (15)  

Eq. (11) should also be updated because now two variables (H and A) are random in the τ-function. 
We should then use the multivariate expression for the Delta method. We assume that H and A are not 
correlated. Thus, the new expression for the mathematical expectations of τ and τ2 are: 

𝐸 𝜏 =   𝜏 ℎ!, 𝑣!, 𝑎 +
1
2 𝑠!

! 𝜕
!𝜏

𝜕𝐻!   +   
1
2 𝑠!

! 𝜕
!𝜏

𝜕𝐴!  

  𝐸 𝜏! =    𝜏! ℎ!, 𝑣!, 𝑎 +
1
2 𝑠!

! 𝜕
!𝜏!

𝜕𝐻!   +   
1
2 𝑠!

! 𝜕
!𝜏!

𝜕𝐴!

 

 
𝜕!𝜏
𝜕𝐻! ,

𝜕!𝜏
𝜕𝐴!

→ (4);    
𝜕!𝜏!

𝜕𝐻! → (11) 
 

𝜕!𝜏
𝜕𝐴!

= 2
𝜏 ℎ!, 𝑣!, 𝑎

𝑎
+

𝑤ℎ!
𝑎𝑣 ℎ!, 𝑣!, 𝑎

!

+ 2𝜏 ℎ!, 𝑣!, 𝑎
2𝜏 ℎ!, 𝑣!, 𝑎

𝑎!
−

2𝑤ℎ!
𝑎!𝑣 ℎ!, 𝑣!, 𝑎

−
𝑤!ℎ!!

𝑎𝑣! ℎ!, 𝑣!, 𝑎
 

 
 

(16)  

What is important when calculating the moments of V0 from eq. (15) and eq. (16) is to use the initial h0 
value (h0=1/q0) and not the updated value E(H). When calculating the V1-distribution, we have to 
consider time intervals between waves coming from inserting vehicles whatever they are able to reach 
the boundary x=0 or not. 
Figure 4b shows the analytical calculations for E(V0) and sV0 compared to the simulation results. The 
analytical expression provides very accurate estimates for low and large L values. In between, the 
discrepancies already observed for the homogeneous cases are amplified. They are also observed for a 
wider range of L values. The reasons are twofold: (i) stronger assumptions have been made and (ii) in 
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the heterogeneous case some voids can expand more and the probability that vehicle l inserts within 
the void created by vehicle i increases. The second reason is the main explanation for lower simulated 
values compared to the analytical predictions. However, a proof of consistency here is that the 
analytical expression provides close results when L is large (L>250 m), i.e. when (ii) is very less 
frequent. Furthermore, we will see that the discrepancies observed for the V0-distribution have a 
limited influence when calculating the effective capacity. 

Covariance between A and K. θA,K can be easily derived from the conditional behaviors of A and K 
with respect to the vehicle class. We simply further assume that A and K are not correlated within each 
specific class. Otherwise, we would have to calibrate such correlations. 

𝜃!,! = 𝐸 𝐴Κ − 𝑎𝜅;     𝐸 𝐴Κ = 𝑝∗𝑎∗𝜅∗ + (1 − 𝑝∗)𝑎!𝜅! (17)  
Covariance between H and V0. As for the homogeneous case, extensive numerical simulations show 
that θH,V0 is very low and can be neglected, i.e. θH,V0=0. 

4.3. Influence of vehicle heterogeneities on the effective capacity 

The final calculation for the effective capacity can be made using eq. (3) and the formulas eq. (12) to 
eq. (17). An important point is that h0=1/q0 should be used in eq. (15) and eq. (16) when determining 
the moments of the V0-distribution but everywhere else where h0 is mentioned, one should read the 
mean value of H and then used the updated expression E(H)=h0/(1-pintpv). This is particularly true in 
eq. (3). 
Figure 4c shows the results for the effective capacity and the reference scenario. Four numerical cases 
are presented whether void effect and heterogeneities are considered or not. Homogeneous cases use 
the proper means for the parameter distributions. Numerical results show that considering 
heterogeneity has no impact when voids are not considered. Introducing heterogeneous vehicle 
characteristics reduces the effective capacity when voids are considered but the magnitude is low. The 
maximum difference between heterogeneous and homogeneous cases appear for larger L values and is 
never higher than 3%. This has to be compared with the influence of voids that is in the order of 15%. 
A very important insight here is that there is no need to complicate the calculation of the effective 
density by considering the distributions associated to heterogeneous behaviors. We only need to 
properly determine their mean values and applied the formulae for homogeneous case and voids. 
Figure 4c also provides the results for the analytical calculation. They are not as close as for the 
homogeneous case but the discrepancies are always below 3% and can be considered fully acceptable. 
Furthermore, it appears that the difference with the analytical curve for the homogeneous case is 
hardly noticeable. This is because added terms in eq. (3) have finally very low values compared to 
those that already appear in the homogeneous case. Furthermore, those terms have opposite signs and 
nearly compensate. We can also note here that the discrepancies that appear when calculating the 
moments of V0-distributions have very limited impacts even if they explain why the analytical 
calculations do not perfectly fit with the simulation when L is between 50 and 250 m. All these 
conclusions have been reinforced by large simulation tests. 
Finally, Figure 4d presents a direct application of the analytical approach: the effective capacity has 
been determined with respect to the truck ratio. Determining this curve is straightforward with the 
analytical formulae when it would have required extensive and painful simulation runs with classical 
modeling approaches. 

