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ABSTRACT

This paper aims to extend the concept of Macroscopic Fundamental Diagram (MFD) to
combine different transportation modes. Especially, we propose a unified relationship
that accounts for cars and buses because the classical MFD is not sufficient to capture
the traffic flow interactions of a multimodal traffic. The concept of passenger
macroscopic fundamental diagram (p-MFD) is introduced. With this new relationship,
the efficiency of the global transport system, i.e. behaviors of cars and buses, can be
assessed. Intuitively, the p-MFD shape strongly depends on the mode ratio. Thus, user
equilibrium and system optimum are studied and compared. Finally, this relationship is
used to design bus system characteristics and to identify the optimal domains of

applications for different transit strategies.
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1. INTRODUCTION

Cities and transit agencies worldwide have to face an accelerating demand for mobility
as people continue to flock to urban areas seeking access to greater economic,
educational, and social opportunities. This poses a challenge to optimally distribute city
space to multiple transportation modes. To this end, management strategies have to be
dynamic, multiscale, and simultaneously applied to individual cars and other

transportation modes (such as public transport).

The core element of such management strategies is a global evaluation function of the
transportation network. This function must quantify the performance of the whole
system that can combine different transportation modes (individual cars, buses, trams,
trucks, etc.). This is thus a challenge to capture the traffic dynamics of a complex
network mixing these modes. It turns out that cities are complex and intricate systems.
Therefore, they are impossible to model in perfect detail. The approach taken in this
paper is to look at the transportation network at a macroscopic level. It is important to
notice that the approach of the paper is very idealized. Indeed, the challenge here is to
propose a modeling framework as general as possible. Then, it could be applied to a
relatively wide range of situations and refined based on the characteristics of these

situations.

To this end, we resort to an aggregated and parsimonious model to evaluate the
transportation network performance. Such a model provides a better understanding and
valuable insights on arterial traffic dynamics. The macroscopic fundamental diagram
(MFD) can play this role. Indeed, on their seminal works (Godfrey, 1969; Mahmassani et
al, 1984; Daganzo, 2007; Geroliminis and Daganzo, 2008), the authors pointed out a
major insight: the MFD is an intrinsic property of the network itself and remains
invariant when demand changes. The MFD is thus a reliable tool for traffic agencies to
manage and evaluate solutions to improve mobility. (Haddad and Geroliminis, 2012;
Keyvan-Ekbatani et al., 2012; Aboudoulas and Geroliminis, 2013; De Jong et al,, 2013;
Chiabaut, 2014; Haddad and Shraiber, 2014; Ramezani et al., 2015) furnished a very
good example of how MFDs can be used to model and quantify ex ante effects of control.

Moreover, recent works (Boyaci and Geroliminis, 2011; Geroliminis and Boyaci, 2012;
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Leclercq and Geroliminis, 2013; Xie et al., 2013) propose an accurate method to
analytically estimate the MFD for an arterial based on its characteristics (number of
lanes, traffic signal parameters, etc.) and the characteristics of the public transport

system (Chiabaut et al., 2014).

However, one of the remaining lacks of the MFD is that it only expresses the
performance of the system as far as vehicles are concerned. Consequently, the average
number of passengers present in each transport mode is not taken into account. Eichler
and Daganzo (2006) presented the first instance trying to overcome this drawback.
They seek to calculate average the pace for each mode. However, the number of
passengers is roughly accounted for and the analysis stays very qualitative according to
the authors themselves. Thus we propose in the paper to extend the concept of MFD in
order to take into account the number of passengers using the transportation network
and not only the number of vehicles. This new relationship is called the passenger
Macroscopic Fundamental Diagram (p-MFD). Zheng and Geroliminis (2013), and
Chiabaut et al. (2014) have simultaneously introduced the first principles of this

relationship.

The mode choice of travelers should be considered as well. It is intuitive that the effect
of the ratio of people using public transport rather than individual cars will impact the
performance of the transportation network. The p-MFD makes it possible to address this
issue and to understand how traffic conditions are modified by the mode choice of
passengers. Different equilibriums can be investigated, notably user and system
optimums. The ultimate goal of research towards this direction is to develop a strategy

that makes people switch from a mode to the other.

