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A comparison between two-scale asymptotic expansions

and Bloch wave expansions for the homogenization of

periodic structures
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January 13, 2016

Abstract

In this paper we make a comparison between the two-scale asymptotic expansion
method for periodic homogenization and the so-called Bloch wave method. It is well-
known that the homogenized tensor coincides with the Hessian matrix of the first Bloch
eigenvalue when the Bloch parameter vanishes. In the context of the two-scale asymptotic
expansion method, there is the notion of high order homogenized equation [6] where the
homogenized equation can be improved by adding small additional higher order differential
terms. The next non-zero high order term is a fourth-order term, accounting for dispersion
effects (see e.g. [24], [19], [16]). Surprisingly, this homogenized fourth-order tensor is
not equal to the fourth-order tensor arising in the Taylor expansion of the first Bloch
eigenvalue, which is often called Burnett tensor. Here, we establish an exact relation
between the homogenized fourth-order tensor and the Burnett fourth-order tensor. It was
proved in [12] that the Burnett fourth-order tensor has a sign. For the special case of a
simple laminate we prove that the homogenized fourth-order tensor may change sign. In
the elliptic case we explain the difference between the homogenized and Burnett fourth-
order tensors by a difference in the source term which features an additional corrector
term. Finally, for the wave equation, the two fourth-order tensors coincide again, so
dispersion is unambiguously defined, and only the source terms differ as in the elliptic
case.

Keywords: periodic structure, homogenization, asymptotic expansion, Bloch waves, Burnett
coefficients, dispersion

Mathematics Subject Classification: 35B27, 49K20

1 Introduction

In the framework of periodic homogenization, the aim of this paper is to compare the method
of two-scale asymptotic expansions [6], [7], [23] and that of Bloch wave decomposition [7], [10],
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[22], [27]. More precisely, we focus on the modelling of so-called dispersive effects, based on
fourth-order homogenized operators. The goal of periodic homogenization is to find the limit
of the sequence of solutions uε of the conductivity equation with εY -periodic coefficients

− div (aε∇uε) = f, where aε(x) := a
(x

ε

)

, (1.1)

with a(y) a Y -periodic symmetric tensor and Y the unit torus R
d/Zd identified with [0, 1]d.

Equation (1.1) takes place in an open set Ω ⊂ R
d, which may be bounded or not. Although

the method can handle any domain Ω, to avoid any issues with the boundary conditions for
(1.1), we assume that either Ω = R

d or Ω is a cube with periodic boundary conditions. In
the latter case the solution of (1.1) is forced to have zero average in Ω in order to ensure
uniqueness of the solution. Our presentation avoids, as much as possible, any mathematical
technical difficulties and stays at a formal level. The precise choice of function spaces, the
convergence proofs and error estimates are anyway classical and our main results are not in
this framework. Rather we focus on formulas for (high order) homogenized tensors and their
interpretation for the modelling of dispersive effects for wave propagation in periodic media.
Roughly speaking, dispersion is the phenomenon by which waves with different wavelengths
propagate with different velocities. In a linear regime it can occur only in heterogeneous media.

In Section 2 we revisit the two-scale asymptotic expansion method, following the work and
notations of [7] (see also [6], [23]). We recall the definition of various homogenized tensors
which play a role in the concept of “high order homogenized equation” (see Remark 2.6). In
particular, the usual homogenized equation,

− div (a∗∇u) = f,

can be improved by adding a small fourth-order operator,

− div (a∗∇vε)− ε2B∗∇4vε = f, (1.2)

in the sense that vε is a “better” approximation of uε than u. The fourth-order tensor B
∗

is defined explicitly by a formula involving higher order cell correctors. It is interpreted as
modelling dispersive effects (see e.g. [24], [17], [19], [16], [2]).

In Section 3 we review the classical theory of Bloch waves [7], [10], [22], [27] and the Taylor
expansion of the first Bloch eigenvalue obtained in [12] which also defines another sequence
of tensors. As is well-known, the second-order tensors of both methods agree (namely, the
homogenized matrix is equal to the Hessian of the first Bloch eigenvalue), and the third-order
tensors are both equal to 0. However, in Section 4 we prove that the fourth-order tensors are in
general different (see Theorem 4.1). The fourth-order Burnett tensor D∗ of the Bloch expansion
is non-positive [12] while the fourth-order homogenized dispersive tensor B

∗ (obtained by the
two-scale asymptotic expansion method) has no fixed sign. In fact, the tensor B

∗ takes both
positive and negative values on layered structures (see Lemma 4.4). As a byproduct we prove
in Lemma 4.3 that B∗ vanishes in one space dimension. Even more, we indicate in Remark 4.5
that, in the 1-d case, all homogenized tensors of order ≥ 3 of the two-scale asymptotic expansion
(which are actually scalars) are equal to 0. This is not the case with the tensors of the Bloch
expansion in 1-d (see [13], [14], [15]).

