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Abstract

In this report we show the empirical application of our socio-finance model introduced in Andersen,

Vrontos, Dellaportas and Galam (2014).
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1 The Socio-Finance model

In the following we remind the reader of the definition of our socio-financial model Andersen, Vrontos,

Dellaportas and Galam (2014).

Consider a population of market participants, shown schematically as circles in Figure 1A. We will

proceed as in the so-called Galam model of opinion formation (Galam, 2005, 2012, and Biondi, Gian-

noccolo and Galam, 2012) and for simplicity imagine that people have just two different opinions on the

market, which we can characterize as either ‘bullish’ (black circles) or ‘bearish’ (white circles). Letting

B(t) denote the proportion of bullishness in a population at time t, the proportion of bearishness is then

1−B(t).

Insert Figure 1 about here

Figure 1A represents the opinions of the participants at the beginning of a given day. During the day

people meet in random subgroups of different sizes, as illustrated by the different boxes in Figure 1B,

to update their view of the market. Take, for example, the leftmost box in Figure 1B with six persons,

two bullish, four bearish, who we can imagine are sitting around a table, or having a conference call,

discussing the latest market developments. The outcome of the discussions for the different groups are

illustrated in Figure 1C. For simplicity we have illustrated the case where a majority opinion in a given

subgroup manages to polarize the opinion of the group by changing the opinion of those who had an

opinion belonging to the minority. If we take the afore mentioned group of six persons we can see that

after discussing, because of the majority polarizing rule, they have all become bearish. More realistically,

we will in the following instead assume that is a certain probability for a majority opinion to prevail,

and that even under certain conditions a minority could persuade a part of the majority to change their

opinion.

For a given group of size k with j agents having a bullish opinion and k − j a bearish opinion, we
let mk,j denote the transition probability for all (k) members to adopt the bullish opinion as a result of

their meeting. After one update taking into account communications in all groups of size k with j bullish

agents, the new probability of finding an agent with a bullish view in the population can therefore be

written:

B(t+ 1) = mk,j(t)C
k
jB(t)

j [1−B(t)]k−j (1)

where

Ckj ≡
k!

j!(k − j)! (2)

are the binomial coefficients. Notice that the transition probabilities mk,j depend on time, since we

assume that they change as the market performance changes (this point will be explained further below).

Taking the sum over different groups of different sizes and different composition of bullishness within

each group (see Figure 1B) one obtains a general term, B(t + 1), for the bullishness in a population at

time t + 1 due to the outcome of meetings of groups with different sizes and different composition of
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bullishness:

B(t+ 1) =
L∑

k=1

ak

k∑

j=0

mk,j(t)C
k
jB(t)

j [1−B(t)]k−j , (3)

with
L∑

k=1

ak = 1, ak ≡
1

L
,

with L denoting the size of the largest group and ak denoting the weight of the group of size k. The

link between communication and its impact on the markets can then be taken into account by assuming

that the price return r(t) changes whenever there is a change in the bullishness. The idea is that the

bullishness itself is not the relevant factor determining how prices will change. Those feeling bullish

would naturally already hold long positions on the market. Rather, when people change their opinion,

say becoming more negative about the market, or less bullish, this will increase their tendency to sell.

The fact that the absolute sentiment can act as a contrarian idicator (and the change in sentiment as

an indicator) for future market returns is well known among practicioners1 . Assuming the return to be

proportional to the percentage change in bullishness, RB(t), as well as economic news, η(t), the return

r(t) is given by:

r(t) =
1

λ
RB(t) + η(t), λ > 0 (4)

with RB(t) = B(t)−B(t−1)
B(t−1) the change or ‘return’ of the bullishness. The variable η(t) = r(t) − 1

λRB(t)

is assumed to be either Gaussian or Student-t distributed with mean zero and a standard deviation that

varies as a function of time depending on changes in sentiment. We will assume that the market will

react to fundamental economic news represented by η but that the amplitude of the reaction depends on

changes in the sentiment RB(t) :

σ(t) = σ0 exp

[
1

β
|RB(t)|

]
, σ0 > 0, β > 0. (5)

The influence of the financial market on decision-making can now be included in a natural way by

letting the strength of persuasion depend on how the market has performed since the last meeting of the

market participants. The idea is that, if for example the market had a dramatic downturn at the close

yesterday, then in meetings the next morning, those with a bearish view will be more likely to convince

even a bullish majority of their point of view. In the formal description below, this is taken into account

by letting the transition probabilities for a change of opinion, i.e., the probabilities of transitions like

Figure 1.B → Figure 1.C, depend on the market return over the last period:

mk,j(t) = mk,j(t− 1) exp
[
1

α
r(t)

]
; mk,j(t = 0) ≡ j/k, α > 0 (6)

where α defines the scale for which a given return r(t) impacts the transition probabilities. The condition

mk,j(t = 0) ≡ j/k describes the initially unbiased case where in average no market participant changes
opinion.

1The Hulbert Stock Newsletter Sentiment Index (HSNSI) is used among practitioners as a contrarian signal for future

stock returns, see also http://www.cxoadvisory.com/3265/sentiment-indicators/mark-hulbert/.
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2 Estimation and Inference

In this section, we present the inferential method adopted to estimate the parameters of the socio-finance

model. The method on which estimation will be based ismaximum likelihood. Let θ denotes the parameter

vector to be estimated and r = (r(1), r(2), ..., r(T )) is the observed sample of size T . The approach will

be to calculate the joint probability density

fR(1),R(2),...,R(T ) (r(1), r(2), ..., r(T )|θ) (7)

which can be viewed as the probability of having observed this particular sample2 . Then, the maximum

likelihood estimate (MLE) of θ is the vector θ̂ that maximizes the joint probability density (7), that

is, the vector for which this sample is most likely to have been observed. To find maximum likelihood

estimates, first we will have to calculate the likelihood function and then to find values of θ that maximize

this function. In this section, we will present analytically the calculation of the likelihood function under

the assumption of a normal and a Student-t distribution for the error process η(t), while maximization

of this function will be based on numerical optimization algorithms3 .