The paper is organized as follow: Section 2 introduces the notion of passenger
macroscopic fundamental diagram (p-MFD). Section 3 deeply investigates the impacts of
modal choice and makes it possible to analytically compare user and system optimums.
Section 4 focuses on the application of the p-MFD to network transportation services

optimization. Finally, Section 5 proposes a discussion.
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2. PASSENGER FUNDAMENTAL DIAGRAM (P-MFD)

In this first section, we extend the definition of MFD to propose a unified relationship
that combines all the modes of an urban transportation network: cars, buses, metro, etc.
The idea is to relate the number of passengers within the network to space-mean speed
of these passengers according to a specific mode choice model. For the sake of
simplicity, we first focus on two modes only: individual cars and buses. It is intuitive
that, even in this simplest case, the classical MFD is not sufficient to evaluate the
performance of the whole network because a bus counts for a unique vehicle. Notice that

the methodology presented hereafter is general and can be extended to multiple modes.

2.1. Case study

As mentioned earlier, recent works suggest that there is a consistent relationship
between the average network vehicle density and average network flow. Such a
relationship is called a MFD. Consequently, we consider in the remainder of the paper an
idealized city. Roads shape a very meshed urban network with signalized intersections
(see Figure 1a). We also assume that the flows are uniformly distributed among origins
and destinations (Leclercq et al.,, 2014). Under this assumption, car traffic dynamics is
well reproduced by a MFD q(k) giving the space-mean flow of cars g.=q(k) [veh/h] on
each link as a function of the space-mean density of the links within the city k [veh/km]
(see Figure 1b). Notice that the MFD can now be easily estimated accounting for the
effect of buses and control strategies (Geroliminis and Boyaci, 2012; Leclercq and
Geroliminis, 2013; Chiabaut et al., 2014). It is also worth noticing that the lower case
letters refer to variables expressed in terms of vehicles whereas the upper case letters
correspond to variables expressed in terms of passengers. We also assume that the
maximal occupancy of a car is p. [pax/veh]. Notice that, for a realistic purpose, we
consider that the maximal occupancy is equal to the observed average occupancy (1.2
pax/veh) rather than the effective maximal occupancy (5 pax/veh). We first assume a
trapezoidal car MFD for the sake of simplicity. This form is convenient to coarsely mimic
the influence of traffic signals. The parameters are the free-flow speed u [km/h], the

critical speed u., the maximal flow capacity qx and the jam density k. The congested
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wave speed is denoted w=u.qx/(u.kx-qx). We assume that all the links are composed of n

lanes (n=2).

(a) 4 [veh/h] (b)

A

0 afk)

>
k, k, k [veh/km]
Figure 1: (a) a meshed urban network and (b) its associated car-MFD

We first consider that the public transport system is only composed of buses that share
the same roads as the car traffic. We also assume that trips of users can always be
realized either by individual car or public transport system. The transit system is
characterized by the bus time-headway h [h] and the maximal speed of the buses u;. We
also assume that the maximal occupancy of a bus is p: [pax/bus] and that the buses are
mixed with car traffic and no lanes are dedicated to them. Moreover, we consider that
the average occupancies of both modes and the number of buses in operation do not
depend on the traffic conditions and the mode choice. It turns out that, for a given time-
headway h the number of buses npus in operation is npus = L/(h.v¢) (Hans et al,, 2014)
where L [km] is the length of the bus lines of the transportation network and v: the
average speed of the transit system. Physically, it corresponds to static timetables.
Finally, Table 1 provides a nomenclature for the different variables and main

parameters utilized in the paper. It also provides the values that have been used to draw

illustrations.