In Section 5 we give an explanation of the differences between the two methods. As already
said, the fourth-order tensors B∗ and D

∗ give rise to so-called “high order homogenized equa-
tions” which are better approximations than the usual homogenized equation. In Proposition
5.2 we prove that these two “high order homogenized equations” coincide if the source term
f(x) is replaced by its corrected version f(x) − εχ(1)

(

x
ε

)

· ∇f(x) in the two-scale asymptotic
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case. Here χ1 is the usual cell corrector. The “high order homogenized equation” is here a
fourth-order partial differential equation which is not well-posed in general. We explain in
Remark 5.3 how to modify it to make it well-posed by using a Boussinesq trick as in [9], [17],
[19], [16], [1], [2] (the same type of ideas appears also in the study of continuum limits of dis-
crete spring-mass lattices [20]). Eventually Section 6 investigates wave propagation in periodic
media, a setting in which dispersive effects are well explained by the “high order homogenized
equation” [24], [17], [20], [2]. The situation is simpler than in the elliptic case, in the sense that
we prove that the two fourth-order tensors coincide here and are given by the same formula
than that of D∗ in the elliptic case. In such a case, the fourth-order homogenized tensor, being
unambiguously defined, merits its name and interpretation as dispersive tensors. More pre-
cisely, in the absence of source term, namely for a system driven only by its initial conditions,
the two high order homogenized equations coincide. However, if a source term is present, then
it must be corrected as in the elliptic case for the method of two-scale asymptotic expansion
to coincide with the Bloch wave method. As a conclusion the Burnett tensor D∗ is in all cases
the correct fourth-order tensor to model dispersion effects. After this work was completed we
learned that similar results have independently been obtained in [3].

Notations

• (e1, . . . , ed) denotes the canonical basis of Rd.

• Y = [0, 1]d denotes the unit cube of Rd.

• H1
♯ (Y ) denotes the space of Y -periodic functions in H1

loc(R
d), and H1

♯,0(Y ) denotes the
subspace of H1

♯ (Y ) composed of functions with zero Y -average.

• For any n-order tensor C =
[

Ci1···in

]

1≤i1,...,in≤d
, the symmetrization of C is denoted by

CS =

(

1

n!

∑

σ∈Sn

Cσ(i1)···σ(in)

)

1≤i1,...,in≤d

,

where Sn is the permutations group of order n. In the sequel it is understood that all
tensors are symmetrized: more precisely, a tensor C is systematically identified with its
symmetrized counterpart CS.

• In the sequel the summation convention with respect to repeated indices is used.

2 A review of two-scale asymptotic expansions

Let a be a Y -periodic symmetric matrix-valued such that, for 0 < α ≤ β,

α Id ≤ a(y) ≤ β Id for a.e. y ∈ Y.

Consider the oscillating operator Aε := − div
(

a(ε−1x)∇ ·
)

. When applied to functions of
the type u(x, ε−1x), where y → u(x, y) is a Y -periodic function, it can be identified to Aε =
ε−2Ayy + ε−1Axy + Axx with















Ayy := − divy
(

a(y)∇y ·
)

,

Axy := − divx
(

a(y)∇y ·
)

− divy
(

a(y)∇x ·
)

,

Axx := − divx
(

a(y)∇x ·
)

.

(2.1)
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Following [7], the solution uε of Aεuε = f in a domain with appropriate boundary condition
can be heuristically computed as the sum of the following formal series:

uε(x) =
∞
∑

n=0

εn un

(

x,
x

ε

)

, (2.2)

where un(x, ·) are Y -periodic and (ordering the powers of ε) satisfy the cascade of equations































































order ε−2, 0 = Ayyu0

order ε−1, 0 = Ayyu1 + Axyu0

order ε0, f = Ayyu2 + Axyu1 + Axxu0

order ε1, 0 = Ayyu3 + Axyu2 + Axxu1

...

order εn, 0 = Ayyun+2 + Axyun+1 + Axxun, for n ≥ 1

...

(2.3)

The ansatz (2.2) is formal since, not only the series does not converge, but it lacks additional
boundary layer terms in case of a bounded domain. Furthermore, it requires infinite smoothness
of the homogenized solution and thus of the source term f(x). In any case, we refer the reader
to [6], [7], [4], [26] for the mathematical justification of this formal process. Again following
[7] we compute successively the functions un introducing suitable cell functions and n-order
tensors. To this end we need the following lemma, called Fredholm alternative (see [6], [7], [23]
for a proof).

Lemma 2.1. For g(y) ∈ L2(Y ), consider the following problem

{

− divy
(

a(y)∇yw
)

= g in Y,

y 7→ w(y) Y -periodic.
(2.4)

It admits a unique solution w(y) ∈ H1
♯,0(Y ) if and only if the right hand side satisfies the

following compatibility condition
ˆ

Y

g(y) dy = 0.

Thanks to Lemma 2.1 we now deduce from (2.3) the formulas for successive terms in the
series (2.2).

Computation of u0: it is clear that

u0(x, y) = u(x).

Computation of u1: by linearity we obtain

u1(x, y) = −χi(y)
∂u

∂xi
(x) + ũ1(x), (2.5)

where χi and χ
(1)
η =

∑d
i=1 ηiχi are solutions in H1

♯,0(Y ) of the equations

Ayy χi = − divy (aei) and Ayy χ
(1)
η = − divy (aη) , for η ∈ R

d. (2.6)
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Computation of u2: the third equation of (2.3) has a solution if and only if f−Axyu1−Axxu0
has a zero Y -average, which leads to

− div (a∗∇u) = f, (2.7)

where the homogenized symmetric matrix a∗ is given by

a∗η :=

ˆ

Y

(

aη − a∇χ(1)
η

)

dy, for η ∈ R
d. (2.8)

Next, by the third equation of (2.3) and (2.5) we have

Ayyu2 = f − divx

(

∂u

∂xi
a∇yχi

)

− divy

(

aχi

∂

∂xi
(∇xu)

)

+ divy (a∇xũ1) + divx (a∇xu)

= f +
[

aij − a∇yχi · ej − divy (χi a ej)
] ∂2u

∂xixj
+ divy (a ej)

∂ũ1
∂xj

.