The likelihood function i.e. the joint probability density of the complete sample r(1), r(2), ..., r(T ) for

the proposed socio-finance model can be written as

f [r|B(0),mk,j(0),θ] = f [r(T )|r(1), ..., r(T − 1), B(0),mk,j(0),θ] · f [r(1), ..., r(T − 1)|B(0),mk,j(0),θ]

= f [r(T )|r(1), ..., r(T − 1), B(0),mk,j(0),θ] ·

·f [r(T − 1)|r(1), ..., r(T − 2), B(0),mk,j(0),θ] · f [r(1), ..., r(T − 2)|B(0),mk,j(0),θ]

= ... = f [r(1)|B(0),mk,j(0),θ] ·
T∏

t=2

f [r(t)|Φ(t− 1) , B(0),mk,j(0),θ] ,

where Φ(t− 1) is the information set up to time t− 1.
Based on this property, that the joint probability can be written as a product of conditional prob-

abilities, we can calculate the likelihood function as follows. First, under the normality assumption for

the error process η(t). Consider the probability distribution of r(1), the first observation in the sample.

Since η(t) is Gaussian, r(1) is also Gaussian and the density of the first observation, conditional on B(0)

and mk,j(0) = j/k, takes the form

f [r(1)|B(0),mk,j(0),θN ] =
1√

2π
√
σ(1)2

exp

{
− 1

2σ(1)2

[
r(1)− 1

λ
RB(1)

]2}
,

2With capital letters, R(t), we denote the random variable of the return at time t, while with small letters, r(t), we

denote a particular value that the random variable takes at time t.
3Note that maximum likelihood estimates for dynamic non-linear models that take into account the heteroscedastic

characteristics of financial series are usually obtained by using numerical optimization algorithms such as the scoring

algorithm, the method proposed by Mak (1993) and developed further by Mak, Wong and Li (1997), the Berndt, Hall, Hall

and Hausman (1974) algorithm, the Broyden, Fletcher, Golfarb and Shanno (BFGS) algorithm (Golfarb, 1970 and Shanno,

1970) which is a quasi-Newton method, or by using mixed-gradient algorithms to accelerate convergence (see, for example,

Fiorentini, Calzolari, and Panattoni, 1996, Vrontos, Dellaportas and Politis, 2003, Diamantopoulos and Vrontos (2010),

Vrontos (2013).
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where θN= (λ, σ0, β, α)
′ denotes the parameter vector to be estimated under the normality assumption.

Next, conditioning on r(1), the density of the second observation r(2) is

f [r(2)|r(1), B(0),mk,j(0),θN ] =
1√

2π
√
σ(2)2

exp

{
− 1

2σ(2)2

[
r(2)− 1

λ
RB(2)

]2}
.

Proceeding in this fashion, the conditional density of the t− th observation can be calculated as

f [r(t)|r(t− 1), ..., r(1), B(0),mk,j(0),θN ] =
1√

2π
√
σ(t)2

exp

{
− 1

2σ(t)2

[
r(t)− 1

λ
RB(t)

]2}
.

Therefore, the likelihood of the complete sample can be written as

f [r|B(0),mk,j(0),θN ] = (2π)
−
T

2

T∏

t=1

[
σ(t)2

]−1/2
exp

{
−1
2

T∑

t=1

1

σ(t)2

[
r(t)− 1

λ
RB(t)

]2}
, (8)

The log-likelihood function, denoted LN (r|θN ), can be written as

LN (r|θN ) = −
T

2
ln (2π)− 1

2

T∑

t=1

[
lnσ(t)2

]
− 1
2

T∑

t=1

1

σ(t)2

[
r(t)− 1

λ
RB(t)

]2
. (9)

Clearly, the vector of θN that maximizes the conditional likelihood (8) is identical to the vector that

maximizes the conditional log-likelihood (9).

Although the normal distribution is the most commonly used in applications, there is empirical ev-

idence that the distribution of financial time series has usually fat tails, even after taking into account

the volatility clustering phenomenon. In other words, the normality assumption of standardised resid-

uals of estimated financial models is usually rejected in most financial applications. A solution to this

problem is to specify a distribution that accounts for fat tails and deviations from normality such as the

Student-t (see, for example, Bollerslev, 1987) or a Generalized Error distribution (Nelson, 1991). Under

the Student-t distribution with v degrees of freedom for the error process η(t), the likelihood for the

socio-finance model for the complete sample can be written as

fST [r|B(0),mk,j(0),θST ] =

[
Γ

(
v + 1

2

)]T [
Γ
(v
2

)]−T
[π (v − 2)]−T/2 (10)

T∏

t=1

[
σ(t)2

]−1/2 T∏

t=1

[
1 +

(
r(t)− 1

λRB(t)
)2

(v − 2)σ(t)2

]−(v+1)/2
,

where Γ (.) is the gamma function. The log-likelihood can be written as

LST (r|θST ) = T ln Γ

(
v + 1

2

)
− T ln Γ

(v
2

)
− T
2
ln [π (v − 2)] (11)

−1
2

T∑

t=1

[
lnσ(t)2

]
− v + 1

2

T∑

t=1

ln

[
1 +

(
r(t)− 1

λRB(t)
)2

(v − 2)σ(t)2

]
,

where θST= (λ, σ0, β, α, v)
′ denotes the parameter vector to be estimated under the Student-t distrib-

ution.