Variable Description Value (if constant)
q Car MFD [veh/h]

qc Flow of cars [veh/h]

ke Density of cars [veh/km]

Pe Average occupancy of cars [pax/veh] 1.2

u Free-flow speed of cars [km/h] 50

Transportation Research Part B: Methodological pre-print 6
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Critical speed of cars [km/h]

Average speed of cars [km/h]

Maximal capacity of cars [veh/h]

Jam density of cars [veh/km]

Specific densities of cars [veh/km]
Congested wave speed [km/h]

Number of lanes per link [lanes]

Bus time-headway [h/bus]

Maximal occupancies of bus [pax/bus]
Number of bus in operation [bus]

Length of the transit system [km]

Average speed of the transit system [km/h]
Free-flow speed of the transit system [km/h]
Total flow of the system [pax/h]

Flow of passengers using cars [pax/h]

Flow of passengers using transit [pax/h]
Total density of the system [pax/km]
Density of passengers using cars [pax/km]
Density of passengers using transit [pax/km]
Mode choice ratio [%]

Ratio of the network dedicated to transit [%]

7.7

4250

450
79,214,100
18

3

40

10

36

Table 1: List of main variables and parameters

2.2. The p-MFD

To introduce the p-MFD, the flow is now expressed in terms of passengers per time
[pax/h]. Let P denote this flow. P is equal to the sum of passengers using cars F; and
passengers using transit system F:. It is worth noticing that F. directly derives from the
car MFD q(k) while F: must be obtained from the characteristics of the transit system.
Moreover, as in the classical definition of the MFD, it is thus really appealing to link the
flow to the average density of passengers in the city K. However, this is not trivial
because K has to be expressed in terms of passengers per space [pax/km]. Moreover, it
turns out that the mode choice of passengers between cars and buses has an impact on

the flow and density. This ratio is denoted 7 and is equal to K./K where K. is the density

of passengers using cars.
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In this section, 7 is considered as static, i.e. constant in time and independent of traffic
conditions. Consequently, 7 is exogenously given. Physically, it corresponds to an
equilibrium situation where day after day the same demand and traffic conditions occur.
Notice that these assumptions are relaxed and studied in the forthcoming section.

Consequently, the total average flow and the total average density are:

P(K) = FC(KC) + Ft(Kt)
K=K, +K, (1)

Where K. and K; are respectively the average density in passengers of cars and buses.

It is thus appealing to link P with K and to correctly determine the function P(K) and
especially its shape. Consider a given density of passengers K. According to the
definition of the mode ratio 7, the density of passenger in cars is K.= 7. K [pax/km]. It is
worth noticing that this density is also equal to the density of cars weighted by the
average occupancy, i.e. kc= K./pcwhere k. is the density expressed in [veh/km]. It makes
it possible to calculate the average flow in terms of passengers: Fc=p.q(k:)= pq(K:/pc)
where q is the car MFD. It comes that the associated average speed of passengers using

cars is ve=qc/ke.

Concerning the transit system, the density of bus passengers is given by K:=(1- 7).K and

cannot exceed p.npus/L the maximal density of the transit system. Consequently, the

' 1-17)K L
associated flow is thus equal to F; = min ((1 = DK, pitpus/ )/h Because we assume

that the bus fleet size npus is constant, i.e. it does depend on traffic conditions, h directly
depends on the average speed of the transit system: h= L/(npus.v:). Consequently, when
the car traffic does not constrain the buses, bus speeds are always equal to the free flow
speed u: and the headway h is not degraded. However, in the case of mixed traffic,

congestion may impact the bus system when the speed of the car v, is lower than the

maximal speed of the bus u: It comes that h = ) where v. is the speed
c

L
/nbus. min (u,

of the cars: ve=q./ke.

Finally, equation (1) can be expressed as:

P(K) = p.q (;—K) +%.min((1 —1)K.L, ptnbus) min(u,v.)  (2)

Transportation Research Part B: Methodological pre-print 8
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Figure 2 presents the results. The thick gray line corresponds to the car MFD whereas
the thin black lines are the different p-MFDs. It is thus appealing to observe the impacts
of the bus systems characteristics on the p-MFD shape. To this end, Figure 2a pinpoints
the sensitivity of the p-MFD to the bus time-headways h. For this application, all the
variables are assumed constant except K (and P) and h that ranges between 3 min and
12 min. It turns out that a maximal capacity can be reached for a specific value. Notice
that the effect of the bus system on the car traffic dynamics is not accounted here, i.e. the
formulation of the car MFD does not depend on the time-headway h. For a given car
MFD, it is thus possible to determine the optimal h to maximize the transportation
system performance. In the same vein, Figure 2b highlights the impacts of t on the p-
MFD shape. Consequently, the only variables that change are K (and P) and t that ranges
between 0.1 and 1. It is not surprising that the performance can also be optimized for a
specific value of 7. It is thus appealing to study in details the impacts of T and to focus on

dynamic 7. This will be investigated in the next section.

