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The mode choice of travelers should be considered as well. It is intuitive that the effect 83 of the ratio of people using public transport rather than individual cars will impact the 84 performance of the transportation network. The p--MFD makes it possible to address this 85 issue and to understand how traffic conditions are modified by the mode choice of 86 passengers. Different equilibriums can be investigated, notably user and system 87 optimums. The ultimate goal of research towards this direction is to develop a strategy 88 that makes people switch from a mode to the other. 89 90

The paper is organized as follow: Section 2 introduces the notion of passenger 91 macroscopic fundamental diagram (p--MFD). Section 3 deeply investigates the impacts of 92 modal choice and makes it possible to analytically compare user and system optimums. 93 Section 4 focuses on the application of the p--MFD to network transportation services 94 optimization. Finally, Section 5 proposes a discussion. 95

As mentioned earlier, recent works suggest that there is a consistent relationship 110 between the average network vehicle density and average network flow. Such a 111 relationship is called a MFD. Consequently, we consider in the remainder of the paper an 112 idealized city. Roads shape a very meshed urban network with signalized intersections 113 (see Figure 1a). We also assume that the flows are uniformly distributed among origins 114 and destinations [START_REF] Leclercq | Macroscopic fundamental diagram: a cross--597 comparison of estimation method[END_REF]. Under this assumption, car traffic dynamics is 115 well reproduced by a MFD q(k) giving the space--mean flow of cars qc=q(k) [veh/h] on 116 each link as a function of the space--mean density of the links within the city k [veh/km] 117 (see Figure 1b). Notice that the MFD can now be easily estimated accounting for the 118 effect of buses and control strategies [START_REF] Geroliminis | The effect of variability of urban systems characteristics 569 in the network capacity[END_REF]Leclercq and 119 Geroliminis, 2013;[START_REF] Chiabaut | Performance analysis for different designs of a 559 multimodal urban arterial[END_REF]. It is also worth noticing that the lower case 120 letters refer to variables expressed in terms of vehicles whereas the upper case letters 121 correspond to variables expressed in terms of passengers. We also assume that the 122 maximal occupancy of a car is ρc [pax/veh]. Notice that, for a realistic purpose, we 123 consider that the maximal occupancy is equal to the observed average occupancy (1.2 124 pax/veh) rather than the effective maximal occupancy (5 pax/veh). We first assume a 125 trapezoidal car MFD for the sake of simplicity. This form is convenient to coarsely mimic 126 the influence of traffic signals. The parameters are the free--flow speed u [km/h], the 127 critical speed uc, the maximal flow capacity qx and the jam density kx. The congested wave speed is denoted w=u.qx/(u.kx--qx). We assume that all the links are composed of n 129 lanes (n=2). 130 131 132 We first consider that the public transport system is only composed of buses that share 135 the same roads as the car traffic. We also assume that trips of users can always be 136 realized either by individual car or public transport system. The transit system is 137 characterized by the bus time--headway h [h] and the maximal speed of the buses ut. We 138 also assume that the maximal occupancy of a bus is ρt [pax/bus] and that the buses are 139 mixed with car traffic and no lanes are dedicated to them. Moreover, we consider that 140 the average occupancies of both modes and the number of buses in operation do not 141 depend on the traffic conditions and the mode choice. It turns out that, for a given time--142 headway h the number of buses nbus in operation is nbus = L/(h.vt) (Hans et al., 2014) 143 where L [km] is the length of the bus lines of the transportation network and vt the 144 average speed of the transit system. Physically, it corresponds to static timetables. 145 To introduce the p--MFD, the flow is now expressed in terms of passengers per time 154
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[pax/h]. Let P denote this flow. P is equal to the sum of passengers using cars Fc and 155 passengers using transit system Ft. It is worth noticing that Fc directly derives from the 156 car MFD q(k) while Ft must be obtained from the characteristics of the transit system. 157 Moreover, as in the classical definition of the MFD, it is thus really appealing to link the 158 flow to the average density of passengers in the city K. However, this is not trivial 159 because K has to be expressed in terms of passengers per space [pax/km]. Moreover, it 160 turns out that the mode choice of passengers between cars and buses has an impact on 161 the flow and density. This ratio is denoted τ and is equal to Kc/K where Kc is the density 162 of passengers using cars. 163