In order to avoid the positivity restrictions for the parameters, λ > 0, σ0 > 0, β > 0 and α > 0

we use the logarithmic transformation, so that λ∗ = ln (λ), σ∗0 = ln
(
σ20
)
, β∗ = ln (β) and α∗ = ln (α).
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For the degrees of freedom parameter v we use the transformation v∗ = ln (v − 2). Thus the parameter
vector to estimate is θ∗N= (λ

∗, σ∗0, β
∗, α∗)′ under conditional normality, and θ∗ST= (λ

∗, σ∗0, β
∗, α∗,

v∗)′ under the Student-t error distribution. The technique of reparametrizing the model parameters

is very useful in order to ensure that a numerical optimization algorithm always provides parameter

values within certain specified boundaries. An attractive feature of the method of maximum likelihood

estimation is its invariance to one-to-one transformations of the parameters of the log-likelihood. That

is, the maximum likelihood solution is invariant under transformation of parameters. Finally, due to

the highly non-linear nature of the proposed socio-finance model, maximization of the conditional log-

likelihood with respect to the model parameters is achieved by using numerical optimization algorithms.

In this study, we maximize the log-likelihood function by applying the optimization functions ‘fminsearch’

and/or ‘fminunc’ of Matlab.

3 Simulation Study

In this section we conduct a simulation study concerning the proposed socio-finance model. The aim

of this study is to assess the performance of the inferential method, based on maximum likelihood, to

estimate the model parameters and the proportion of bullishness. We conduct a series of simulation

experiments considering different sample sizes of time series, i.e. T = 2000 and T = 5000 data, and

various parameter values. Different starting values of the model parameters are used to ensure that the

maximization/minimization algorithm converges to the true simulated parameters. We simulate data

from the socio-finance model (1-6) under the normality assumption for the error process. However,

we estimate the model parameters using both normal and Student-t errors. Under the assumption of

Student-t errors, we expect that the estimated parameter values will be close to the true simulated values,

while the estimated degrees of freedom will be large enough, since the data are simulated from a normal

distribution.

Insert Table 1 - Table 6 about here

We present three simulation experiments; in the first two simulation scenarios we simulate T = 2000

and T = 5000 data points, respectively, using λ = 1.1, σ0 = 0.01 , β = 0.001 and a = 400 as

the ‘true’ parameter values. In the third simulation scenario we simulate T = 2000 data points using

λ = 2.8, σ0 = 0.02 , β = 0.04 and a = 2.65 as the ‘true’ parameter values. Table 1 and Table 2,

together with Table 3 and Table 4 present the estimation results for the first and second simulation

scenario (T = 2000 and T = 5000) under the normal (Table 1 and Table 3) and the Student-t (Table

2 and Table 4) distribution for the error process, respectively, while Table 5 and Table 6 present the

corresponding estimates for the third simulation (T = 2000). The first column of Table 1 - Table 6 shows

the ‘true’ parameter values θ = (λ, σ0, β, α)
′ used to simulate the data, while column 2 presents the

‘true’ transformed parameter values θ∗ = (λ∗, σ∗0, β
∗, α∗)′. The maximum likelihood estimates θ̂∗ of the

transformed parameters θ∗ and their standard errors are presented in column 3 and 4, respectively, while
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in column 5 are given the corresponding estimated parameter values θ̂. Finally, in the last column we

present the value of the gradient of the log-likelihood function evaluated at the parameter estimates θ̂∗.

Different starting values for the model parameters have been used in the maximum likelihood estimation

procedure (see Panel A-B). The results presented in Tables 1-6 indicate that the maximum likelihood

inferential procedure provide estimates that are close to the ‘true’ parameter values, taking into account

the estimates and the corresponding standard errors. The results provide evidence of convergence of the

maximization/minimization algorithm since the estimates found by using different starting values are

very similar, and the value of the gradient of the log-likelihood evaluated at the parameter estimates

is near zero. Similar results are obtained when we simulate T = 5000 data points. Inspection of these

results indicates that the maximization algorithm converges to almost identical parameter estimates using

different starting values and their corresponding standard errors are smaller than those obtained by the

simulated data based on T=2000 data points. This seems reasonable since the sample size increases.

Insert Figure 2-Figure 7 about here

Next, we examine whether the proposed algorithm can estimate adequately the proportion of bullish-

ness across time and the time-varying conditional volatilities. To this end, in Figure 2 - Figure 7, we

present the simulated prices P (t), and the corresponding returns r(t), as well as the simulated bullishness

proportions B(t) across time, for T = 2000 and T = 5000 data point for the three simulation experiments,

respectively. We also present the estimated bullishness proportions B̂(t) and the estimated conditional

volatilities σ̂(t) which are based on the parameter estimates of the socio-finance model. Looking at

Figures 2-7(b) and Figure 2-7(d) which illustrate the ‘true’ and the estimated bullishness proportions,

respectively, we can observe that these proportions are almost identical. Thus, the proposed inferential

procedure manages to identify and detect correctly the proportions of a bullish view on the simulated

prices. Finally, looking at Figure 2-7(c) and Figure 2-7(e), which illustrate the simulated returns and the

estimated conditional volatilities, respectively, we can see that periods of lower or higher deviation in the

return series can be detected by the socio-finance volatility estimates. Therefore, the proposed model is

able to capture the volatility clustering phenomenon of the return series.