() (b)
6000 | e car MFD 6000 s car MFD
h=1 min — =04
5000 h=4 min 5000 =0.55
h=7 min
= h=10 min = =07
S 4000 | - < 4000 f —— =085
=~ =~
& S
a L a L
N 3000 5 3000
2 2
= =
2000 2000
1000 1000
0 : ‘ ' 0 : '
0 500 1000 1500 0 500 1000 1500
Density K [pax/km] Density K [pax/km]

Figure 2: p-MFD for static modal ratio (a) sensitivity to bus time-headway %
and (b) sensitivity to mode ratio t

3. IMPACT OF MODAL CHOICE

Now that we have introduced the concept of p-MFD, this section focuses on the effects of
the mode choice and studies the associated equilibrium of the transportation network.
Notably, system and user optimums are investigated. To this end, we now consider that
the mode choice is based on the utility of the mode. The utility is expressed as the travel

cost of using that mode at the beginning of the trip. The travel cost of the whole route

Transportation Research Part B: Methodological pre-print 9
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consists of travel time for cars and buses. This very naive assumption can be refined

without changing the general methodology presented hereafter.

3.1. System optimum

We first focus on the system optimum. It corresponds to the second principle of
Wardrop. In such an equilibrium situation, the average journey time is minimum, i.e. the
average speed of passengers is maximal. It is worth noticing that the speed is equal to
the ratio of the demand with the density. Consequently, for a given density K, the

associated flow P must satisfy the following equation to maximize the average speed:
K 1 . .
P(K) = max, [pcq (;—C) + Z.mln((l —17)K. L,ptnbus) .min(u,, vc)] (3)

Based on this equation, we are now able to determine the function P for all the possible

traffic conditions, i.e. all the possible values of K.
3.1.1. Free-flow conditions

The free-flow conditions correspond to the situations where the total passenger demand
is satisfied by the system. The p-MFD is directly obtained by solving equation (3). Figure
3a presents the resulting p-MFD in case of a trapezoidal car MFD. It turns out that the
passenger mode allocation 7 is not constant. This is confirmed by Figure 3b that shows
the evolution of T with respect to the passenger density level. Car is the unique mode
until the density reaches the critical density k; (see Figure 1b), i.e. the demand will
exceed the maximal car capacity p.qx. Then passengers have to switch from cars to the
transit system. Note that this corresponds to the optimal situation where passengers are
ready to change mode rather than to degrade the traffic conditions. We do not focus in
the paper on the possible policies to make users change mode. However, incentive or
congestion pricing, traffic information, prescriptive management could be efficient and

innovative solutions.
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Figure 3: (a) free-flow part of the p-MFD for a trapezoidal MFD and (b) evolution of T with K
(c) free-flow part of the p-MFD for a curved MFD and (d) evolution of 7 with K

This method can be applied for any shape of MFD. However, calculations are more
complicated. We now assume that the car MFD can take any concave shape. We consider
here, for the example, a function composed of a parabolic and linear part (see Figure 3c):
Q(k) = ak? + bk for k < k; (4a)
Q(k) = w(k, — k;) otherwise. (4b)
Where, a=-u?/(2.qx), b=u and k;=-(w+b)/(2a). Such a formulation ensures to maintain the
same free-flow speed than the triangular car MFD.
To determine the associated p-MFD in case of SO, equation (3) has to be re-written as:
K(P) = min, (K, + K;) (5)
It is also worth noticing that K. and K; (respectively) can be expressed as a function of F¢
and F; (respectively). Let us consider F, and F; to be the optimal solution of (5) for a
given total density K'. A small increment AF, and AF; of the flows F. and Ft will change

the density value. This change can be approximated by a first order Taylor expansion:
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K(F + AF) = K (FF) + K (F). AF, (6a)