In this section, τ is considered as static, i.e. constant in time and independent of traffic 165 conditions. Consequently, τ is exogenously given. Physically, it corresponds to an 166 equilibrium situation where day after day the same demand and traffic conditions occur. 167

Notice that these assumptions are relaxed and studied in the forthcoming section. 168 Consequently, the total average flow and the total average density are: 169

𝑃 𝐾 = 𝐹 ! 𝐾 ! + 𝐹 ! 𝐾 ! 𝐾 = 𝐾 ! + 𝐾 ! (1) 170 
Where Kc and Kt are respectively the average density in passengers of cars and buses. 171

It is thus appealing to link P with K and to correctly determine the function P(K) and 172 especially its shape. Consider a given density of passengers K. According to the 173 definition of the mode ratio τ, the density of passenger in cars is Kc= τ. K [pax/km]. It is 174 worth noticing that this density is also equal to the density of cars weighted by the 175 average occupancy, i.e. kc= Kc/ρc where kc is the density expressed in [veh/km]. It makes 176 it possible to calculate the average flow in terms of passengers: Fc=ρc.q(kc)= ρc.q(Kc/ρc) 177 where q is the car MFD. It comes that the associated average speed of passengers using 178 cars is vc=qc/kc. 179 180 Concerning the transit system, the density of bus passengers is given by Kt=(1--τ).K and 181 cannot exceed ρt.nbus/L the maximal density of the transit system. Consequently, the 182 associated flow is thus equal to 𝐹 ! = min 1 -𝜏 𝐾, 𝜌 ! 𝑛 !"# /𝐿 ℎ . Because we assume 183 that the bus fleet size nbus is constant, i.e. it does depend on traffic conditions, h directly 184 depends on the average speed of the transit system: h= L/(nbus.vt). Consequently, when 185 the car traffic does not constrain the buses, bus speeds are always equal to the free flow 186 speed ut and the headway h is not degraded. However, in the case of mixed traffic, 187 congestion may impact the bus system when the speed of the car vc is lower than the 188 maximal speed of the bus ut. It comes that ℎ = 𝐿 𝑛 !"# . min (𝑢 ! , 𝑣 ! ) where vc is the speed 189 of the cars: vc=qc/kc. 190 191 Finally, equation (1) can be expressed as: 192

𝑃 𝐾 = 𝜌 ! 𝑞 !" ! ! + ! ! . min 1 -𝜏 𝐾. 𝐿, 𝜌 ! 𝑛 !"# . min 𝑢 ! , 𝑣 ! (2) 193
Figure 2 presents the results. The thick gray line corresponds to the car MFD whereas 195 the thin black lines are the different p--MFDs. It is thus appealing to observe the impacts 196 of the bus systems characteristics on the p--MFD shape. To this end, Figure 2a pinpoints 197 the sensitivity of the p--MFD to the bus time--headways h. For this application, all the 198 variables are assumed constant except K (and P) and h that ranges between 3 min and 199 12 min. It turns out that a maximal capacity can be reached for a specific value. Notice 200 that the effect of the bus system on the car traffic dynamics is not accounted here, i.e. the 201 formulation of the car MFD does not depend on the time--headway h. For a given car 202 MFD, it is thus possible to determine the optimal h to maximize the transportation 203 system performance. In the same vein, Figure 2b highlights the impacts of τ on the p--204 MFD shape. Consequently, the only variables that change are K (and P) and τ that ranges 205 between 0.1 and 1. It is not surprising that the performance can also be optimized for a 206 specific value of τ. It is thus appealing to study in details the impacts of τ and to focus on 207 dynamic τ. This will be investigated in the next section. 208 209 210 Now that we have introduced the concept of p--MFD, this section focuses on the effects of 216 the mode choice and studies the associated equilibrium of the transportation network. 217

