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A Socio-Finance Model: Inference and empirical application

In this report we show the empirical application of our socio-finance model introduced in Andersen, Vrontos, Dellaportas and Galam (2014).

1 The Socio-Finance model

In the following we remind the reader of the definition of our socio-financial model [START_REF] Andersen | Communication Impacting Financial Markets[END_REF].

Consider a population of market participants, shown schematically as circles in Figure 1A. We will proceed as in the so-called Galam model of opinion formation [START_REF] Galam | Local dynamics vs social mechanisms: a unifying frame[END_REF], 2012[START_REF] Biondi | Formation of share market prices under heterogeneous beliefs and common knowledge[END_REF] and for simplicity imagine that people have just two different opinions on the market, which we can characterize as either 'bullish' (black circles) or 'bearish' (white circles). Letting B(t) denote the proportion of bullishness in a population at time t, the proportion of bearishness is then 1 -B(t).

Insert Figure 1 about here Figure 1A represents the opinions of the participants at the beginning of a given day. During the day people meet in random subgroups of different sizes, as illustrated by the different boxes in Figure 1B, to update their view of the market. Take, for example, the leftmost box in Figure 1B with six persons, two bullish, four bearish, who we can imagine are sitting around a table, or having a conference call, discussing the latest market developments. The outcome of the discussions for the different groups are illustrated in Figure 1C. For simplicity we have illustrated the case where a majority opinion in a given subgroup manages to polarize the opinion of the group by changing the opinion of those who had an opinion belonging to the minority. If we take the afore mentioned group of six persons we can see that after discussing, because of the majority polarizing rule, they have all become bearish. More realistically, we will in the following instead assume that is a certain probability for a majority opinion to prevail, and that even under certain conditions a minority could persuade a part of the majority to change their opinion.

For a given group of size k with j agents having a bullish opinion and k -j a bearish opinion, we let m k,j denote the transition probability for all (k) members to adopt the bullish opinion as a result of their meeting. After one update taking into account communications in all groups of size k with j bullish agents, the new probability of finding an agent with a bullish view in the population can therefore be written:

B(t + 1) = m k,j (t)C k j B(t) j [1 -B(t)] k-j (1) 
where

C k j ≡ k! j!(k -j)!
(2) are the binomial coefficients. Notice that the transition probabilities m k,j depend on time, since we assume that they change as the market performance changes (this point will be explained further below).

Taking the sum over different groups of different sizes and different composition of bullishness within each group (see Figure 1B) one obtains a general term, B(t + 1), for the bullishness in a population at time t + 1 due to the outcome of meetings of groups with different sizes and different composition of bullishness:

B(t + 1) = L k=1 a k k j=0 m k,j (t)C k j B(t) j [1 -B(t)] k-j , (3) 
with

L k=1 a k = 1, a k ≡ 1 L ,
with L denoting the size of the largest group and a k denoting the weight of the group of size k. The link between communication and its impact on the markets can then be taken into account by assuming that the price return r(t) changes whenever there is a change in the bullishness. The idea is that the bullishness itself is not the relevant factor determining how prices will change. Those feeling bullish would naturally already hold long positions on the market. Rather, when people change their opinion, say becoming more negative about the market, or less bullish, this will increase their tendency to sell.

The fact that the absolute sentiment can act as a contrarian idicator (and the change in sentiment as an indicator) for future market returns is well known among practicioners1 . Assuming the return to be proportional to the percentage change in bullishness, RB(t), as well as economic news, η(t), the return r(t) is given by:

r(t) = 1 λ RB(t) + η(t), λ > 0 (4) with RB(t) = B(t)-B(t-1) B(t-1)
the change or 'return' of the bullishness. The variable η(t) = r(t) -1 λ RB(t) is assumed to be either Gaussian or Student-t distributed with mean zero and a standard deviation that varies as a function of time depending on changes in sentiment. We will assume that the market will react to fundamental economic news represented by η but that the amplitude of the reaction depends on changes in the sentiment RB(t) :