(2.9)
Hence, defining

bij := aij − a∇χi · ej − div (χi a ej) , with

ˆ

Y

bij = a∗ij, for i, j ∈ {1, . . . , d}, (2.10)

u2 can be written

u2(x, y) = χij(y)
∂2u

∂xixj
(x)− χi(y)

∂ũ1
∂xi

(x) + ũ2(x), (2.11)

where the functions χij and χ
(2)
η := χijηiηj are the solutions in H1

♯,0(Y ) of the equations

Ayy χij = bij −

ˆ

Y

bij = bij − a∗ij and Ayy χ
(2)
η = b η · η − a∗η · η, , for η ∈ R

d. (2.12)

Note that only the symmetric part of bij plays a role in (2.9) and the same is true for χij in
(2.11).

Computation of u3: the fourth equation of (2.3) has a solution if and only if Axyu2 + Axxu1
has a zero Y -average, namely by (2.5) and (2.11)

0 =

ˆ

Y

divx (a∇xu1) dy +

ˆ

Y

divx (a∇yu2) dy

=

(
ˆ

Y

aij dy

)

∂2ũ1
∂xi∂xj

−
∂

∂xi

[
ˆ

Y

aij
∂

∂xj

(

χk

∂u

∂xk

)

dy

]

+
∂

∂xi

(
ˆ

Y

aij
∂χkℓ

∂yj

∂2u

∂xk∂xℓ
dy

)

−

(
ˆ

Y

aik
∂χj

∂yk
dy

)

∂2ũ1
∂xi∂xj

dy

= a∗ij
∂2ũ1
∂xixj

−

(
ˆ

Y

aij χk dy

)

∂3u

∂xi∂xj∂xk
+

(
ˆ

Y

aiℓ
∂χkj

∂yℓ
dy

)

∂3u

∂xi∂xj∂xk
.

Hence, due to the symmetry of ∇3u we get that

− div (a∗∇ũ1) = C∗∇3u, where C∗
ijk :=

ˆ

Y

(

a∇χij · ek − aij χk

)

dy. (2.13)
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Note again that only the symmetric part of C∗ plays a role in (2.13). Fix i, j, k ∈ {1, . . . , d}.
By (2.6), (2.12) and (2.10) combined with the symmetry of a, we have

ˆ

Y

a∇χij · ek dy =

ˆ

Y

aek · ∇χij dy =

ˆ

Y

a∇χk · ∇χij dy =

ˆ

Y

a∇χij · ∇χk dy

=

ˆ

Y

bij χk dy =

ˆ

Y

aij χk dy −

ˆ

Y

χk a ej · ∇χi dy +

ˆ

Y

χi a ej · ∇χk dy,

which yields

C∗
ijk =

ˆ

Y

a ej ·
(

χi∇χk − χk∇χi

)

dy (2.14)

Therefore, we obtain that

C∗
ijk = −C∗

kji, ∀ i, j, k ∈ {1, . . . , d}, (2.15)

which implies that [C∗]S = 0 (this result is already proved in [21]) and, combined with the
symmetry of ∇3u in (2.13), yields

div (a∗∇ũ1) = 0. (2.16)

Let us now compute u3. By the fourth equation of (2.3), (2.5), (2.11) we have

Ayyu3 = divx (a∇yu2) + divy (a∇xu2) + divx (a∇xu1)

=
∂

∂xi

(

aij
∂u2
∂yj

)

+
∂

∂yi

(

aij
∂u2
∂xj

)

+
∂

∂xi

(

aij
∂u1
∂xj

)

=
∂

∂xi

(

aij
∂χkℓ

∂yj

∂2u

∂xk∂xℓ

)

−
∂

∂xi

(

aij
∂χk

∂yj

∂ũ1
∂xk

)

+
∂

∂yi

(

aij χkℓ

∂3u

∂xj∂xk∂xℓ

)

−
∂

∂yi

(

aij χk

∂2ũ1
∂xj∂xk

)

+
∂aij
∂yi

∂ũ2
∂xj

−
∂

∂xi

(

aij χk

∂2u

∂xj∂xk

)

+
∂

∂xi

(

aij
∂ũ1
∂xj

)

and

Ayyu3 = aij
∂χkℓ

∂yj

∂3u

∂xi∂xk∂xℓ
+

∂

∂yi

(

aij χkℓ

) ∂3u

∂xj∂xk∂xℓ
− aij χk

∂3u

∂xi∂xj∂xk

+ aij
∂2ũ1
∂xi∂xj

− aij
∂χk

∂yj

∂2ũ1
∂xi∂xk

−
∂

∂yi

(

aij χk

) ∂2ũ1
∂xj∂xk

+
∂aij
∂yi

∂ũ2
∂xj

.

Hence, defining the functions

cijk := a∇χjk · ei + div (χjk a ei)− aij χk, for i, j, k ∈ {1, . . . , d}. (2.17)

and using (2.6), (2.10), u3 can be written

u3(x, y) = χijk(y)
∂3u

∂xi∂xj∂xk
(x) + χij(y)

∂2ũ1
∂xi∂xj

(x)− χi(y)
∂ũ2
∂xi

(x) + ũ3(x), (2.18)

where the functions χijk are the solutions in H1
♯,0(Y ) of

Ayy χijk = cijk −

ˆ

Y

cijk, for i, j, k ∈ {1, . . . , d}. (2.19)
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Again, only the symmetric parts of cijk and χijk play a role.
Equation of u4: the equation for n = 2 in (2.3) admits a solution u4 if and only if Axyu3+Axxu2
has a zero Y -average, namely by (2.11) and (2.18)