Notably, system and user optimums are investigated. To this end, we now consider that 218 the mode choice is based on the utility of the mode. The utility is expressed as the travel 219 cost of using that mode at the beginning of the trip. The travel cost of the whole route 220 We first focus on the system optimum. It corresponds to the second principle of 226 Wardrop. In such an equilibrium situation, the average journey time is minimum, i.e. the 227 average speed of passengers is maximal. It is worth noticing that the speed is equal to 228 the ratio of the demand with the density. Consequently, for a given density K, the 229 associated flow P must satisfy the following equation to maximize the average speed: 230

𝑃(𝐾) = max ! 𝜌 ! 𝑞 !" ! ! + ! ! . min 1 -𝜏 𝐾. 𝐿, 𝜌 ! 𝑛 !"# . min 𝑢 ! , 𝑣 ! (3) 231
Based on this equation, we are now able to determine the function P for all the possible 232 traffic conditions, i.e. all the possible values of K. 233 234

Free-flow conditions 235 236

The free--flow conditions correspond to the situations where the total passenger demand 237 is satisfied by the system. The p--MFD is directly obtained by solving equation (3). Figure 238 3a presents the resulting p--MFD in case of a trapezoidal car MFD. It turns out that the 239 passenger mode allocation τ is not constant. This is confirmed by Figure 3b that shows 240 the evolution of τ with respect to the passenger density level. Car is the unique mode 241 until the density reaches the critical density k1 (see Figure 1b), i.e. the demand will 242 exceed the maximal car capacity ρc.qx. Then passengers have to switch from cars to the 243 transit system. Note that this corresponds to the optimal situation where passengers are 244 ready to change mode rather than to degrade the traffic conditions. We do not focus in 245 the paper on the possible policies to make users change mode. However, incentive or 246 congestion pricing, traffic information, prescriptive management could be efficient and 247 innovative solutions. 248 This method can be applied for any shape of MFD. However, calculations are more 255 complicated. We now assume that the car MFD can take any concave shape. We consider 256 here, for the example, a function composed of a parabolic and linear part (see Figure 3c): 257

𝑄 𝑘 = 𝑎𝑘 ! + 𝑏𝑘 for 𝑘 < 𝑘 ! (4a) 258 𝑄 𝑘 = 𝑤(𝑘 ! -𝑘 ! ) otherwise. (4b) 259
Where, a=--u 2 /(2.qx), b=u and kl=--(w+b)/(2a). Such a formulation ensures to maintain the 260 same free--flow speed than the triangular car MFD. 261

To determine the associated p--MFD in case of SO, equation (3) has to be re--written as: 262

𝐾(𝑃) = min ! 𝐾 ! + 𝐾 ! (5) 263
It is also worth noticing that Kc and Kt (respectively) can be expressed as a function of Fc 264 and Ft (respectively). Let us consider 𝐹 ! * and 𝐹 ! * to be the optimal solution of (5) for a 265 given total density K * . A small increment 𝛥𝐹 ! and 𝛥𝐹 ! of the flows Fc and Ft will change 266 the density value. This change can be approximated by a first order Taylor expansion: 267 

ρ t .k t ρ t .k t +ρ t .n bus /L τ* Density K [pax/km] τ (d) 𝐾 𝐹 ! * + Δ𝐹 ! = 𝐾 ! 𝐹 ! * + 𝐾 ! ! 𝐹 ! * . Δ𝐹 ! (6a) 268 𝐾 ! 𝐹 ! * + Δ𝐹 ! = 𝐾 ! 𝐹 ! * + 𝐾 ! ! 𝐹 ! * . Δ𝐹 ! (6b) 269
Thus, the total variation of density is: 270