K. (F; + AF,) = K. (F{) + K{(F;).AF, (6b)
Thus, the total variation of density is:

AK = AP (K (F). 55+ K{(F; AFf) 7)
This equation can be simplified because if we consider that buses are not affected by
traffic congestion, thus: K/(F;) = 1/ut because K, = nbus-pt/L, F, = pt/h and ny,, =
L/h. u This is true because we only consider free-flow situations in this section of the

paper. It comes:

— SKe rpey BFc | 1 AR
AK = AP (6FC (F)- ap T u AP) (8)

AK is given by the combination of&andﬂthat minimizes the RHS of equation (8).
This quantity admits a lower bound that is equal to — (F ) when Ke (F ) < o or to —

otherwise. Thus, it appears that when the total flow varies from AP the optimal solution

of (8) is only modified for the car flow 1f— (F)) <— and for the transit flow otherwise.

Consequently, passengers have to shift of mode when — (F )=— to reach SO.

Based on these results, the p-MFDs for SO in free-flow conditions are highlighted in
Figure 3c. The evolution of T with respect to the demand level is slightly different from
the trapezoidal MFD case, see Figure 3d. To obtain the SO solution, car is the unique
mode until a certain car density value that corresponds to k: such as dq(k;)/d0k = uy;
then passengers switch to the transit system until all the buses are full; finally, the

remaining car capacity is used until the system's capacity is reached.

3.1.2. Congested conditions

We now aim to determine the p-MFD when traffic is congested. For cars, the MFD
directly accounts for this capacity reduction. For buses, they are not impacted for small
congestion, i.e. when F.(K;)/K. > u.. However, when F.(K:)/K. < u:, the buses are slowed

down by the queues. Characteristics of the transit system have to be dynamically

modified according to h = L It makes it possible to account for

/nbus. min (U, v.)

congestion in the expression of F.. Because car-MFD expressed in terms of passengers,

Transportation Research Part B: Methodological pre-print 12
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i.e. F, also reproduces congested states, the congested part of the p-MFD can be
determined according to equation (3). It turns out that equation (3) is only a

maximization process that depends on the formulation of F; and F

(a) (b)

h=3 min h=3 min

h=6 min h=6 min
h=9 min

h=9 min
h=12 min

Flow P [pax/h]
Flow P [pax/h]

Density K [pax/km] Density K [pax/km]

Figure 4: Complete p-MFD in mixed traffic for (a) a car trapezoidal MFD
and (b) a car parabolic-linear MFD

Figure 4 presents the associated p-MFD. Figure 4a highlights the influence of the bus
time-headways h for a car trapezoidal MFD, i.e. all variables are constant except h that
ranges between 3 min and 12 min. It is worth noticing that the transformation is always
homothetic because of the linearity of the car MFD shapes. Indeed, for other concave
shapes, Figure 4b shows very different results. It is interesting to notice that a specific
combination of bus time-headways and car MFDs leads to optimal situations. It is thus
appealing to use the p-MFD to determine the optimal bus time-headway for a given

situation. It will be studied in Section 4.

3.2. User optimum

We now aim to assess the effect of the mode assignment equilibrium on the associated
p-MFD. Indeed, we have only focused on the system optimum since the start of this
paper. This assumption is now relaxed to study other modal choice assignment models.

Especially, we focus on the Wardrop’s first principle and the Logit model.

3.2.1. Wardrop’s first principle

Transportation Research Part B: Methodological pre-print 13
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The Wardrop’s first principle (Wardrop, 1952) can be adapted to our multimodal case.
Each user non-cooperatively seeks to minimize his cost of transportation. Consequently,
the speeds in all modes actually used equal between them and are higher than those that
would be experienced by a single traveller on any unused mode. This principle is
referred to as user equilibrium (UE) in the remainder of the paper. Consequently, when
the transportation network satisfies the UE, passengers either use only the car or they

use both modes.