4 Application to the European Union Bank index

In this section we present an empirical application of the proposed socio-finance model to the European

Union Banks five-year index. The idea is to consider a very volatile market to study abrupt and large

changes in market performance and map the corresponding evolution in sentiments. The data consists of

1505 daily prices over the 1/1/2008-10/7/2013 period. We compute and analyse the returns of the EU

banks 5-year index. Figure 8(b) presents the EU bank return series, which shows that the volatility of

the return series changes over time. There is also high kurtosis (14.7) in the return series. Thus, there is

evidence for fat tails and volatility clustering phenomenon in the EU bank index return series, that the

socio-finance model is inveted to deal with.
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Insert Figure 8 about here

First, we apply the proposed socio-finance model under the assumption of the conditional normal

distribution for the error process η(t) to the EU banks returns. Table 7 (Panel A) presents the maximum

likelihood estimates of the socio-finance model under normal errors. Specifically Table 7 presents the

estimates θ̂∗ of the transformed parameters θ∗ and their standard errors (columns 1 and 2, respectively),

the corresponding estimated parameter values θ̂ (column 3), and the value of the gradient of the log-

likelihood function evaluated at the parameter estimates θ̂∗ (last column). Looking at the parameter

estimates of Table 7 (Panel A) we observe that the transformed parameter λ̂
∗

in the mean equation,

the transformed parameters σ∗0 and β̂
∗

in the variance equation, and parameter α∗ in the transition

probabilities equation, are all statistically significant. These results show that the change in the bullishness

proportion is able to explain the price return r(t) as well as the time-varying volatility of the return series.

Insert Table 7 about here

Next, we estimate the proportion of bullishness across time and the time-varying conditional volatil-

ities under the assumption of conditional normal distribution for the error process η(t). In Figure 8, we

present the EUBanks prices P (t), and the corresponding returns r(t), as well as the estimated bullishness

proportions B̂(t) and the estimated conditional volatilities σ̂(t), which are based on the parameter esti-

mates of the socio-finance model. Comparing the EUBanks price evolution Figure 8(a) and the estimated

bullishness proportions Figure 8(c), one observes that an increase (decrease) on the price of EUBanks

index can be affected by the estimated proportions of a bullish view, which reflects the opinion of different

groups about the movement of the index. Finally, comparing the observed volatility of EUBanks index

Figure 8(b) and the estimated volatility from the model Figure 8(d), one notices that periods of lower or

higher deviation in the return series is indeed detected by volatility estimates of the socio-finance model.

Therefore, the proposed model is able to capture the volatility clustering phenomenon of the return series.

Having estimated the model parameters, one can examine the appropriateness of the assumption of

conditional normality. To this end, we apply the Jarque-Bera and the Kolmogorov test of normality

to the standardized residuals ( η̂(t)σ̂(t) ). These tests show that the null hypothesis of normality is rejected

(Jarque − Bera p − value = 0.004, Kolmogorov p − value = 0.000), thus the standardised residual

series exhibit deviations from normality. Therefore, the normality assumption is violated4 and it is worth

estimating a socio-finance model based on the Student-t error distribution.

Insert Figure 9 about here

4Due to the heteroskedastic characteristics of the EUBanks return series, we have also estimated the well-known

GARCH(1,1) model with normal errors to the EUBanks return series and examine the appropriateness of the assump-

tion of conditional normality under this alternative model specification. The corresponding p-values of the Jarque-Bera and

the Kolmogorov test of normality to the standardized residuals of the GARCH(1,1) model was 0.001 and 0.000, respectively,

indicating that the GARCH(1,1) model with normal errors can not capture the fat tails of the return’s distribution.
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Next, we apply the proposed socio-finance model based on Student-t errors. Table 7 (Panel B)

presents the estimates θ̂∗ of the transformed parameters θ∗ and their standard errors (columns 1 and 2,

respectively), the corresponding estimated parameter values θ̂ (column 3), and the value of the gradient

of the log-likelihood function evaluated at the parameter estimates θ̂∗ (last column). Looking at the

parameter estimates of Table 7 (Panel B) we observe that the parameter λ̂
∗

in the mean equation, the

parameters σ∗0 and β̂
∗

in the variance equation, the parameter α∗ in the transition probabilities equation,

and the degrees of freedom v∗, are all statistically significant. Under the Student-t model, the degrees

of freedom parameter, v, is estimated to be 2.312, indicating heavy tails. Applying the Kolmogorov test

of a Student-t distribution to the standardized residuals ( η̂(t)σ̂(t) ), the null hypothesis of Student-t errors is

not rejected (Kolmogorov p−value = 0.272), indicating that the Student-t socio-finance model provides
an appropriate modelling approach than the corresponding normal model5 .

Insert Figure 10 about here

We also estimate the proportion of bullishness across time and the time-varying conditional volatilities

under the assumption of conditional Student-t distribution for the error process η(t). In Figure 9, we

present the EUBanks prices P (t), and the corresponding returns r(t), as well as the estimated bullish-

ness proportions B̂(t) and the estimated conditional volatilities σ̂(t), which are based on the parameter

estimates of the Student-t socio-finance model. Looking at Figure 9(a) and 9(c) we observe that the

bullishness proportion explain the prices of the index, and looking at Figure 9(b) and 9(d) we can see

that periods of lower or higher deviation in the return series can be detected by the socio-finance volatil-

ity estimates, i.e. we arrive at similar conclusions with those taken by the normal socio-finance model.