Δ𝐾 = Δ𝑃 𝐾 ! ! 𝐹 ! * . !! ! !! + 𝐾 ! ! 𝐹 ! * . !! ! !! (7) 271
This equation can be simplified because if we consider that buses are not affected by 272 traffic congestion, thus:

𝐾 ! ! 𝐹 ! * = 1 𝑢 ! because 𝐾 ! = 𝑛 !"# . 𝜌 ! 𝐿 , 𝐹 ! = 𝜌 ! ℎ and 𝑛 !"# = 273 𝐿 ℎ. 𝑢 !
. This is true because we only consider free--flow situations in this section of the 274 paper. It comes: 275

Δ𝐾 = Δ𝑃 !! ! !! ! 𝐹 ! * . !! ! !! + ! ! ! . !! ! !! (8) 276
Δ𝐾 is given by the combination of

!! ! !! and !! !
!! that minimizes the RHS of equation ( 8). 277

This quantity admits a lower bound that is equal to

!! ! !! ! 𝐹 ! * when !! ! !! ! 𝐹 ! * < ! ! ! or to ! ! ! 278
otherwise. Thus, it appears that when the total flow varies from Δ𝑃 the optimal solution 279 of ( 8) is only modified for the car flow if

!! ! !! ! 𝐹 ! * < ! ! !
and for the transit flow otherwise. 280 Consequently, passengers have to shift of mode when

!! ! !! ! 𝐹 ! * = ! ! ! to reach SO. 281 282
Based on these results, the p--MFDs for SO in free--flow conditions are highlighted in 283 Figure 3c. The evolution of τ with respect to the demand level is slightly different from 284 the trapezoidal MFD case, see Figure 3d. To obtain the SO solution, car is the unique 285 mode until a certain car density value that corresponds to kt such as 𝜕𝑞(𝑘 ! ) 𝜕𝑘 = 𝑢 ! ; 286 then passengers switch to the transit system until all the buses are full; finally, the 287 remaining car capacity is used until the system's capacity is reached. 288 289

Congested conditions 290 291

We now aim to determine the p--MFD when traffic is congested. For cars, the MFD 292 directly accounts for this capacity reduction. For buses, they are not impacted for small 293 congestion, i.e. when Fc(Kc)/Kc > ut. However, when Fc(Kc)/Kc < ut, the buses are slowed 294 down by the queues. Characteristics of the transit system have to be dynamically 295 modified according to ℎ = 𝐿 𝑛 !"# . min (𝑢 ! , 𝑣 ! ) . It makes it possible to account for 296 congestion in the expression of Ft. Because car--MFD expressed in terms of passengers, i.e. Fc, also reproduces congested states, the congested part of the p--MFD can be 298 determined according to equation (3). It turns out that equation ( 3) is only a 299 maximization process that depends on the formulation of Fc and Ft. 300 301 302 Figure 4 presents the associated p--MFD. Figure 4a highlights the influence of the bus 306 time--headways h for a car trapezoidal MFD, i.e. all variables are constant except h that 307 ranges between 3 min and 12 min. It is worth noticing that the transformation is always 308 homothetic because of the linearity of the car MFD shapes. Indeed, for other concave 309 shapes, Figure 4b shows very different results. It is interesting to notice that a specific 310 combination of bus time--headways and car MFDs leads to optimal situations. It is thus 311 appealing to use the p--MFD to determine the optimal bus time--headway for a given 312 situation. It will be studied in Section 4. 313 314

User optimum 315 316

We now aim to assess the effect of the mode assignment equilibrium on the associated 317 p--MFD. Indeed, we have only focused on the system optimum since the start of this 318 paper. This assumption is now relaxed to study other modal choice assignment models. 319