0 =

ˆ

Y

divx (a∇yu3) dy +

ˆ

Y

divx (a∇xu2) dy

=
∂

∂xi

(
ˆ

Y

aij
∂u3
∂yj

dy

)

+
∂

∂xi

(
ˆ

Y

aij
∂u2
∂xj

dy

)

=

(
ˆ

Y

aij
∂χkℓm

∂yj

)

∂4u

∂xi∂xk∂xℓ∂xm
+

(
ˆ

Y

aij χkℓ dy

)

∂4u

∂xi∂xj∂xk∂xℓ

+

(
ˆ

Y

aij
∂χkℓ

∂yj
dy

)

∂3ũ1
∂xi∂xk∂xℓ

−

(
ˆ

Y

aij χk dy

)

∂3ũ1
∂xi∂xj∂xk

−

(
ˆ

Y

aij
∂χk

∂yj
dy

)

∂2ũ2
∂xi∂xk

+

(
ˆ

Y

aij dy

)

∂2ũ2
∂xi∂xj

.

Therefore, by (2.8) this can be written

− div (a∗∇ũ2) = B
∗ ∇4u+

[
ˆ

Y

(

aiℓ
∂χkj

∂yℓ
− aij χk

)

dy

]

∂3ũ1
∂xi∂xj∂xk

, (2.20)

where B
∗ is the fourth-order tensor defined by

B
∗
ijkℓ :=

ˆ

Y

(

aij χkℓ + aim
∂χkℓj

∂ym

)

dy, for i, j, k, ℓ ∈ {1, . . . , d}. (2.21)

Note again that only the symmetric part of B∗ plays a role in (2.20).
The last term in the right hand side of (2.20) is (again by symmetry in i, j, k) equal to

C∗∇3ũ1 which vanishes by virtue of (2.15). Therefore, (2.20) simplifies to

− div (a∗∇ũ2) = B
∗ ∇4u. (2.22)

Remark 2.2. For the sake of simplicity in the notations we did not explicitly symmetrize all
tensors which are contracted with (symmetric) derivative tensors ∇k

x acting on some macro-
scopic functions. Nevertheless, recall that, by construction, any tensor should be identified with
its symmetric part. Note also the sign convention for the first-order corrector χi(y) which is the
opposite of the higher order correctors χij , χijk. This is due to our adhering to the notations
in [7].

Remark 2.3. Of course, the above process of computing successive terms in the ansatz (2.2)
works without any symmetry assumption on the coefficient matrix a(y). Nevertheless we made
a symmetry assumption because we need it for the next section on Bloch waves.

Remark 2.4. If we continue the above procedure assuming that u is smooth enough, similarly
to (2.5), (2.11), (2.18) we get that for any integer n ≥ 1, the n-order term of the asymptotic
expansion (2.2) can be expressed as

un(x, y) = χn(y)·∇nu(x)+
n−1
∑

k=1

χk(y)·∇n−kũk(x)+ũn(x), with ũk(x) :=

ˆ

Y

uk(x, y) dy, (2.23)

and χk, for k ∈ {1, . . . , n}, are k-order tensor-valued functions in H1
♯,0(Y )

dk and · denotes full
contraction of these tensors. For example, we have χ1 = (χ1, ..., χd), χ

2 = (χij)1≤i,j≤d and so

7



on. Similarly to (2.13), (2.20) there also exist k-order tensors B∗
k, for k ∈ {3, . . . , n + 2}, such

that

− div (a∗∇ũn) = B
∗
n+2∇

n+2u+
n−1
∑

k=1

B
∗
n+2−k∇

n+2−kũk, (2.24)

which in particular satisfy B
∗
3 = C∗ = 0 by (2.16) and B

∗
4 = B

∗ by (2.20).

Remark 2.5. If one is interested in an infinite order asymptotic expansion of the solution, the
approach of [6] is slightly simpler than that of [7]. Indeed, the authors in [6] prove that the
ansatz (2.2) is equivalent to

uε(x) =

∞
∑

n=0

εn χn
(x

ε

)

· ∇nUε(x), (2.25)

where χn is the n-order corrector introduced in Remark 2.4 (with the convention that χ0 ≡ 1)
and

Uε(x) = u(x) +
∑

n≥1

εnũn(x), (2.26)

where each ũn is defined by (2.23)-(2.24). Since all correctors functions χn, for n ≥ 1, have
zero average, the macroscopic (and non oscillating) function Uε(x) in (2.25) can be interpreted
as an amplitude or profile function, which is a better approximation of the exact solution uε of
(1.1) than just the homogenized solution u, solution of (2.7).

Remark 2.6. Writing an effective equation for a truncated version of the non oscillating ansatz
Uε, defined by (2.26), has been studied in various settings (see [6], [24], [19], [16], [25]) under
the name of “higher order homogenization”. Here we give the “second order” homogenized
equation which is a proposed explanation of dispersive effects for wave propagation in periodic
media [24], [19], [16], [1], [2] or of second gradient theory in mechanics [25]. In other words, we
truncate the non oscillating ansatz (2.26) at second order. We also assume that Ω = R

d or Ω is
a cube with periodic boundary conditions and zero-average solutions. In such a case, equation
(2.16) for ũ1(x) admits 0 as its unique solution. Therefore, (2.26) becomes

Uε(x) = vε(x) +O(ε3) with vε(x) = u(x) + ε2ũ2(x).