Figure 5a shows the associated p-MFD in the case of car trapezoidal MFD. It turns out
that is still an all-or-nothing situation. Car is the preferred mode until the arterial
becomes congested and the speed of the cars becomes the same as the speed of the
buses. Then, the passenger demand is split in both modes according to a ratio 7. It is also
worth noticing that the difference in terms of flow between the UE and SO is very high
(see SO p-MFD in blue). Moreover, these differences occur in free-flow and lead to a
capacity reduction in case of UE. It means that the performance of the transportation
network can be deeply optimized by managing the demand rather the self-organization
situation. Traffic management strategies must focus on free-flow situations that are

really close to the system capacity.

Figure 5b highlights the p-MFD for a parabolic-linear car MFD. For this specific shape of
car MFD, differences between black and blue lines are smaller but the network
performance can still be increased by changing the equilibrium from user to system
optimum.

(@) (b)

UE

UE

q(k) q(k)

Flow P [pax/h]
Flow P [pax/h]

Density K [pax/km] Density K [pax/km]

Figure 5: Comparison of UE and SO in case of (a) a car triangular MFD (b) a parabolic-linear MFD
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3.2.1. The Logit model

In the vein of Leclercq and Geroliminis (2013), the Logit model can also be easily
adapted to a multimodal traffic. The associated situation is referred to as stochastic user
equilibrium (SUE) in the remainder of the paper. We now assume that the ratio of flows
between cars and buses only depends on the difference in travel times, i.e. speed,

between both modes:

Where 6 is the parameter of the Logit model and L the average trip length.

We have now all the equations to formulate a parametric expression of the flow P for the
arterial with respect to v.. This defines a simple method to calculate the p-MFD for the
Logit model. Figure 6 presents the resulting p-MFD. Notice that all the variables are
constant except 6. Therefore, we have tested several 0 values (from 0.05 to 0.9 with an
increment of 0.05). It turns out that p-MFDs fall between UE and SO. Moreover, UE, SUE
and SO only differ at the network level in free-flow situations when average speed is

comprised between u and u; for trapezoidal MFD and us and u; for curved MFD (us such

SF, o . . .
asj = u,). This is not surprising because in congestion both modes have the same

c

speed. The mode ratio is then constant.

(a) (b)
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UE
SUE

< =

2 2

< < .

K] & 1 -

Y oy (1

z ES jus

2 2 .

= =

Uy
Density K [pax/km] Density K [pax/km]

Figure 6: Comparison of SUE, UE and SO in case of (a) a car trapezoidal MFD
(b) a parabolic-linear MFD
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3.2.2. Equilibriums comparison

Even if rough comparisons between UE and SO are proposed by Figure 5a, it is still
appealing to study these difference in more detail. To this end, we now focus on the
marginal costs of UE and SO. This will give useful insights on the pricing policy that can
be implemented to adapt the costs of each mode and switch the transportation network

from UE to SO.

The marginal cost of a mode defines the increase of the cost of this mode if one more
passenger chooses to use this mode. The marginal cost of mode i is obtained by
differentiating the cost function c;(Kj):

MCi(K;) = ¢;(Kp) + Kici (K;) (10)
Here the cost of a mode is characterized by the average speed, i.e. ci= Fi(Ki)/Ki. Thus, the

derivative ¢’ can be formulated as:

KiF'(K)—F(K;)

(k) =" (1)
Finally, the marginal costs of each mode are equal to:

MC(K,) = F(K) = 7552

MC(K,) = F{(K) = 52 )

With this pricing, SO is reached by letting the system self-organized, i.e. Wardrop’s user
equilibrium. The conditions of SO highlighted in the previous section can be identified. It

turns out that the demand is entirely assigned to the individual vehicle mode until

SF:(K, SF:(K . . . . . . . .
éff{ e — (;I(( 9 It is also worth noticing that dynamic pricing is required to reach system
c t

8Fc(Ke)

c

optimum because changes with K.. Especially, the pricing is lower when traffic

becomes saturated due to the concave shape of F,(K,).