Especially, we focus on the Wardrop's first principle and the Logit model. 320 321 Each user non--cooperatively seeks to minimize his cost of transportation. Consequently, 325 the speeds in all modes actually used equal between them and are higher than those that 326 would be experienced by a single traveller on any unused mode. This principle is 327 referred to as user equilibrium (UE) in the remainder of the paper. Consequently, when 328 the transportation network satisfies the UE, passengers either use only the car or they 329 use both modes. 330 331

Wardrop's first principle

Figure 5a shows the associated p--MFD in the case of car trapezoidal MFD. It turns out 332 that is still an all--or--nothing situation. Car is the preferred mode until the arterial 333 becomes congested and the speed of the cars becomes the same as the speed of the 334 buses. Then, the passenger demand is split in both modes according to a ratio τ. It is also 335 worth noticing that the difference in terms of flow between the UE and SO is very high 336 (see SO p--MFD in blue). Moreover, these differences occur in free--flow and lead to a 337 capacity reduction in case of UE. It means that the performance of the transportation 338 network can be deeply optimized by managing the demand rather the self--organization 339 situation. Traffic management strategies must focus on free--flow situations that are 340 really close to the system capacity. 341 342 Figure 5b highlights the p--MFD for a parabolic--linear car MFD. For this specific shape of 343 car MFD, differences between black and blue lines are smaller but the network 344 performance can still be increased by changing the equilibrium from user to system 345 optimum. 346 347 

Density K [pax/km] Flow P [pax/h] (a) UE SO q(k) Density K [pax/km] Flow P [pax/h] (b) UE SO q(k)

The Logit model 351 352

In the vein of [START_REF] Leclercq | Estimating MFDs in Simple Networks with Route 595 Choice[END_REF], the Logit model can also be easily 353 adapted to a multimodal traffic. The associated situation is referred to as stochastic user 354 equilibrium (SUE) in the remainder of the paper. We now assume that the ratio of flows 355 between cars and buses only depends on the difference in travel times, i.e. speed, 356 between both modes: 357

! ! ! ! = 𝑒 !! ! ! ! ! ! ! ! (9) 358 359
Where θ is the parameter of the Logit model and L the average trip length. 360 361

We have now all the equations to formulate a parametric expression of the flow P for the 362 arterial with respect to vc. This defines a simple method to calculate the p--MFD for the 363 Logit model. Figure 6 presents the resulting p--MFD. Notice that all the variables are 364 constant except θ. Therefore, we have tested several θ values (from 0.05 to 0.9 with an 365 increment of 0.05). It turns out that p--MFDs fall between UE and SO. Moreover, UE, SUE 366 and SO only differ at the network level in free--flow situations when average speed is 367 comprised between u and ut for trapezoidal MFD and us and ut for curved MFD (us such 368 as

!! ! !! ! = 𝑢 ! )
. This is not surprising because in congestion both modes have the same 369 speed. The mode ratio is then constant. 370 371 372 
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Equilibriums comparison 376 377

Even if rough comparisons between UE and SO are proposed by Figure 5a, it is still 378 appealing to study these difference in more detail. To this end, we now focus on the 379 marginal costs of UE and SO. This will give useful insights on the pricing policy that can 380 be implemented to adapt the costs of each mode and switch the transportation network 381 from UE to SO. 382 383

The marginal cost of a mode defines the increase of the cost of this mode if one more 384 passenger chooses to use this mode. The marginal cost of mode i is obtained by 385 differentiating the cost function ci(Ki): 386

𝑀𝐶 ! 𝐾 ! = 𝑐 ! 𝐾 ! + 𝐾 ! 𝑐 ! ! (𝐾 ! ) (10) 387
Here the cost of a mode is characterized by the average speed, i.e. ci= Fi(Ki)/Ki. Thus, the 388 derivative c ' i can be formulated as: 389

𝑐 ! ! (𝐾 ! ) = ! ! ! ! ! ! !!(! ! ) ! ! ! (11) 390
Finally, the marginal costs of each mode are equal to: 391