Then adding the homogenized equation (2.7) with (2.22) multiplied by ε2 yields

− div (a∗∇vε)− ε2B∗ ∇4vε = f +O(ε4). (2.27)

Neglecting the term of order ε4 in (2.27) gives the “second order” homogenized equation (1.2),
as announced in the introduction. If the tensor B∗ were non-positive, equation (2.27) would be
well-posed. Unfortunately, as we shall see in Section 4, B∗ has no sign in full generality and
(2.27) is thus not well-posed. We shall see in the sequel (see Remark 5.3) how to modify it to
make it well-posed by using a Boussinesq trick [9].

Remark 2.7. It is customary to enforce the normalization condition that all solutions of the
cell problems have zero average, as is the case in Lemma 2.1. It is clear that the results
of homogenization must not depend on the normalization. However, some of the quantities,
defined above, may vary according to the choice of the additive constants in the definition of the
cell solutions. We now summarize the main changes in such a case. For some constants ci ∈ R,
we replace the solution χi(y) of the first-order cell problem (2.6) by χi(y)+ ci, which is another
possible solution. Clearly, definition (2.8) of the homogenized tensor a∗ does not depend on the
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choice of ci. However, in (2.5) the function ũ1 should be replaced by ũ1 + ci
∂u
∂xi

and in (2.10)
the function bij should be replaced by bij − cidivy(aej). Thus, for some constants cij ∈ R, the
solution χij(y) of the second order cell problem (2.12) should be replaced by χij(y)+ ciχj + cij,
which is another possible solution. Then, the tensor C∗

ijk, defined by (2.13), should be replaced
by C∗

ijk−cia
∗
jk, which ensures that equation (2.16) for ũ1 is unchanged. In turn, the source term

cijk, defined by (2.17), has to be replaced by cijk − ckbij + cjkdivy(aei) and, as a consequence,
for some constant cijk ∈ R, the solution χijk(y) of the third-order cell problem (2.19) becomes
χijk(y) − ckχij − cjkχi + cijk. Eventually, the fourth-order tensor B

∗
ijkℓ, defined by (2.21), is

replaced by B
∗
ijkℓ + a∗ijckl. Note that equation (2.22) will remain valid with the new tensor

B
∗
ijkℓ + a∗ijckl since, accordingly, ũ2 is replaced by ũ2 + ci

∂ũ1

∂xi
− cij

∂2u
∂xi∂xj

.

3 A review of Bloch wave expansions

While the two-scale asymptotic expansion method of Section 2 was performed in the physical
x-space, the Bloch wave method works in the dual or Fourier space. To this end we consider
the spectral resolution of the operator Aε. Because of the symmetry of the matrix a(y), the
operator Aε defines an unbounded self-adjoint operator in L2(Rd). By the change of variables
y = x/ε, we are reduced to consider the operator Ayy. Bloch waves are eigenvectors of Ayy

satisfying a special boundary condition and we are interested in their energies or eigenvalues.
In order to take into account the impact of the Z

d-translation invariance of the coefficients
of Ayy on its spectrum, the Bloch wave method introduces the following spectral problem. For
a given parameter η ∈ R

d, find eigenvalues λ = λ(η) in R and eigenvectors ψ = ψ(η) in H1
loc(R

d)
satisfying

Ayyψ = λψ, ψ(y + p) = e2πip·ηψ(y) ∀y ∈ R
d, p ∈ Z

d.

Since the above quasi-periodic condition remains invariant under integer translation in η, it is
sufficient to take η in Y . Note that, with our notations (featuring a 2π factor in the phase), the
primary and dual cells coincide. To simplify the boundary conditions we make the following
change of unknowns

ψ(y, η) = e2πiy·ηφ(y, η).

Then φ is Y -periodic and satisfies

A(η)φ = λ(η)φ ∀y ∈ Y,

where A(η) is the translated (or shifted) operator defined by

A(η) := −

(

∂

∂yk
+ 2πi ηk

)[

akℓ

(

∂

∂yℓ
+ 2πi ηℓ

)]

, with A(0) = Ayy. (3.1)

The above spectral problem for A(η) in the unit torus Y , the so-called Bloch problem, is
classical both in mathematics [27] and in solid state physics [22]. It is easily seen that A(η)
is an unbounded self-adjoint operator in L2

♯ (Y ) with compact resolvent. Its quadratic form is
non-negative and so its eigenvalues are non-negative and discrete. We are interested in the first
eigenvalue/ground energy λ1(η) which is the relevant one in the homogenization process. When
η = 0, it is easy to see that λ1(0) = 0 is a simple eigenvalue of A(0) = Ayy with constants as
eigenfunctions. Regular perturbation theory proves then that λ1(η) is simple and is analytic in
a neighborhood of η = 0.

The derivatives of λ1(η) at order k at η = 0 define k-order tensors which can equivalently
be expressed in terms of suitable cell test functions. In the sequel we shall compare them, up
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to fourth-order, with the previous tensors introduced by the method of two-scale asymptotic
expansion in Section 2. We now recall some results from [11], [12] about the Taylor expansion
of λ1(η) at η = 0.

Theorem 3.1. All odd order derivatives of λ1(η) vanish at η = 0. Furthermore, λ1(η) admits
the following fourth-order expansion:

λ1(η) = 4π2a∗η · η + (2π)4D∗ · (η ⊗ η ⊗ η ⊗ η) +O(|η|6), (3.2)

where 1
8π2λ

(2)
1 (0) = a∗ is the homogenized matrix defined by (2.8) and D

∗ is the symmetric

fourth-order tensor 1
4!(2π)4

λ
(4)
1 (0) (called Burnett tensor in the literature) which is equivalently

defined by

D
∗
ijkl := −

ˆ

Y

(

aij χkℓ + aim
∂χ̂kℓj

∂ym

)

dy, for i, j, k, ℓ ∈ {1, . . . , d}. (3.3)

In (3.3) the functions χij are defined by (2.12) and χ̂ijk are the solutions in H1
♯,0(Y ) of

Ayy χ̂ijk = a∗ij χk + cijk −

ˆ

Y

cijk dy, for i, j, k ∈ {1, . . . , d}, (3.4)

where χk are given by (2.6) and cijk are given by (2.17).