However, by comparing the volatilities taken by the socio-finance normal model [see Figure 8(d)], and

those taken by the socio-finance Student-t model [Figure 9(d)] we observe that the estimated volatilities

taken by the Student-t socio-finance model are higher than the coresponding estimated volatilities of the

socio-finance normal model. This result can explain the better fit of the Student-t model, which seems

to give a larger volatility signal when periods of higher deviation in the return series is coming. Similar

conclusion can be drawn by comparing the estimated volatilities of Normal-GARCH [Figure 10(c)], and

Student-t GARCH [Figure 10(d)] with those of the Student-t socio-finance model [Figure 9(d)]. This

explains the inadequacy of GARCH-type models in this empirical application.

To conclude, the above findings show that the change in the bullishness proportion is able to explain

the price return r(t) as well as the time-varying volatility of the return series, while the assumption of

a Student-t error distribution is an appropriate choice to capture the fat tail property of the EUBanks

return series. Therefore, the proposed socio-finance model with Student-t errors provides a reasonable

modelling approach for the EUBanks return series.

5We have also estimated the GARCH(1,1) model with Student-t errors to the EUBanks return series as an alternative

modelling approach. The corresponding p-value of the Kolmogorov test of a Student-t distribution to the standardized

residuals of the GARCH(1,1) model was 0.028, indicating that the GARCH(1,1) model with Student-t errors can not

capture adequately the tails of the return’s distribution.
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5 Discussion

In this paper we have proposed a socio-finance Student-t model for the analysis of financial return series.

The aim of our analysis was, first, to develop a new class of models that might be usefull for the empirical

analysis of financial series, and, second, to apply the model to real data in order to show the benefits

of this modelling approach. Furthermore, we have proposed a classical approach to inference based on

maximum likelihood to estimate the model parameters.

The proposed modelling approach is particularly useful in cases where we believe that communication

of different groups of the population about the movement of the market can affect the returns and/or the

volatility of the financial assets as well as in cases where the distribution of returns is characterised by

large kurtosis, fat tails, or in general deviates from normality. In those cases, the normality assumption

may not be adequate, while the socio-finance Student-t modelling approach provides more reliable results.

We have applied our proposed approach to the EUBanks index and found evidence that the proposed

model can explain the movement of the prices of the index and its time-varying volatility via the change

in bullishness proportion.

We believe that the proposed socio-finance model can be used as an alternative reliable modelling

approach to empirical applications. Clearly, many interesting questions remain open and various topics

for future research arise in the context of this new class of models.
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Table 1: Maximum likelihood estimation results of the first simulation experiment (T = 2000) using

normal errors.

Panel A: Starting values λ̂
∗

=-0.693, σ̂∗0=-6.438, β̂
∗

=-3.507, α̂∗=5.704

True initial True trans. MLEs trans. StdErr MLEs Gradient

λ 1.1 λ∗ 0.095 λ̂
∗

0.344 1.346 λ̂ 1.4103 -0.0008

σ0 0.01 σ∗0 -9.210 σ̂∗0 -9.119 0.051 σ̂0 0.0105 0.0004

β 0.001 β∗ -6.908 β̂
∗

-6.845 0.349 β̂ 0.0011 -0.0002

α 400 α∗ 5.991 α̂∗ 5.995 0.371 α̂ 401.33 0.0006

Panel B: Starting values λ̂
∗

=-2.996, σ̂∗0=-13.816, β̂
∗

=-6.908, α̂∗=6.215

True initial True trans. MLEs trans. StdErr MLEs Gradient

λ 1.1 λ∗ 0.095 λ̂
∗

0.321 1.290 λ̂ 1.3780 -0.0145

σ0 0.01 σ∗0 -9.210 σ̂∗0 -9.119 0.051 σ̂0 0.0105 0.1039

β 0.001 β∗ -6.908 β̂
∗

-6.844 0.348 β̂ 0.0011 -0.0109

α 400 α∗ 5.991 α̂∗ 5.993 0.370 α̂ 400.79 -0.0361

True initial: denotes the ‘True’ simulated parameter values θ, True trans.: denotes the ‘True’ trans-

formed simulated parameter values θ∗, MLEs trans: denote the maximum likelihood estimates θ̂∗ of

the transformed parameters θ∗, StdErr: denotes the standard errors of the transformed parameters θ∗,

MLEs: denote the maximum likelihood estimates θ̂ of the parameters θ, Gradient: denotes the value of

the gradient of the log-likelihood evaluated at the parameter estimates.
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Table 2: Maximum likelihood estimation results of the first simulation experiment (T = 2000) using

Student-t errors.