σ(t) = σ 0 exp 1 β |RB(t)| , σ 0 > 0, β > 0. (5) 
The influence of the financial market on decision-making can now be included in a natural way by letting the strength of persuasion depend on how the market has performed since the last meeting of the market participants. The idea is that, if for example the market had a dramatic downturn at the close yesterday, then in meetings the next morning, those with a bearish view will be more likely to convince even a bullish majority of their point of view. In the formal description below, this is taken into account by letting the transition probabilities for a change of opinion, i.e., the probabilities of transitions like 

m k,j (t) = m k,j (t -1) exp 1 α r(t) ; m k,j (t = 0) ≡ j/k, α > 0 (6)
where α defines the scale for which a given return r(t) impacts the transition probabilities. The condition m k,j (t = 0) ≡ j/k describes the initially unbiased case where in average no market participant changes opinion.

Estimation and Inference

In this section, we present the inferential method adopted to estimate the parameters of the socio-finance model. The method on which estimation will be based is maximum likelihood. Let θ denotes the parameter vector to be estimated and r = (r(1), r(2), ..., r(T )) is the observed sample of size T . The approach will be to calculate the joint probability density f R(1),R(2),...,R(T ) (r(1), r(2), ..., r(T )|θ)

which can be viewed as the probability of having observed this particular sample 2 . Then, the maximum likelihood estimate (MLE) of θ is the vector θ that maximizes the joint probability density (7), that is, the vector for which this sample is most likely to have been observed. To find maximum likelihood estimates, first we will have to calculate the likelihood function and then to find values of θ that maximize this function. In this section, we will present analytically the calculation of the likelihood function under

the assumption of a normal and a Student-t distribution for the error process η(t), while maximization of this function will be based on numerical optimization algorithms 3 .

The likelihood function i.e. the joint probability density of the complete sample r(1), r(2), ..., r(T ) for the proposed socio-finance model can be written as 

f [r|B(0), m k,j (0), θ] = f [r(T )|r(1), ..., r(T -1), B(0), m k,j (0), θ] • f [r(1), ..., r(T -1)|B(0), m k,j (0) 
= ... = f [r(1)|B(0), m k,j (0), θ] • T t=2 f [r(t)|Φ (t -1) , B(0), m k,j (0), θ] ,
where Φ (t -1) is the information set up to time t -1.

Based on this property, that the joint probability can be written as a product of conditional probabilities, we can calculate the likelihood function as follows. First, under the normality assumption for the error process η(t). Consider the probability distribution of r(1), the first observation in the sample.

Since η(t) is Gaussian, r(1) is also Gaussian and the density of the first observation, conditional on B(0)

and m k,j (0) = j/k, takes the form

f [r(1)|B(0), m k,j (0), θ N ] = 1 √ 2π σ(1) 2 exp - 1 2σ(1) 2 r(1) - 1 λ RB(1) 2 ,
2 With capital letters, R(t), we denote the random variable of the return at time t, while with small letters, r(t), we denote a particular value that the random variable takes at time t.

3 Note that maximum likelihood estimates for dynamic non-linear models that take into account the heteroscedastic characteristics of financial series are usually obtained by using numerical optimization algorithms such as the scoring algorithm, the method proposed by [START_REF] Mak | Solving Non-linear estimation equations[END_REF] and developed further by [START_REF] Mak | Estimation of nonlinear time series with conditional heteroscedastic variances by iteratively weighted least squares[END_REF], the [START_REF] Berndt | Estimation and Inference in Nonlinear Structural Models[END_REF] algorithm, the Broyden, Fletcher, Golfarb and Shanno (BFGS) algorithm (Golfarb, 1970 and[START_REF] Shanno | Conditioning on Quasi-Newton methods for function minimization[END_REF] which is a quasi-Newton method, or by using mixed-gradient algorithms to accelerate convergence (see, for example, [START_REF] Fiorentini | Analytic Derivatives and the computation of GARCH Estimates[END_REF][START_REF] Vrontos | A full-factor multivariate GARCH model[END_REF][START_REF] Diamantopoulos | A Student-t Full Factor Multivariate GARCH Model[END_REF], Vrontos (2013).

where θ N = (λ, σ 0 , β, α) ′ denotes the parameter vector to be estimated under the normality assumption.