4. APPLICATION TO TRANSPORTATION NETWORK SERVICES OPTIMIZATION

The section aims to use the p-MFD as a powerful tool to compare and design optimal
control strategies. Firstly, we assume that t can depend on the passenger demand, i.e. T
is dynamic. According to this assumption, it makes it possible to compare the upper

envelope of the associated p-MFD. Secondly, p-MFDs are used to investigate how DBLs
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impact the transportation system performance and may be a powerful tool to increase

capacity even in UE case.

4.1. Optimal bus headway

When buses and cars share the same network, buses tend to constrain traffic flow
because of their lower speed. They may act as moving bottleneck that create local
capacity reductions. Intuitively, the occurrence of these reductions increases with the
frequency of the bus system (Xie et al, 2013). Consequently, an acceptable trade-off
between the bus frequency and the impact on the capacity of the car-MFD must be

determined to ensure an efficient performance of the transportation network.

To cope with this issue, the p-MFD is an adapted tool to calculate the optimal bus time-
headway to reach the system optimum. To this end, the car MFD now accounts for the
effects of buses. q(k) is parameterized by the bus system characteristics. Figure 7a
highlights the influence of the bus time-headways on car MFD. As previously mentioned,
an increase of hpus reduces the capacity for cars. To mimic this influence, the maximal

capacity of cars gx now depends on the headway:

s =(n=c"m).qm (13
where hp, is the minimal acceptable headway (here hn,=1min). Notice that we can obtain
more realistic MFD estimates by extending the work of Boyaci and Geroliminis (2011)
and Xie et al. (2013) to the network level. However, this section only aims to introduce

the general methodology to determine optimal bus time-headways.

Car MFDs are now directly related to the value of the bus time-headway h, see dotted
lines in Figure 7a. These lines correspond to h ranged between 1 min and 30 min. Notice
that the number of bus in operation npus changes with h but remains independent to the
traffic conditions for a given h. Moreover, Figure 7a also shows the associated p-MFDs in
case of SO situation. This is clearly the most pertinent case to address for a city or transit
manager. For a given passenger demand, managers seek to maximize the average speed
on the transportation network, i.e. to minimize the average density. The upper envelope

Up of the calculated p-MFDs corresponds to the set of the optimal situations:
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Up(K) = maxg[P(K)] (13)

It ensures that the average speed is always maximal. Figure 7a highlights in red this
upper envelope. Consequently, p-MFD provides the optimal bus time-headway with
regard to the passenger demand. Figure 7b depicts the evolution of the optimal bus
time-headway with the passenger density. It turns out that very high bus frequencies
are required to reach high capacities. Unfortunately, such frequencies are very difficult
to maintain in practice. It is also worth noticing that the assumptions made to account
for the effects of bus in car MFD formulation strongly impacts the results. However, the
methodology proposed here can also be applied for a more realistic car MFD coming

from simulation as in (Chiabaut, 2014).

(a) (b)
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Figure 7: (a) Impact of the bus system on car MFD (b) upper bound of the transportation system

4.2. Comparison of control strategies

After considering only mixed traffic stream, we seek now to incorporate DBL in the
formulation of the p-MFD. The final goal is to compare different traffic management
strategies to improve the transportation network performance. Consequently, we only

consider user equilibrium situations in this section of the paper.
The creation of DBL within the network engenders a capacity reduction for the cars. To

make this phenomenon explicit, consider here that « is the ratio of lanes fully dedicated

to a rapid public transport mode such as buses or trams. As Gonzales and Daganzo
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(2012), we assume that the car MFD is homogenously reduced of « times its original

formulation:

qppL (k) = aq(k)  (14)

As previously mentioned, the works of (Xie et al, 2013) can be easily adapted to
estimate a more accurate MFD. Because these considerations are out of the scope of the
paper, the maximal capacity for cars is now equal to a.qx and the critical speed uc

remains constant for both cases of trapezoidal and curved car MFD.

We can theoretically segregate the public transport system into two parts: (i) a rapid
transit system that can use the DBL network and (ii) the remainder of the fleet. Notice
that the fleet size is equal for both studied cases. To mimic the effects of DBL on the
transit system, we consider that the average speed of vehicles (buses or trams) using the
DBL is increased. From a macroscopic lens, they have an average speed uj > u,. The

fleet of the buses that cannot use the DBLs keeps an average speed equal to u:.