Panel A: Starting values λ̂
∗

=-0.693, σ̂∗0=-6.438, β̂
∗

=-3.507, α̂∗=5.704, v̂∗=1.609

True initial True trans. MLEs trans. StdErr MLEs Gradient

λ 1.1 λ∗ 0.095 λ̂
∗

0.297 1.286 λ̂ 1.3454 0.0005

σ0 0.01 σ∗0 -9.210 σ̂∗0 -9.122 0.053 σ̂0 0.0105 0.0010

β 0.001 β∗ -6.908 β̂
∗

-6.847 0.360 β̂ 0.0011 -0.0021

α 400 α∗ 5.991 α̂∗ 5.994 0.382 α̂ 400.81 -0.0020

v̂∗ 3.530 0.782 v̂ 36.14 0.0003

Panel B: Starting values λ̂
∗

=-2.996, σ̂∗0=-13.816, β̂
∗

=-6.908, α̂∗=6.215, v̂∗=1.099

True initial True trans. MLEs trans. StdErr MLEs Gradient

λ 1.1 λ∗ 0.095 λ̂
∗

0.298 1.281 λ̂ 1.3466 -0.0008

σ0 0.01 σ∗0 -9.210 σ̂∗0 -9.122 0.053 σ̂0 0.0105 0.0085

β 0.001 β∗ -6.908 β̂
∗

-6.847 0.360 β̂ 0.0011 -0.0056

α 400 α∗ 5.991 α̂∗ 5.993 0.382 α̂ 400.79 -0.0051

v̂∗ 3.530 0.781 v̂ 36.12 -0.0017

True initial: denotes the ‘True’ simulated parameter values θ, True trans.: denotes the ‘True’ trans-

formed simulated parameter values θ∗, MLEs trans: denote the maximum likelihood estimates θ̂∗ of

the transformed parameters θ∗, StdErr: denotes the standard errors of the transformed parameters θ∗,

MLEs: denote the maximum likelihood estimates θ̂ of the parameters θ, Gradient: denotes the value of

the gradient of the log-likelihood evaluated at the parameter estimates.

13



Table 3: Maximum likelihood estimation results of the second simulation experiments (T = 5000)

using normal errors.

Panel A: Starting values λ̂
∗

=-0.693, σ̂∗0=-6.438, β̂
∗

=-3.507, α̂∗=5.704

True initial True trans. MLEs trans. StdErr MLEs Gradient

λ 1.1 λ∗ 0.095 λ̂
∗

0.174 0.806 λ̂ 1.1903 -0.0009

σ0 0.01 σ∗0 -9.210 σ̂∗0 -9.189 0.028 σ̂0 0.0101 -0.0601

β 0.001 β∗ -6.908 β̂
∗

-6.888 0.042 β̂ 0.0010 0.0658

α 400 α∗ 5.991 α̂∗ 5.975 0.038 α̂ 393.32 0.4501

Panel B: Starting values λ̂
∗

=-2.996, σ̂∗0=-13.816, β̂
∗

=-6.908, α̂∗=6.215

True initial True trans. MLEs trans. StdErr MLEs Gradient

λ 1.1 λ∗ 0.095 λ̂
∗

0.174 0.808 λ̂ 1.1905 0.0045

σ0 0.01 σ∗0 -9.210 σ̂∗0 -9.189 0.028 σ̂0 0.0101 0.0308

β 0.001 β∗ -6.908 β̂
∗

-6.888 0.041 β̂ 0.0010 0.0112

α 400 α∗ 5.991 α̂∗ 5.975 0.036 α̂ 393.32 -0.2521

True initial: denotes the ‘True’ simulated parameter values θ, True trans.: denotes the ‘True’ trans-

formed simulated parameter values θ∗, MLEs trans: denote the maximum likelihood estimates θ̂∗ of

the transformed parameters θ∗, StdErr: denotes the standard errors of the transformed parameters θ∗,

MLEs: denote the maximum likelihood estimates θ̂ of the parameters θ, Gradient: denotes the value of

the gradient of the log-likelihood evaluated at the parameter estimates.
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Table 4: Maximum likelihood estimation results of the second simulation experiments (T = 5000)

using Student-t errors.

Panel A: Starting values λ̂
∗

=-0.693, σ̂∗0=-6.438, β̂
∗

=-3.507, α̂∗=5.704, v̂∗=1.609

True initial True trans. MLEs trans. StdErr MLEs Gradient

λ 1.1 λ∗ 0.095 λ̂
∗

0.174 0.797 λ̂ 1.1903 -0.0005

σ0 0.01 σ∗0 -9.210 σ̂∗0 -9.189 0.028 σ̂0 0.0101 0.0093

β 0.001 β∗ -6.908 β̂
∗

-6.888 0.042 β̂ 0.0010 -0.0043

α 400 α∗ 5.991 α̂∗ 5.975 0.038 α̂ 393.32 0.8404

v̂∗ 5.685 3.498 v̂ 296.29 -0.0071

Panel B: Starting values λ̂
∗

=-2.996, σ̂∗0=-13.816, β̂
∗

=-6.908, α̂∗=6.215, v̂∗=2.303

True initial True trans. MLEs trans. StdErr MLEs Gradient

λ 1.1 λ∗ 0.095 λ̂
∗

0.174 0.808 λ̂ 1.189 -0.0021

σ0 0.01 σ∗0 -9.210 σ̂∗0 -9.189 0.028 σ̂0 0.0101 0.0475

β 0.001 β∗ -6.908 β̂
∗

-6.888 0.042 β̂ 0.0010 0.0287

α 400 α∗ 5.991 α̂∗ 5.975 0.038 α̂ 393.32 0.3934

v̂∗ 5.681 3.635 v̂ 295.19 -0.0025

True initial: denotes the ‘True’ simulated parameter values θ, True trans.: denotes the ‘True’ trans-

formed simulated parameter values θ∗, MLEs trans: denote the maximum likelihood estimates θ̂∗ of

the transformed parameters θ∗, StdErr: denotes the standard errors of the transformed parameters θ∗,

MLEs: denote the maximum likelihood estimates θ̂ of the parameters θ, Gradient: denotes the value of

the gradient of the log-likelihood evaluated at the parameter estimates.
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Table 5: Maximum likelihood estimation results of the third simulation experiments (T = 2000)

using normal errors.