Next, conditioning on r(1), the density of the second observation r(2) is

f [r(2)|r(1), B(0), m k,j (0), θ N ] = 1 √ 2π σ(2) 2 exp - 1 2σ(2) 2 r(2) - 1 λ RB(2) 2 .
Proceeding in this fashion, the conditional density of the t -th observation can be calculated as

f [r(t)|r(t -1), ..., r(1), B(0), m k,j (0), θ N ] = 1 √ 2π σ(t) 2 exp - 1 2σ(t) 2 r(t) - 1 λ RB(t) 2 .
Therefore, the likelihood of the complete sample can be written as

f [r|B(0), m k,j (0), θ N ] = (2π) -T 2 T t=1 σ(t) 2 -1/2 exp - 1 2 T t=1 1 σ(t) 2 r(t) - 1 λ RB(t) 2 , (8) 
The log-likelihood function, denoted L N (r|θ N ), can be written as

L N (r|θ N ) = - T 2 ln (2π) - 1 2 T t=1 ln σ(t) 2 - 1 2 T t=1 1 σ(t) 2 r(t) - 1 λ RB(t) 2 . ( 9 
)
Clearly, the vector of θ N that maximizes the conditional likelihood ( 8) is identical to the vector that maximizes the conditional log-likelihood (9).

Although the normal distribution is the most commonly used in applications, there is empirical evidence that the distribution of financial time series has usually fat tails, even after taking into account the volatility clustering phenomenon. In other words, the normality assumption of standardised residuals of estimated financial models is usually rejected in most financial applications. A solution to this problem is to specify a distribution that accounts for fat tails and deviations from normality such as the Student-t (see, for example, [START_REF] Bollerslev | A conditionally heteroskedastic time series model for speculative prices and rates of return[END_REF] or a Generalized Error distribution [START_REF] Nelson | Conditional heteroskedasticity in asset returns: A new approach[END_REF]. Under the Student-t distribution with v degrees of freedom for the error process η(t), the likelihood for the socio-finance model for the complete sample can be written as

f ST [r|B(0), m k,j (0), θ ST ] = Γ v + 1 2 T Γ v 2 -T [π (v -2)] -T /2 (10) T t=1 σ(t) 2 -1/2 T t=1 1 + r(t) -1 λ RB(t) 2 (v -2) σ(t) 2 -(v+1)/2
, where Γ (.) is the gamma function. The log-likelihood can be written as

L ST (r|θ ST ) = T ln Γ v + 1 2 -T ln Γ v 2 - T 2 ln [π (v -2)] (11) - 1 2 T t=1 ln σ(t) 2 - v + 1 2 T t=1 ln 1 + r(t) -1 λ RB(t) 2 (v -2) σ(t) 2 ,
where θ ST = (λ, σ 0 , β, α, v) ′ denotes the parameter vector to be estimated under the Student-t distribution.

In order to avoid the positivity restrictions for the parameters, λ > 0, σ 0 > 0, β > 0 and α > 0

we use the logarithmic transformation, so that λ * = ln (λ), σ * 0 = ln σ 2 0 , β * = ln (β) and α * = ln (α).

For the degrees of freedom parameter v we use the transformation v * = ln (v -2). Thus the parameter vector to estimate is θ * N = (λ * , σ * 0 , β * , α * ) ′ under conditional normality, and θ * ST = (λ * , σ * 0 , β * , α * , v * ) ′ under the Student-t error distribution. The technique of reparametrizing the model parameters is very useful in order to ensure that a numerical optimization algorithm always provides parameter values within certain specified boundaries. An attractive feature of the method of maximum likelihood estimation is its invariance to one-to-one transformations of the parameters of the log-likelihood. That is, the maximum likelihood solution is invariant under transformation of parameters. Finally, due to the highly non-linear nature of the proposed socio-finance model, maximization of the conditional loglikelihood with respect to the model parameters is achieved by using numerical optimization algorithms.

In this study, we maximize the log-likelihood function by applying the optimization functions 'fminsearch' and/or 'fminunc' of Matlab.