As usual, the tensor D∗ and the functions χ̂ijk are understood as symmetrized. Note that
the functions χ̂ijk are different from the previous ones χijk defined by (2.19) (see (4.3) below).

Remark 3.2. As a by-product of Theorem 3.1 it was shown in [11] that the η-derivatives of the
first eigenfunction φ1(y, η) coincide, up to additive constants, with the solutions of some cell
problems. A preliminary step is to choose a proper normalization of the eigenfunction φ1(y, η)
so that, first, it is analytic for η near 0 and, second, its derivatives will be either real or purely
imaginary. Following [11] we choose

‖φ1(y, η)‖L2(Y ) = 1 and

ˆ

Y

φ1(y, η) dy ∈ R. (3.5)

In particular, it implies that φ1(y, 0) = 1. The first condition in (3.5) is classical while the sec-
ond one is easily obtained as follows. Replace any analytic branch η → φ1(y, η) by φ1(y, η)e

iP (η)

where P is an analytic function from R
d into R, chosen so that the second condition is satis-

fied for the product φ1(y, η)e
iP (η) (this amounts to a simple constant change of phase for the

first eigenfunction). Under this normalization, [11] proved that the η-derivatives of the first
eigenfunction φ1(y, η) coincide with the cell solutions

∂φ1

∂ηk
(y, 0) = −2πiχk(y) ,

∂2φ1

∂ηk∂ηl
(y, 0) = −8π2χkl(y)− 4π2

ˆ

Y

χk(y)χl(y) dy ,

∂3φ1

∂ηj∂ηk∂ηl
(y, 0) = −48π3i

(

χ̂jkl(y)−
1

3
χj(y)

ˆ

Y

χkχl dy −
1

3
χk(y)

ˆ

Y

χjχl dy −
1

3
χl(y)

ˆ

Y

χkχj dy

)

,

where χk are defined by (2.6), χkl by (2.12) and χ̂jkl by (3.4).

Let us explain in more details the Bloch wave method for the homogenization of the elliptic
equation (1.1) in the entire space R

d (it can be extended to the case of the elasticity system
as in [18]). First we have the following Bloch wave decomposition result written in rescaled
variables x = εy and ξ = η/ε.
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Lemma 3.3. Any function f ∈ L2(Rd) can be decomposed as

f(x) =
∑

n≥1

ˆ

ε−1Y

αε
n(ξ)φn

(x

ε
, εξ
)

e2πix·ξdξ (3.6)

where

αε
n(ξ) =

ˆ

Rd

f(x) e−2πix·ξ φn

(x

ε
, εξ
)

dx , (3.7)

and φn(y, η) is the n-th normalized eigenfunction of (3.1). Furthermore, it satisfies Parseval
equality

ˆ

Rd

|f(x)|2dx =
∑

n≥1

ˆ

ε−1Y

|αε
n(ξ)|

2dξ. (3.8)

Similarly, we decompose the solution uε of (1.1) as

uε(x) =
∑

n≥1

ˆ

ε−1Y

ûεn(ξ)φn

(x

ε
, εξ
)

e2πix·ξdξ.

Since the eigenbasis {φn} diagonalizes the elliptic operator, equation (1.1) reduces to the fol-
lowing algebraic equalities

ε−2λn(εξ)û
ε
n(ξ) = αε

n(ξ). (3.9)

With the help of energy estimates it was proved in [10] that all modes n ≥ 2 are negligible
and that only the first one n = 1 matters. Furthermore, as ε goes to zero, αε

1(ξ) converges in
L2(Rd) to a limit α1(ξ) = f̂(ξ) which is the Fourier transform of f(x) (see[10] for details).

Thanks to the Taylor expansion (3.2) one deduces that ûε1(ξ) converges in L
2
loc(R

d) to û1(ξ)
which is given by

a∗ξ · ξ û1(ξ) = α1(ξ), (3.10)

which is precisely the Fourier transform of the homogenized equation (2.7). In particular, it
implies that û1(ξ) = û(ξ) is the Fourier transform of the homogenized solution u(x), satisfying
the homogenized equation (2.7).

A fundamental property of the Burnett tensor D
∗, discovered by [12], is that it is non-

positive.

Proposition 3.4 ([12]). The fourth-order tensor D∗, defined by (3.3), satisfies for any η ∈ R
d

D
∗ (η ⊗ η) : (η ⊗ η) = −

ˆ

Y

a∇
(

χ(2)
η − 1

2

(

χ
(1)
η

)2
)

· ∇
(

χ(2)
η − 1

2

(

χ
(1)
η

)2
)

dy ≤ 0, (3.11)

where χ
(1)
η is defined by (2.6) and χ

(2)
η by (2.12).

4 A comparison of the fourth-order tensors B
∗ and D

∗

The main result of this section is that the two fourth-order tensors B∗ and D
∗ are different.