𝑀𝐶 ! 𝐾 ! = 𝐹 ! ! 𝐾 ! = !! ! (! ! ) !! ! 𝑀𝐶 ! 𝐾 ! = 𝐹 ! ! 𝐾 ! = !! ! (! ! ) !! ! (12) 392
With this pricing, SO is reached by letting the system self--organized, i.e. Wardrop's user 393 equilibrium. The conditions of SO highlighted in the previous section can be identified. It 394 turns out that the demand is entirely assigned to the individual vehicle mode until 395

!! ! (! ! ) !! ! = !! ! (! ! ) !! !
. It is also worth noticing that dynamic pricing is required to reach system 396 optimum because

!! ! (! ! ) !! ! changes with Kc.
Especially, the pricing is lower when traffic 397 becomes saturated due to the concave shape of 𝐹 ! (𝐾 ! ). 398 399

APPLICATION TO TRANSPORTATION NETWORK SERVICES OPTIMIZATION

401

The section aims to use the p--MFD as a powerful tool to compare and design optimal 402 control strategies. Firstly, we assume that τ can depend on the passenger demand, i.e. τ 403 is dynamic. According to this assumption, it makes it possible to compare the upper 404 envelope of the associated p--MFD. Secondly, p--MFDs are used to investigate how DBLs impact the transportation system performance and may be a powerful tool to increase 406 capacity even in UE case. 407 408

Optimal bus headway

410

When buses and cars share the same network, buses tend to constrain traffic flow 411 because of their lower speed. They may act as moving bottleneck that create local 412 capacity reductions. Intuitively, the occurrence of these reductions increases with the 413 frequency of the bus system [START_REF] Xie | Macroscopic Fundamental Diagram for Urban 607 Streets and Mixed Traffic: Cross--comparison of Estimation Methods[END_REF]. Consequently, an acceptable trade--off 414 between the bus frequency and the impact on the capacity of the car--MFD must be 415 determined to ensure an efficient performance of the transportation network. 416 417

To cope with this issue, the p--MFD is an adapted tool to calculate the optimal bus time--418 headway to reach the system optimum. To this end, the car MFD now accounts for the 419 effects of buses. q(k) is parameterized by the bus system characteristics. Figure 7a 420 highlights the influence of the bus time--headways on car MFD. As previously mentioned, 421 an increase of hbus reduces the capacity for cars. To mimic this influence, the maximal 422 capacity of cars qx now depends on the headway: 423

𝑞 ! ℎ = 𝑛 -𝑒 !! ! ! ! . 𝑞 ! /𝑛 (13) 424
where hm is the minimal acceptable headway (here hm=1min). Notice that we can obtain 425 more realistic MFD estimates by extending the work of Boyaci andGeroliminis (2011) 426 and[START_REF] Xie | Macroscopic Fundamental Diagram for Urban 607 Streets and Mixed Traffic: Cross--comparison of Estimation Methods[END_REF] to the network level. However, this section only aims to introduce 427 the general methodology to determine optimal bus time--headways. 428 429 Car MFDs are now directly related to the value of the bus time--headway h, see dotted 430 lines in Figure 7a. These lines correspond to h ranged between 1 min and 30 min. Notice 431 that the number of bus in operation nbus changes with h but remains independent to the 432 traffic conditions for a given h. Moreover, Figure 7a also shows the associated p--MFDs in 433 case of SO situation. This is clearly the most pertinent case to address for a city or transit 434 manager. For a given passenger demand, managers seek to maximize the average speed 435 on the transportation network, i.e. to minimize the average density. The upper envelope