We apply equation (3) to determine the associated p-MFD in the case of UE. Figure 8
presents the results. Notice that the fleet size is assumed constant and the only changing
variables are K (and P) and the a ratio that ranges between 0.5 and 1. Figure 8a
highlights the main difference between DBL and mixed cases («a is equal to 0.8). It is not
surprising to observe that rapid system is competitive before the remainder of the
transit system because of their higher average speed. Thus individual car is the only
used mode until the speed is reduced to the average speed of rapid system u;. The
remaining of the bus fleet becomes advantageous when the situation is enough
congested, see the DBL optimal area in Figure 8a. Notice that the switching traffic
conditions are directly given by the speed of the different modes. This process can be
extended to any number of modes. It is also worth noticing that, even in a very
congested situation, the flow of the p-MFD associated to the DBL case is never null.

Indeed, we have assumed that the DBLs are never blocked by traffic congestion.
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Figure 8: (a) Impact of DBL creation in case of UE and optimal domains of application for (b) a car
trapezoidal MFD (c) a parabolic-linear MFD

Finally, we can identify the optimal domains of application in case of UE. As previously
mentioned, optimal domains are determined by identifying solutions that maximize the
flow for a given density, i.e. maximize the average speed. The red curves depict the
upper bound of p-MFD calculated for a-values comprised between 0.5 and 1. In the
simplest case of trapezoidal car-MFD, Figure 8b highlights that the creation of DBLs can
increase the capacity in free-flow conditions. It is also worth noticing that p-MFD for
DBL case never reached a null-flow in congested situations. Indeed, DBL ensures that the
bus system can still operate even in very congested states. Similar observations can be
formulated in the case of curved-MFD, see Figure 8c. It turns out that DBL can be an
optimal strategy in case of UE. This is very promising because global transportation

network performance can be increased by promoting public transport even in the case

of UE.
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5. CONCLUSION

This paper developed tools to analytically assess the performance of a multimodal
transportation network. To this end, the paper extends the MFD definition to account for
the average number of passengers in each mode. The objective is to obtain a unique
function to determine the domains of relevance of different transit strategies, where the

system cost is minimized.

First analytical considerations introduce the concept of p-MFD and study its sensitivity
to the bus system characteristics in case of a static mode choice. Then, the assumption is
relaxed to unveil the impacts of the mode choice on the transportation network
performance. Consequently, the user equilibrium case can be compared to the system

optimum situation.

This theoretical canvas can then be used to cross compare different transit strategies
and to design the optimal bus system characteristics. Especially, the paper focuses on
determining the more efficient bus time headway in case of mixed traffic. Then, the
study is devoted to the introduction of DBL. The p-MFD permits to determine the

optimal domains of application of DBL.

We acknowledge that the approach proposed in the paper is highly conceptual and
applied to a very idealized network. However, such an approach makes it possible to
provide a general modeling framework that can then be adapted to a large range of
situations. Nonetheless, this idealized analysis provides insights into how to assess the
global performance of a multimodal transportation network and how to compare

different traffic management strategies.

Finally, the results of this paper can be generalized for any design of the network. One of
the next extensions is to deal with a spatial distribution of traffic conditions on the
network. Indeed, the assumption of uniform distribution of flows can be relaxed
allowing for heterogeneous OD demands and mode choice ratio. Moreover, the work can
be extended to account for the feedback on the multimodal demand. Indeed, a fixed

demand has been considered in the paper but traffic conditions may induce less or more
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demand that have to be accounted for when calculating the p-MFD. More realistic car
MFD formulation can also be considered by resorting to simulation as in (Chiabaut et al,,
2014) or more sophisticated estimation method (Hans et al., 2014a). Finally, a last step
will be to estimate the p-MFD from field data. This task clearly requires very detailed
data (passenger counts, vehicle occupancies, OD matrix, etc.). Urban mobility simulation
software may provide synthetic but insightful measurements to estimate more realistic

p-MFD.
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