Simulation Study

In this section we conduct a simulation study concerning the proposed socio-finance model. The aim of this study is to assess the performance of the inferential method, based on maximum likelihood, to estimate the model parameters and the proportion of bullishness. We conduct a series of simulation experiments considering different sample sizes of time series, i.e. T = 2000 and T = 5000 data, and various parameter values. Different starting values of the model parameters are used to ensure that the maximization/minimization algorithm converges to the true simulated parameters. We simulate data from the socio-finance model (1-6) under the normality assumption for the error process. However, we estimate the model parameters using both normal and Student-t errors. Under the assumption of Student-t errors, we expect that the estimated parameter values will be close to the true simulated values, while the estimated degrees of freedom will be large enough, since the data are simulated from a normal distribution.

Insert Table 1 -Table 6 about here

We present three simulation experiments; in the first two simulation scenarios we simulate T = 2000 and T = 5000 data points, respectively, using λ = 1.1, σ 0 = 0.01 , β = 0.001 and a = 400 as the 'true' parameter values. In the third simulation scenario we simulate T = 2000 data points using λ = 2.8, σ 0 = 0.02 , β = 0.04 and a = 2.65 as the 'true' parameter values. Table 1 andTable 2, together with Table 3 and Table 4 present the estimation results for the first and second simulation scenario (T = 2000 and T = 5000) under the normal (Table 1 andTable 3) and the Student-t (Table 2 andTable 4) distribution for the error process, respectively, while 

Application to the European Union Bank index

In this section we present an empirical application of the proposed socio-finance model to the European Union Banks five-year index. The idea is to consider a very volatile market to study abrupt and large changes in market performance and map the corresponding evolution in sentiments. The data consists of 1505 daily prices over the 1/1/2008-10/7/2013 period. We compute and analyse the returns of the EU banks 5-year index. Figure 8(b) presents the EU bank return series, which shows that the volatility of the return series changes over time. There is also high kurtosis (14.7) in the return series. Thus, there is evidence for fat tails and volatility clustering phenomenon in the EU bank index return series, that the socio-finance model is inveted to deal with.

Insert Figure 8 about here First, we apply the proposed socio-finance model under the assumption of the conditional normal distribution for the error process η(t) to the EU banks returns. Table 7 (Panel A) presents the maximum likelihood estimates of the socio-finance model under normal errors. Specifically Table 7 presents the estimates θ * of the transformed parameters θ * and their standard errors (columns 1 and 2, respectively), the corresponding estimated parameter values θ (column 3), and the value of the gradient of the loglikelihood function evaluated at the parameter estimates θ * (last column). Looking at the parameter estimates of Table 7 (Panel A) we observe that the transformed parameter λ * in the mean equation, the transformed parameters σ * 0 and β * in the variance equation, and parameter α * in the transition probabilities equation, are all statistically significant. These results show that the change in the bullishness proportion is able to explain the price return r(t) as well as the time-varying volatility of the return series.

Insert Table 7 about here

Next, we estimate the proportion of bullishness across time and the time-varying conditional volatilities under the assumption of conditional normal distribution for the error process η(t). In Figure 8 Therefore, the proposed model is able to capture the volatility clustering phenomenon of the return series.

Having estimated the model parameters, one can examine the appropriateness of the assumption of conditional normality. To this end, we apply the Jarque-Bera and the Kolmogorov test of normality to the standardized residuals ( η(t) σ(t) ). These tests show that the null hypothesis of normality is rejected (Jarque -Bera p -value = 0.004, Kolmogorov p -value = 0.000), thus the standardised residual series exhibit deviations from normality. Therefore, the normality assumption is violated 4 and it is worth estimating a socio-finance model based on the Student-t error distribution.

Insert Figure 9 about here 4 Due to the heteroskedastic characteristics of the EUBanks return series, we have also estimated the well-known GARCH(1,1) model with normal errors to the EUBanks return series and examine the appropriateness of the assumption of conditional normality under this alternative model specification. The corresponding p-values of the Jarque-Bera and the Kolmogorov test of normality to the standardized residuals of the GARCH(1,1) model was 0.001 and 0.000, respectively, indicating that the GARCH(1,1) model with normal errors can not capture the fat tails of the return's distribution.