𝑈 ! 𝐾 = max ! [𝑃 𝐾 ]
(13) 438 439

It ensures that the average speed is always maximal. Figure 7a highlights in red this 440 upper envelope. Consequently, p--MFD provides the optimal bus time--headway with 441 regard to the passenger demand. Figure 7b depicts the evolution of the optimal bus 442 time--headway with the passenger density. It turns out that very high bus frequencies 443 are required to reach high capacities. Unfortunately, such frequencies are very difficult 444 to maintain in practice. It is also worth noticing that the assumptions made to account 445 for the effects of bus in car MFD formulation strongly impacts the results. However, the 446 methodology proposed here can also be applied for a more realistic car MFD coming 447 from simulation as in [START_REF] Chiabaut | Investigating Impacts of Pickup--Delivery Maneuvers on traffic flow 557 dynamics[END_REF]. 448 449 450 The creation of DBL within the network engenders a capacity reduction for the cars. To 460 make this phenomenon explicit, consider here that α is the ratio of lanes fully dedicated 461 to a rapid public transport mode such as buses or trams. As Gonzales and Daganzo 462 As previously mentioned, the works of [START_REF] Xie | Macroscopic Fundamental Diagram for Urban 607 Streets and Mixed Traffic: Cross--comparison of Estimation Methods[END_REF] can be easily adapted to 467 estimate a more accurate MFD. Because these considerations are out of the scope of the 468 paper, the maximal capacity for cars is now equal to α.qx and the critical speed uc 469 remains constant for both cases of trapezoidal and curved car MFD. 470 471

We can theoretically segregate the public transport system into two parts: (i) a rapid 472 transit system that can use the DBL network and (ii) the remainder of the fleet. Notice 473 that the fleet size is equal for both studied cases. To mimic the effects of DBL on the 474 transit system, we consider that the average speed of vehicles (buses or trams) using the 475 DBL is increased. From a macroscopic lens, they have an average speed 𝑢 ! ! > 𝑢 ! . The 476 fleet of the buses that cannot use the DBLs keeps an average speed equal to ut. 477 478

We apply equation (3) to determine the associated p--MFD in the case of UE. Figure 8 479 presents the results. Notice that the fleet size is assumed constant and the only changing 480 variables are K (and P) and the α ratio that ranges between 0.5 and 1. Figure 8a 481 highlights the main difference between DBL and mixed cases (α is equal to 0.8). It is not 482 surprising to observe that rapid system is competitive before the remainder of the 483 transit system because of their higher average speed. Thus individual car is the only 484 used mode until the speed is reduced to the average speed of rapid system 𝑢 ! ! . The 485 remaining of the bus fleet becomes advantageous when the situation is enough 486 congested, see the DBL optimal area in Figure 8a. Notice that the switching traffic 487 conditions are directly given by the speed of the different modes. This process can be 488 extended to any number of modes. It is also worth noticing that, even in a very 489 congested situation, the flow of the p--MFD associated to the DBL case is never null. 490 Indeed, we have assumed that the DBLs are never blocked by traffic congestion. 491 493 Finally, we can identify the optimal domains of application in case of UE. As previously 497 mentioned, optimal domains are determined by identifying solutions that maximize the 498 flow for a given density, i.e. maximize the average speed. The red curves depict the 499 upper bound of p--MFD calculated for α--values comprised between 0.5 and 1. In the 500 simplest case of trapezoidal car--MFD, Figure 8b highlights that the creation of DBLs can 501 increase the capacity in free--flow conditions. It is also worth noticing that p--MFD for 502 DBL case never reached a null--flow in congested situations. Indeed, DBL ensures that the 503 bus system can still operate even in very congested states. Similar observations can be 504 formulated in the case of curved--MFD, see Figure 8c. It turns out that DBL can be an 505 optimal strategy in case of UE. This is very promising because global transportation 506 network performance can be increased by promoting public transport even in the case 507 of UE. This paper developed tools to analytically assess the performance of a multimodal 513 transportation network. To this end, the paper extends the MFD definition to account for 514 the average number of passengers in each mode. The objective is to obtain a unique 515 function to determine the domains of relevance of different transit strategies, where the 516 system cost is minimized. 517 518 First analytical considerations introduce the concept of p--MFD and study its sensitivity 519 to the bus system characteristics in case of a static mode choice. Then, the assumption is 520 relaxed to unveil the impacts of the mode choice on the transportation network 521 performance. Consequently, the user equilibrium case can be compared to the system 522 optimum situation. 523 524 This theoretical canvas can then be used to cross compare different transit strategies 525 and to design the optimal bus system characteristics. Especially, the paper focuses on 526 determining the more efficient bus time headway in case of mixed traffic. Then, the 527 study is devoted to the introduction of DBL. The p--MFD permits to determine the 528 optimal domains of application of DBL. 529 530