Theorem 4.1. The fourth-order tensor B∗ (2.21) arising in the two-scale asymptotic expansion
admits the following decomposition:

B
∗ = −D

∗ − E
∗, with E

∗
ijkl := a∗kℓd

∗
ij and d∗ij :=

ˆ

Y

χi χj dy (4.1)
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and D
∗ is the Burnett tensor defined by (3.3). Furthermore,

{

D
∗ (η ⊗ η) : (η ⊗ η) ≤ 0

E
∗ (η ⊗ η) : (η ⊗ η) ≥ 0,

∀ η ∈ R
d, (4.2)

while there are examples of tensors B
∗ which have no fixed sign.

Proof. We compare the tensors B
∗ (2.21) and D

∗ (3.3) (all tensors are symmetrized). First,
comparing (2.19) and (3.4) we get that

χ̂ijk = χijk + a∗ij wk, (4.3)

where the functions wk are the solutions in H1
♯,0(Y ) of

Ayywk = χk. (4.4)

Putting (4.3) in (3.3) and comparing to (2.21) it follows that

D
∗
ijkℓ = −B

∗
ijkℓ − a∗kℓ

ˆ

Y

a∇wj · ei dy, (4.5)

where the last integral becomes, using successively (2.6) and (4.4),

ˆ

Y

a∇wj · ei dy =

ˆ

Y

a∇wj · ∇χi dy =

ˆ

Y

χi χj dy. (4.6)

Therefore, (4.5) is equivalent to the relation B
∗ = −D

∗ − E
∗, which implies that

B
∗ (η ⊗ η) : (η ⊗ η) = −D

∗ (η ⊗ η) : (η ⊗ η)− (a∗η · η)(d∗η · η), ∀ η ∈ R
d, (4.7)

with

d∗η · η =

ˆ

Y

(

χ(1)
η

)2
dy,

where χ
(1)
η is defined by (2.6). This implies that d∗ is non-negative and so is E∗. Furthermore,

D
∗ is non-positive in view of Proposition 3.4. The fact that B

∗ has no sign is investigated in
Lemma 4.4 below.

Corollary 4.2. The fourth-order homogenized tensor B
∗ (2.21) satisfies the following upper

and lower bounds
−E

∗ ≤ B
∗ ≤ −D

∗. (4.8)

Proof. By virtue of (3.11), (4.7) implies B
∗ ≥ −E

∗. Moreover, since E
∗ is nonnegative, we

immediately obtain the upper bound in (4.8).

We now apply the above analysis to the case of isotropic layers depending on one direction,
say y1, namely the conductivity matrix is reduced to a(y1) Id where a is 1-periodic on R. In
such a case, all cell solutions depends only on the single variable y1 and derivatives are denoted
by ′. In this particular setting we prove that, for a two-phase simple laminate, the fourth-order
tensor B∗ has no sign.
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Lemma 4.3. For a laminate microstructure, defined by its conductivity tensor a(y1) Id, where
a is 1-periodic, the fourth-order homogenized tensor B

∗ satisfies

B
∗ (η ⊗ η) : (η ⊗ η) = |η′|4

ˆ 1

0

a (χ′
22)

2 dy1 + η21 |η
′|2
ˆ 1

0

χ1 (2 aχ
′
22 − aχ1) dy1, (4.9)

for any η = (η1, η
′) ∈ R

d.
In particular, in one space dimension, we have B

∗ = 0.

Proof. Let a be the harmonic mean of a, let a be the arithmetic mean of a, and let A be the
1-periodic function defined by

A(y1) :=

ˆ y1

0

(a− a) dt, for y1 ∈ R. (4.10)

A simple computation yields for the functions (2.6) and (2.12),







χ′
1(y1) = −

a

a(y1)
+ 1

χi(y1) = 0 if i > 1

and























χ′
11(y1) = χ1(y1)

χ′
ii(y1) = −

A(y1)

a(y1)
+

a

a(y1)

ˆ 1

0

A

a
dy1 if i > 1

χij(y1) = 0 if i 6= j,

(4.11)

and the homogenized matrix is given by

a∗ = a (e1 ⊗ e1) + a
d
∑

i=2

(ei ⊗ ei) .

Putting this in (4.1) and (3.11) we have for any η = (η1, η
′) ∈ R

d,

B
∗ (η ⊗ η) : (η ⊗ η) =

ˆ 1

0

a
(

η21 χ
′
11 + |η′|2 χ′

22 − η21 χ1χ
′
1

)2
dy1 − η21

(

a η21 + a |η′|2
)

ˆ 1

0

(χ1)
2 dy1

= η41

ˆ 1

0

χ2
1

[

a (1− χ′
1)

2
− a
]

dy1 + |η′|4
ˆ 1

0

a (χ′
22)

2 dy1

+ η21 |η
′|2
ˆ 1

0

χ1

[

2 a (1− χ′
1)χ

′
22 − aχ1

]

dy1.

Since by the periodicity of χ1

ˆ 1

0

χ2
1

[

a (1− χ′
1)

2
− a
]

dy1 = − a

ˆ 1

0

χ′
1 χ

2
1 dy1 = 0,

we finally obtain (4.9).

Now, consider the case of a two-phase material with phases α < β and volume fraction θ,
which is studied in [15]. Namely, from now on, we assume, for 0 < θ < 1,

a(y) =

{

α if 0 < y1 < θ,

β if θ < y1 < 1.
(4.12)

Lemma 4.4. Assume d ≥ 2. For a simple two-phase laminate defined by (4.12) the quartic
form η → B

∗ (η ⊗ η) : (η ⊗ η) takes positive and negative values.
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Proof. In this case, some algebra leads to

χ1 =
a

αβ

(

A− Ā
)

and χ′
22 =

−1

a

(

A− Ā
)

, with Ā :=

ˆ 1

0

A, (4.13)

and

ˆ 1

0

A

a
=
Ā

a
,

ˆ 1

0

(

A− Ā
)2

a
=

1

a

ˆ 1

0

(

A− Ā
)2
,

ˆ 1

0

(

A− Ā
)2

=
1

12
θ2(1− θ)2(β − α)2.