Next, we apply the proposed socio-finance model based on Student-t errors. Table 7 (Panel B)

presents the estimates θ * of the transformed parameters θ * and their standard errors (columns 1 and 2, respectively), the corresponding estimated parameter values θ (column 3), and the value of the gradient of the log-likelihood function evaluated at the parameter estimates θ * (last column). Looking at the parameter estimates of ), the null hypothesis of Student-t errors is not rejected (Kolmogorov p -value = 0.272), indicating that the Student-t socio-finance model provides an appropriate modelling approach than the corresponding normal model5 .

Insert Figure 10 about here

We also estimate the proportion of bullishness across time and the time-varying conditional volatilities under the assumption of conditional Student-t distribution for the error process η(t). In Figure 9, we present the EUBanks prices P (t), and the corresponding returns r(t), as well as the estimated bullishness proportions B(t) and the estimated conditional volatilities σ(t), which are based on the parameter estimates of the Student-t socio-finance model. Looking at Figure 9(a) and 9(c) we observe that the bullishness proportion explain the prices of the index, and looking at Figure 9(b) and 9(d) we can see that periods of lower or higher deviation in the return series can be detected by the socio-finance volatility estimates, i.e. we arrive at similar conclusions with those taken by the normal socio-finance model. However, by comparing the volatilities taken by the socio-finance normal model [see Figure 8(d)], and those taken by the socio-finance Student-t model [Figure 9(d)] we observe that the estimated volatilities taken by the Student-t socio-finance model are higher than the coresponding estimated volatilities of the socio-finance normal model. This result can explain the better fit of the Student-t model, which seems to give a larger volatility signal when periods of higher deviation in the return series is coming. Similar conclusion can be drawn by comparing the estimated volatilities of Normal-GARCH [Figure 10(c)], and Student-t GARCH [Figure 10(d)] with those of the Student-t socio-finance model [Figure 9(d)]. This explains the inadequacy of GARCH-type models in this empirical application.

To conclude, the above findings show that the change in the bullishness proportion is able to explain the price return r(t) as well as the time-varying volatility of the return series, while the assumption of a Student-t error distribution is an appropriate choice to capture the fat tail property of the EUBanks return series. Therefore, the proposed socio-finance model with Student-t errors provides a reasonable modelling approach for the EUBanks return series.

Discussion

In this paper we have proposed a socio-finance Student-t model for the analysis of financial return series.

The aim of our analysis was, first, to develop a new class of models that might be usefull for the empirical analysis of financial series, and, second, to apply the model to real data in order to show the benefits of this modelling approach. Furthermore, we have proposed a classical approach to inference based on maximum likelihood to estimate the model parameters.

The proposed modelling approach is particularly useful in cases where we believe that communication of different groups of the population about the movement of the market can affect the returns and/or the volatility of the financial assets as well as in cases where the distribution of returns is characterised by large kurtosis, fat tails, or in general deviates from normality. In those cases, the normality assumption may not be adequate, while the socio-finance Student-t modelling approach provides more reliable results.

We have applied our proposed approach to the EUBanks index and found evidence that the proposed model can explain the movement of the prices of the index and its time-varying volatility via the change in bullishness proportion.

We believe that the proposed socio-finance model can be used as an alternative reliable modelling approach to empirical applications. Clearly, many interesting questions remain open and various topics for future research arise in the context of this new class of models.
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 1 Figure 1.B → Figure 1.C, depend on the market return over the last period:

  , θ] = f [r(T )|r(1), ..., r(T -1), B(0), m k,j (0), θ] • •f [r(T -1)|r(1), ..., r(T -2), B(0), m k,j (0), θ] • f [r(1), ..., r(T -2)|B(0), m k,j (0), θ]

  Figures 2-7(b) and Figure 2-7(d) which illustrate the 'true' and the estimated bullishness proportions,respectively, we can observe that these proportions are almost identical. Thus, the proposed inferential procedure manages to identify and detect correctly the proportions of a bullish view on the simulated prices. Finally, looking at Figure2-7(c) and Figure2-7(e), which illustrate the simulated returns and the estimated conditional volatilities, respectively, we can see that periods of lower or higher deviation in the return series can be detected by the socio-finance volatility estimates. Therefore, the proposed model is able to capture the volatility clustering phenomenon of the return series.