5. Conclusion and discussion 
This paper provides new analytical formulations for the effective capacity at active freeway merges. 
These formulations are able to account for interactions between voids that appear downstream of 
inserting vehicles and for heterogeneous vehicle characteristics. The main conclusion is that it is not 
necessary after all to introduce a detailed description of vehicle characteristics. A proper estimation of 
their mean characteristics is sufficient to derive an accurate analytical estimation of the effective 
capacity. This result is really appealing because it means that formulas presented in section III are 
sufficient. Such formulas are much more simple and can easily be implemented for practical 
applications. One important point is to consider the effect of voids interacting with waves. Recall that 
(Leclercq et al., 2011) provides all the methodological background to implement such updated 
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analytical formulations into a full merge model that also account for situations where the on-ramp is 
not congested. 
In this paper, three parameters have not been considered as random: the wave speed, the initial speed 
for inserting vehicles and the time interval between two insertions. Constant wave speed is required 
because it makes the physical process tractable, see Figure 1. Random time intervals between two 
insertions are straightforward to implement if we assume no modification in the calculations of pint, pv 
and V0 moments. In that case, only the standard deviation of H has to be updated, see (Leclercq et al., 
2011) for details. Otherwise, the problem becomes analytically intractable. Random speeds for 
inserting vehicles can be accounted in the framework of this paper but at the cost of much more 
complex analytical derivations. Here is some guidance about how to do it. First, the standard deviation 
of V0 in eq. (3) should be updated to account for the distribution V’0 of the initial inserting speed. This 
distribution can be considered independent from the distribution of the initial speed at x=0 due to 
interactions between waves and voids. Thus, the variance of V0 can be simply calculated as the sum of 
the variances of these two contributions. Second, every time we use v0 for calculating the moments of 
V0, it should be replaced by the mean value v’0 of V’0. v0

2 should be replaced by v’0
2+sV’0. Third a new 

term should be added when applying the multivariate Delta method in eq. (11) and eq. (16). This term 
corresponds to the second derivative of τ and τ2 with respect to V’0. The main challenge is to properly 
estimate pv because it influences the calculations of the moments of H and V0. As for random 
accelerations, analytical tractability is hard to maintain and strong assumptions would surely be 
necessary. 

 
Figure 5: Numerical simulations for the flow dynamics at x=0. (a) Homogeneous vehicle characteristics (b) 
Heterogeneous vehicle characteristics. 
 
We would like to provide a final comment about how important it is to consider heterogeneous vehicle 
characteristics. We have shown that this has no influence on the effective mean flow at an active 
merges. However, this may be crucial to represent other traffic phenomena. For example, Figure 5 
provides the oblique cumulative count curves corresponding to our numerical simulations whether 
voids effect and heterogeneities are considered or not. Figure 5a shows that when heterogeneities are 
not considered the flow dynamics at x=0 is very flat and close to the mean. When heterogeneous 
vehicle characteristics are implemented, the flow dynamics at x=0 is completely different even if the 
mean is nearly similar, see Figure 5b. Time periods with lower and higher flow values are alternately 
observed. The difference in the mean local flow between such periods is in the magnitude of 20 to 
30% depending on the simulation runs for our reference scenario. This observation is very important 
because such flow variations can trigger stop-and-go wave appearance upstream of the merge. Figure 
5b shows that time periods with lowest flow values last between 10 and 20 min which is consistent 
with the duration of a stop-and-go waves. Accounting for heterogeneous vehicle behaviors appears 
then essential to catch such phenomena. 
Further research directions investigated by the authors are (i) analytical derivations of other indicators 
than the mean flow for the same physical process and (ii) a refined multilane extension to this 
framework compared to what is included in (Leclercq et al., 2011). This refined framework will 
account for the effect discretionary lane-changings that occur on freeway lanes. 
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