Panel A: Starting values λ̂
∗

=0.095, σ̂∗0=—9.210, β̂
∗

=—6.908, α̂∗=3.689

True initial True trans. MLEs trans. StdErr MLEs Gradient

λ 2.8 λ∗ 1.029 λ̂
∗

0.847 0.169 λ̂ 2.332 -0.0003

σ0 0.02 σ∗0 -7.824 σ̂∗0 -7.877 0.048 σ̂0 0.019 -0.0010

β 0.04 β∗ -3.219 β̂
∗

-3.339 0.106 β̂ 0.036 0.0013

α 2.65 α∗ 0.975 α̂∗ 1.033 0.107 α̂ 2.811 0.0970

Panel B: Starting values λ̂
∗

=-0.693, σ̂∗0=-6.438, β̂
∗

=-3.507, α̂∗=4.094

True initial True trans. MLEs trans. StdErr MLEs Gradient

λ 2.8 λ∗ 1.029 λ̂
∗

0.847 0.169 λ̂ 2.332 0.0062

σ0 0.02 σ∗0 -7.824 σ̂∗0 -7.877 0.048 σ̂0 0.019 0.0039

β 0.04 β∗ -3.219 β̂
∗

-3.339 0.106 β̂ 0.036 -0.0038

α 2.65 α∗ 0.975 α̂∗ 1.033 0.107 α̂ 2.811 0.0976

True initial: denotes the ‘True’ simulated parameter values θ, True trans.: denotes the ‘True’ trans-

formed simulated parameter values θ∗, MLEs trans: denote the maximum likelihood estimates θ̂∗ of

the transformed parameters θ∗, StdErr: denotes the standard errors of the transformed parameters θ∗,

MLEs: denote the maximum likelihood estimates θ̂ of the parameters θ, Gradient: denotes the value of

the gradient of the log-likelihood evaluated at the parameter estimates.
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Table 6: Maximum likelihood estimation results of the third simulation experiments (T = 2000)

using Student-t errors.

Panel A: Starting values λ̂
∗

=0.095, σ̂∗0=-9.210, β̂
∗

=-6.908, α̂∗=3.689, v̂∗=1.609

True initial True trans. MLEs trans. StdErr MLEs Gradient

λ 2.8 λ∗ 1.029 λ̂
∗

0.839 0.169 λ̂ 2.315 -0.0019

σ0 0.02 σ∗0 -7.824 σ̂∗0 -7.874 0.049 σ̂0 0.019 -0.0028

β 0.04 β∗ -3.219 β̂
∗

-3.336 0.109 β̂ 0.036 0.0002

α 2.65 α∗ 0.975 α̂∗ 1.036 0.110 α̂ 2.818 -0.0031

v̂∗ 3.627 0.798 v̂ 39.59 0.0003

Panel B: Starting values λ̂
∗

=—0.693, σ̂∗0=-6.438, β̂
∗

=-3.507, α̂∗=2.996, v̂∗=1.609

True initial True trans. MLEs trans. StdErr MLEs Gradient

λ 2.8 λ∗ 1.029 λ̂
∗

0.839 0.169 λ̂ 2.315 -0.0002

σ0 0.02 σ∗0 -7.824 σ̂∗0 -7.874 0.049 σ̂0 0.019 0.0003

β 0.04 β∗ -3.219 β̂
∗

-3.336 0.109 β̂ 0.036 0.0000

α 2.65 α∗ 0.975 α̂∗ 1.036 0.110 α̂ 2.818 -0.0001

v̂∗ 3.627 0.798 v̂ 39.60 0.0009

True initial: denotes the ‘True’ simulated parameter values θ, True trans.: denotes the ‘True’ trans-

formed simulated parameter values θ∗, MLEs trans: denote the maximum likelihood estimates θ̂∗ of

the transformed parameters θ∗, StdErr: denotes the standard errors of the transformed parameters θ∗,

MLEs: denote the maximum likelihood estimates θ̂ of the parameters θ, Gradient: denotes the value of

the gradient of the log-likelihood evaluated at the parameter estimates.

17



Table 7: Maximum likelihood estimation results of the EUBanks index return series under the

assumption of conditional normal and Student-t distribution.

Panel A: Normal errors

MLEs trans. StdErr MLEs Gradient

λ̂
∗

1.020 0.295 λ̂ 2.774 -0.0017

σ̂∗0 -7.742 0.047 σ̂0 0.021 -0.2271

β̂
∗

-3.231 0.221 β̂ 0.039 -0.0866

α̂∗ 0.975 0.246 α̂ 2.652 0.0556

Panel B: Student-t errors

MLEs trans. StdErr MLEs Gradient

λ̂
∗

0.730 0.204 λ̂ 2.075 0.0028

σ̂∗0 -7.143 0.452 σ̂0 0.028 0.0924

β̂
∗

-3.690 0.170 β̂ 0.025 -0.0267

α̂∗ 1.214 0.203 α̂ 3.366 0.8350

v̂∗ -1.164 0.572 v̂ 2.312 0.0738

MLEs trans: denote the maximum likelihood estimates θ̂∗ of the transformed parameters θ∗, StdErr:

denotes the standard errors of the transformed parameters θ∗, MLEs: denote the maximum likelihood

estimates θ̂ of the parameters θ, Gradient: denotes the value of the gradient of the log-likelihood evaluated

at the parameter estimates.
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Beginning of the day: 50 percent of the population are bulish (black circles)

A)