  Figure 8(b) and the estimated volatility from the model Figure 8(d), one notices that periods of lower or higher deviation in the return series is indeed detected by volatility estimates of the socio-finance model.
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Figure 1 :

 1 Figure 1: Changing the 'bullishness' in a population via communications in subgroups. A) At the beginning of a given day t a certain percentage B(t) of bullishness, B) During the day communication takes place in random subgroups of different sizes, C) Illustrates the extreme case of complete polarization m k,j = ±1 created by a majority rule in opinion. In general m k,j ≃ j/k corresponds to the neutral case where in average the opinion remains unchanged within a subgroup of size k, D) Due to the communication in different subgroups the "bullishness" at the end of the day is different from the beginning of the day.

Figure 2 :

 2 Figure 2: This figure presents simulated price data (T = 2000, first simulation experiment), returns and bullishness proportions, as well as the corresponding estimated conditional volatilities and bullishness proportions based on normal errors. (a) Simulated prices P (t), (b) Simulated bullishness proportions B(t), (c) Simulated price returns r(t), (d) Estimated bullishness proportions B(t), (e) Estimated conditional volatilities σ(t).

Figure 4 :

 4 Figure 4: This figure presents simulated price data (T = 5000, second simulation experiment), returns and bullishness proportions, as well as the corresponding estimated conditional volatilities and bullishness proportions based on normal errors. (a) Simulated prices P (t), (b) Simulated bullishness proportions B(t), (c) Simulated price returns r(t), (d) Estimated bullishness proportions B(t), (e) Estimated conditional volatilities σ(t).

Figure 5 :

 5 Figure 5: This figure presents simulated price data (T = 5000, second simulation experiment), returns and bullishness proportions, as well as the corresponding estimated conditional volatilities and bullishness proportions based on Student-t errors. (a) Simulated prices P (t), (b) Simulated bullishness proportions B(t), (c) Simulated price returns r(t), (d) Estimated bullishness proportions B(t), (e) Estimated conditional volatilities σ(t).

  Table 5 and Table 6 present the corresponding estimates for the third simulation (T = 2000). The first column of Table 1 -Table 6 shows

Table 7 (

 7 Panel B) we observe that the parameter λ in the variance equation, the parameter α * in the transition probabilities equation, and the degrees of freedom v * , are all statistically significant. Under the Student-t model, the degrees of freedom parameter, v, is estimated to be 2.312, indicating heavy tails. Applying the Kolmogorov test

	of a Student-t distribution to the standardized residuals ( η(t) σ(t)

* in the mean equation, the parameters σ * 0 and β *

Table 1 :

 1 Maximum likelihood estimation results of the first simulation experiment (T = 2000) using

	normal errors.							
		Panel A: Starting values λ * =-0.693, σ * 0 =-6.438, β	* =-3.507, α * =5.704
	True initial True trans.		MLEs trans. StdErr		MLEs	Gradient
	λ	1.1	λ * 0.095 λ *	0.344	1.346		λ 1.4103	-0.0008
	σ 0	0.01	σ * 0	-9.210 σ * 0	-9.119	0.051		σ 0 0.0105	0.0004
	β	0.001 β * -6.908 β	*	-6.845	0.349		β 0.0011	-0.0002
	α	400	α * 5.991 α *	5.995	0.371		α 401.33	0.0006
		Panel B: Starting values λ * =-2.996, σ * 0 =-13.816, β	* =-6.908, α * =6.215
	True initial True trans.		MLEs trans. StdErr		MLEs	Gradient
	λ	1.1	λ * 0.095 λ *	0.321	1.290		λ 1.3780	-0.0145
	σ 0	0.01	σ * 0	-9.210 σ * 0	-9.119	0.051		σ 0 0.0105	0.1039
	β	0.001 β * -6.908 β	*	-6.844	0.348		β 0.0011	-0.0109
	α	400	α * 5.991 α *	5.993	0.370		α 400.79	-0.0361

Table 2 :