We acknowledge that the approach proposed in the paper is highly conceptual and 531 applied to a very idealized network. However, such an approach makes it possible to 532 provide a general modeling framework that can then be adapted to a large range of 533 situations. Nonetheless, this idealized analysis provides insights into how to assess the 534 global performance of a multimodal transportation network and how to compare 535 different traffic management strategies. 536 537 Finally, the results of this paper can be generalized for any design of the network. One of 538 the next extensions is to deal with a spatial distribution of traffic conditions on the 539 network. Indeed, the assumption of uniform distribution of flows can be relaxed 540 allowing for heterogeneous OD demands and mode choice ratio. Moreover, the work can 541 be extended to account for the feedback on the multimodal demand. Indeed, a fixed 542 demand has been considered in the paper but traffic conditions may induce less or more demand that have to be accounted for when calculating the p--MFD. More realistic car 544 MFD formulation can also be considered by resorting to simulation as in (Chiabaut et al., 545 2014) or more sophisticated estimation method (Hans et al., 2014a). Finally, a last step 546 will be to estimate the p--MFD from field data. This task clearly requires very detailed 547 data (passenger counts, vehicle occupancies, OD matrix, etc.). Urban mobility simulation 548 software may provide synthetic but insightful measurements to estimate more realistic 549 p--MFD. 550
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 7 Figure 7: (a) Impact of the bus system on car MFD (b) upper bound of the transportation system
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 8 Figure 8: (a) Impact of DBL creation in case of UE and optimal domains of application for (b) a car

  Finally, Table1provides a nomenclature for the different variables and main 146 parameters utilized in the paper. It also provides the values that have been used to draw 147

	148	illustrations.	
	149		
		Variable	Description	Value (if constant)
		q	Car MFD [veh/h]	--
		qc	Flow of cars [veh/h]	--
		kc	Density of cars [veh/km]	--
		ρc	Average occupancy of cars [pax/veh]	1.2

u

Free--flow speed of cars [km/h] 50

Table 1 : List of main variables and parameters

 1 

	uc		Critical speed of cars [km/h]	7.7
	vc		Average speed of cars [km/h]	--
	qx		Maximal capacity of cars [veh/h]	4250
	kx		Jam density of cars [veh/km]	450
	k1, k2, kl	Specific densities of cars [veh/km]	79, 214, 100
	w		Congested wave speed [km/h]	18
	n		Number of lanes per link [lanes]	3
	h		Bus time--headway [h/bus]	--
	ρt		Maximal occupancies of bus [pax/bus]	40
	nbus		Number of bus in operation [bus]	--
	L		Length of the transit system [km]	10
	vt		Average speed of the transit system [km/h]	--
	ut		Free--flow speed of the transit system [km/h]	36
	P		Total flow of the system [pax/h]	--
	Fc		Flow of passengers using cars [pax/h]	--
	Ft		Flow of passengers using transit [pax/h]	--
	K		Total density of the system [pax/km]	--
	Kc		Density of passengers using cars [pax/km]	--
	Kt		Density of passengers using transit [pax/km]	--
	τ		Mode choice ratio [%]	--
	α		Ratio of the network dedicated to transit [%]	--
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	152	2.2. The p-MFD
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3.1. System optimum

The Wardrop's first principle[START_REF] Wardrop | Some theoretical aspects of road traffic research[END_REF] can be adapted to our multimodal case.

Up of the calculated p--MFDs corresponds to the set of the optimal situations:
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