Communication in groups of different sizes leads to a majority concensus in each group

B)
C)

End of the day: 45 percent of the population are bulish (black circles)

D)

Figure 1: Changing the ‘bullishness’ in a population via communications in subgroups. A) At the

beginning of a given day t a certain percentage B(t) of bullishness, B) During the day communication

takes place in random subgroups of different sizes, C) Illustrates the extreme case of complete polarization

mk,j = ±1 created by a majority rule in opinion. In general mk,j ≃ j/k corresponds to the neutral case
where in average the opinion remains unchanged within a subgroup of size k, D) Due to the communication

in different subgroups the “bullishness” at the end of the day is different from the beginning of the day.
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Figure 2: This figure presents simulated price data (T = 2000, first simulation experiment), returns and

bullishness proportions, as well as the corresponding estimated conditional volatilities and bullishness pro-

portions based on normal errors. (a) Simulated prices P (t), (b) Simulated bullishness proportions B(t),

(c) Simulated price returns r(t), (d) Estimated bullishness proportions B̂(t), (e) Estimated conditional

volatilities σ̂(t).
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Figure 3: This figure presents simulated price data (T = 2000, first simulation experiment), returns and

bullishness proportions, as well as the corresponding estimated conditional volatilities and bullishness pro-

portions based on Student-t errors. (a) Simulated prices P (t), (b) Simulated bullishness proportions B(t),

(c) Simulated price returns r(t), (d) Estimated bullishness proportions B̂(t), (e) Estimated conditional

volatilities σ̂(t).

21



0 1000 2000 3000 4000 5000
0

5

10

15
(a)

P
(t

)

0 1000 2000 3000 4000 5000
0.25

0.5

0.75

1
(b)

B
(t

)

0 1000 2000 3000 4000 5000
−0.2

0

0.2
(c)

r(
t)

0 1000 2000 3000 4000 5000
0.25

0.5

0.75

1
(d)

E
st

im
a

te
d

 B
(t

)

0 1000 2000 3000 4000 5000
0

0.05

0.1
(e)

E
st

im
a

te
d

 S
ig

m
a

s(
t)

Figure 4: This figure presents simulated price data (T = 5000, second simulation experiment), returns

and bullishness proportions, as well as the corresponding estimated conditional volatilities and bullishness

proportions based on normal errors. (a) Simulated prices P (t), (b) Simulated bullishness proportions

B(t), (c) Simulated price returns r(t), (d) Estimated bullishness proportions B̂(t), (e) Estimated condi-

tional volatilities σ̂(t).
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Figure 5: This figure presents simulated price data (T = 5000, second simulation experiment), returns

and bullishness proportions, as well as the corresponding estimated conditional volatilities and bullishness

proportions based on Student-t errors. (a) Simulated prices P (t), (b) Simulated bullishness proportions

B(t), (c) Simulated price returns r(t), (d) Estimated bullishness proportions B̂(t), (e) Estimated condi-

tional volatilities σ̂(t).
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Figure 6: This figure presents simulated price data (T = 2000, third simulation experiment), returns and

bullishness proportions, as well as the corresponding estimated conditional volatilities and bullishness pro-

portions based on normal errors. (a) Simulated prices P (t), (b) Simulated bullishness proportions B(t),

(c) Simulated price returns r(t), (d) Estimated bullishness proportions B̂(t), (e) Estimated conditional

volatilities σ̂(t).

24



0 500 1000 1500 2000
0

500

1000
(a)

P
(t

)

0 500 1000 1500 2000
0

0.25

0.5

0.75

1
(b)

B
(t

)

0 500 1000 1500 2000
−0.2

0

0.2
(c)

r(
t)

0 500 1000 1500 2000
0

0.25

0.5

0.75

1
(d)

E
st

im
at

ed
 B

(t
)

0 500 1000 1500 2000
0

0.1

0.2
(e)

E
st

im
at

ed
 S

ig
m

as
(t

)

Figure 7: This figure presents simulated price data (T = 2000, third simulation experiment), returns and

bullishness proportions, as well as the corresponding estimated conditional volatilities and bullishness pro-

portions based on Student-t errors. (a) Simulated prices P (t), (b) Simulated bullishness proportions B(t),

(c) Simulated price returns r(t), (d) Estimated bullishness proportions B̂(t), (e) Estimated conditional

volatilities σ̂(t).
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Figure 8: This figure presents EUBanks index prices and returns, as well as the corresponding esti-

mated conditional volatilities and bullishness proportions under the assumption of conditional normal

distribution. (a) EUBanks index price P (t), (b) EUBanks index returns r(t), (c) Estimated bullishness

proportions B̂(t), (d) Estimated conditional volatilities σ̂(t).
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Figure 9: This figure presents EUBanks index prices and returns, as well as the corresponding estimated

conditional volatilities and bullishness proportions under the assumption of conditional Student-t dis-

tribution. (a) EUBanks index price P (t), (b) EUBanks index returns r(t), (c) Estimated bullishness

proportions B̂(t), (d) Estimated conditional volatilities σ̂(t).
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Figure 10: This figure presents EUBanks index returns, as well as the corresponding estimated conditional

volatilities based on a GARCH(1,1) model under the assumption of conditional normal and Student-t

distribution. (a) EUBanks index returns r(t), (b) EUBanks index returns r(t), (c) Estimated conditional

volatilities σ̂(t) based on a GARCH(1,1) model and normal errors, (d) Estimated conditional volatilities

σ̂(t) based on a GARCH(1,1) model and Student-t errors.
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