 2 Maximum likelihood estimation results of the first simulation experiment (T = 2000) using

	Student-t errors.							
	Panel A: Starting values λ * =-0.693, σ * 0 =-6.438, β	* =-3.507, α * =5.704, v * =1.609
	True initial True trans.		MLEs trans. StdErr	MLEs	Gradient
	λ	1.1	λ * 0.095 λ *	0.297	1.286	λ 1.3454	0.0005
	σ 0	0.01	σ * 0	-9.210 σ * 0	-9.122	0.053	σ 0 0.0105	0.0010
	β	0.001 β * -6.908 β	*	-6.847	0.360	β 0.0011	-0.0021
	α	400	α * 5.991 α *	5.994	0.382	α 400.81	-0.0020
				v *	3.530	0.782	v	36.14	0.0003
	Panel B: Starting values λ True initial True trans.		MLEs trans. StdErr	MLEs	Gradient
	λ	1.1	λ * 0.095 λ *	0.298	1.281	λ 1.3466	-0.0008
	σ 0	0.01	σ * 0	-9.210 σ * 0	-9.122	0.053	σ 0 0.0105	0.0085
	β	0.001 β * -6.908 β	*	-6.847	0.360	β 0.0011	-0.0056
	α	400	α * 5.991 α *	5.993	0.382	α 400.79	-0.0051
				v *	3.530	0.781	v	36.12	-0.0017

* =-2.996, σ * 0 =-13.816, β * =-6.908, α * =6.215, v * =1.099

Table 3 :

 3 Maximum likelihood estimation results of the second simulation experiments (T = 5000)

	using normal errors.						
		Panel A: Starting values λ * =-0.693, σ * 0 =-6.438, β	* =-3.507, α * =5.704
	True initial True trans.		MLEs trans. StdErr		MLEs	Gradient
	λ	1.1	λ * 0.095 λ *	0.174	0.806		λ 1.1903	-0.0009
	σ 0	0.01	σ * 0	-9.210 σ * 0	-9.189	0.028		σ 0 0.0101	-0.0601
	β	0.001 β * -6.908 β	*	-6.888	0.042		β 0.0010	0.0658
	α	400	α * 5.991 α *	5.975	0.038		α 393.32	0.4501
		Panel B: Starting values λ * =-2.996, σ * 0 =-13.816, β	* =-6.908, α * =6.215
	True initial True trans.		MLEs trans. StdErr		MLEs	Gradient
	λ	1.1	λ * 0.095 λ *	0.174	0.808		λ 1.1905	0.0045
	σ 0	0.01	σ * 0	-9.210 σ * 0	-9.189	0.028		σ 0 0.0101	0.0308
	β	0.001 β * -6.908 β	*	-6.888	0.041		β 0.0010	0.0112
	α	400	α * 5.991 α *	5.975	0.036		α 393.32	-0.2521

Table 4 :

 4 Maximum likelihood estimation results of the second simulation experiments (T = 5000)

	using Student-t errors.						
	Panel A: Starting values λ * =-0.693, σ * 0 =-6.438, β	* =-3.507, α * =5.704, v * =1.609
	True initial True trans.		MLEs trans. StdErr	MLEs	Gradient
	λ	1.1	λ * 0.095 λ *	0.174	0.797	λ 1.1903	-0.0005
	σ 0	0.01	σ * 0	-9.210 σ * 0	-9.189	0.028	σ 0 0.0101	0.0093
	β	0.001 β * -6.908 β	*	-6.888	0.042	β 0.0010	-0.0043
	α	400	α * 5.991 α *	5.975	0.038	α 393.32	0.8404
				v *	5.685	3.498	v 296.29	-0.0071
	Panel B: Starting values λ * =-2.996, σ * 0 =-13.816, β	* =-6.908, α * =6.215, v * =2.303
	True initial True trans.		MLEs trans. StdErr	MLEs	Gradient
	λ	1.1	λ * 0.095 λ *	0.174	0.808	λ	1.189	-0.0021
	σ 0	0.01	σ * 0	-9.210 σ * 0	-9.189	0.028	σ 0 0.0101	0.0475
	β	0.001 β * -6.908 β	*	-6.888	0.042	β 0.0010	0.0287
	α	400	α * 5.991 α *	5.975	0.038	α 393.32	0.3934
				v *	5.681	3.635	v 295.19	-0.0025

Table 5 :

 5 Maximum likelihood estimation results of the third simulation experiments (T = 2000)

	using normal errors.						
		Panel A: Starting values λ * =0.095, σ * 0 =-9.210, β	* =-6.908, α * =3.689
	True initial True trans.		MLEs trans. StdErr	MLEs	Gradient
	λ	2.8	λ * 1.029 λ *	0.847	0.169		λ 2.332	-0.0003
	σ 0	0.02	σ * 0	-7.824 σ * 0	-7.877	0.048		σ 0 0.019	-0.0010
	β	0.04	β * -3.219 β	*	-3.339	0.106		β 0.036	0.0013
	α	2.65	α * 0.975 α *	1.033	0.107		α 2.811	0.0970
		Panel B: Starting values λ * =-0.693, σ * 0 =-6.438, β	* =-3.507, α * =4.094
	True initial True trans.		MLEs trans. StdErr	MLEs	Gradient
	λ	2.8	λ * 1.029 λ *	0.847	0.169		λ 2.332	0.0062
	σ 0	0.02	σ * 0	-7.824 σ * 0	-7.877	0.048		σ 0 0.019	0.0039
	β	0.04	β * -3.219 β	*	-3.339	0.106		β 0.036	-0.0038
	α	2.65	α * 0.975 α *	1.033	0.107		α 2.811	0.0976

Table 6 :

 6 Maximum likelihood estimation results of the third simulation experiments (T = 2000)

	using Student-t errors.						
	Panel A: Starting values λ * =0.095, σ * 0 =-9.210, β	* =-6.908, α * =3.689, v * =1.609
	True initial True trans.		MLEs trans. StdErr	MLEs	Gradient
	λ	2.8	λ * 1.029 λ *	0.839	0.169	λ 2.315	-0.0019
	σ 0	0.02	σ * 0	-7.824 σ * 0	-7.874	0.049	σ 0 0.019	-0.0028
	β	0.04	β * -3.219 β	*	-3.336	0.109	β 0.036	0.0002
	α	2.65	α * 0.975 α *	1.036	0.110	α 2.818	-0.0031
				v *	3.627	0.798	v 39.59	0.0003
	Panel B: Starting values λ * =-0.693, σ * 0 =-6.438, β True initial True trans. MLEs trans. StdErr	MLEs	Gradient
	λ	2.8	λ * 1.029 λ *	0.839	0.169	λ 2.315	-0.0002
	σ 0	0.02	σ * 0	-7.824 σ * 0	-7.874	0.049	σ 0 0.019	0.0003
	β	0.04	β * -3.219 β	*	-3.336	0.109	β 0.036	0.0000
	α	2.65	α * 0.975 α *	1.036	0.110	α 2.818	-0.0001
				v *	3.627	0.798	v 39.60	0.0009

* =-3.507, α * =2.996, v * =1.609

Table 7 :

 7 Maximum likelihood estimation results of the EUBanks index return series under the assumption of conditional normal and Student-t distribution.

				Panel A: Normal errors	
			MLEs trans. StdErr	MLEs	Gradient
	λ *	1.020	0.295	λ 2.774	-0.0017
	σ * 0	-7.742	0.047	σ 0 0.021	-0.2271
	β	*	-3.231	0.221	β 0.039	-0.0866
	α *	0.975	0.246	α 2.652	0.0556
				Panel B: Student-t errors	
			MLEs trans. StdErr	MLEs	Gradient
	λ *	0.730	0.204	λ 2.075	0.0028
	σ * 0	-7.143	0.452	σ 0 0.028	0.0924
	β	*	-3.690	0.170	β 0.025	-0.0267
	α *	1.214	0.203	α 3.366	0.8350
	v *	-1.164	0.572	v 2.312	0.0738
	MLEs trans: denote the maximum likelihood estimates θ	

* of the transformed parameters θ * , StdErr:

The Hulbert Stock Newsletter Sentiment Index (HSNSI) is used among practitioners as a contrarian signal for future stock returns, see also http://www.cxoadvisory.com/3265/sentiment-indicators/mark-hulbert/.

We have also estimated the GARCH(1,1) model with Student-t errors to the EUBanks return series as an alternative modelling approach. The corresponding p-value of the Kolmogorov test of a Student-t distribution to the standardized residuals of the GARCH(1,1) model was 0.028, indicating that the GARCH(1,1) model with Student-t errors can not capture adequately the tails of the return's distribution.
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