Then, the previous formula (4.9) is reduced to

B
∗ (η ⊗ η) : (η ⊗ η) = |η′|2

(

1

a
|η′|2 −

a2

(αβ)2
[

(2− θ)α+ (1 + θ)β
]

η21

)
ˆ 1

0

(

A− Ā
)2
. (4.14)

First, choosing η1 = 0, |η′| = 1, (4.14) yields B∗ (η ⊗ η) : (η ⊗ η) > 0. Next, choosing |η′| = 1
and η1 large enough, (4.14) gives B

∗ (η ⊗ η) : (η ⊗ η) < 0. Therefore, contrary to D
∗ the tensor

B
∗ does not have a constant sign with respect to the direction η.

Remark 4.5. Lemma 4.3 shows that B∗ = 0 in 1-d. Actually much more is true: in 1-d, all
higher order homogenized coefficients B

∗
n (defined in Remark 2.4) vanish. Indeed, by simple

computations one can show that the correctors or cell solutions χn ∈ H1
♯,0([0, 1]), for n ≥ 1, can

be obtained by the following iterative procedure:



















χ′1(y) = 1−
a

a(y)

χ′2(y) = χ1(y)

χ′n+1(y) = −χn(y) if n ≥ 2.

(4.15)

Furthermore, if the solution u of the homogenized equation,

− au′′(x) = f(x),

is smooth, u ∈ C∞(R), then, for any n ≥ 1, the solutions of the cascade of equations (2.3) are
given by















u0(x, y) = u(x)

u1(x, y) = −χ1(y) u′(x)

un(x, y) = χn(y) u(n)(x) if n ≥ 2.

(4.16)

Comparing (4.16) with (2.23), we deduce that the functions ũk and the tensors B∗
n of (2.24) are

equal to 0 in dimension one.
Conversely, if we consider any family of functions un satisfying (2.3), then following the

procedure of Section 2 we get that for any n ≥ 1, the function ũn of (2.23) solves the equation

− a ũ′′n(x) = 0,

and thus are affine. Hence, from this we deduce that the general expansion (2.23) is reduced to

un(x, y) = ûn(x, y)− αn−1 χ1(y) + αn x+ βn, ∀n ≥ 2,

where αn, βn are constants.
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5 An explanation of the differences

In this section we provide an explanation for the differences obtained in the fourth-order tensors
D

∗ and B
∗. The key idea is that the two-scale asymptotic expansion method and the Bloch

wave method does not treat exactly the same right hand sides. This (small) difference between
the source terms is at the root of the different fourth-order dispersion tensors. We explain it in
a formal way for the sake of simplicity (see Remark 5.4 at the end of this section for references
about rigorous proofs).

In the framework of the Bloch wave method, instead of equation (1.1) with a right hand
side f , independent of ε, consider rather the following equation

− div (aε∇uε) = fε , (5.1)

with the same oscillating coefficients as before but with a varying source term

fε(x) =

ˆ

ε−1Y

f̂(ξ)φ1

(x

ε
, εξ
)

e2πix·ξdξ , (5.2)

where φ1(y, η) is the Bloch first eigenfunction and f̂(ξ) is the Fourier transform of a function
f(x) ∈ L2(Rd)

f(x) =

ˆ

Rd

f̂(ξ)e2πix·ξdξ . (5.3)

As shown in [10], [11] fε(x) converges almost everywhere to f(x) in R
d but assuming that f̂(ξ)

decays enough at infinity, using the following Taylor expansion

φ1 (y, εξ) = 1 + εξ · ∇ηφ1(y, 0) +
1

2
ε2∇η∇ηφ1(y, 0)ξ · ξ +O(ε3) , (5.4)

and Remark 3.2, a more precise asymptotic expansion is

fε(x) = f(x)− εχ(1)
(x

ε

)

· ∇f(x) + ε2χ(2)
(x

ε

)

· ∇∇f(x) +O(ε3) , (5.5)

where χ(1)(y) is the vector of components χj(y), defined by (2.6), and χ(2)(y) is the symmetric
matrix of entries χkl(y), defined by (2.12). For such a “well prepared” right hand side, equation
(5.1) has an explicit solution in terms of Bloch waves

uε(x) =

ˆ

ε−1Y

f̂(ξ)

ε−2λ1(εξ)
φ1

(x

ε
, εξ
)

e2πix·ξdξ . (5.6)

The limit u of uε is clearly identified by using Theorem 3.1 which implies that ε−2λ1(εξ) =

4π2a∗ξ · ξ + O(ε2) and thus the Fourier transform of u(x) is û(ξ) = f̂(ξ)
4π2a∗ξ·ξ

which implies that

u is the solution of the homogenized equation (2.7).
Of course, a better approximation of uε can be obtained by combining the Taylor expansions

(3.2) for the eigenvalue λ1 and (5.4) for the eigenfunction φ1. To explain this improved result
we first introduce the following definition.

Definition 5.1. In the context of the Bloch wave method, the “high order homogenized equa-
tion” is

− div (a∗∇vε) + ε2D∗ · ∇4vε = f . (5.7)
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Remark that (5.7) is similar to (2.27) if one replaces the tensor D∗ by −B
∗ (which is differ-

ent). By virtue of (3.2), the Fourier transform of the solution vε(x) of (5.7) satisfies

v̂ε(ξ) =
f̂(ξ)

4π2a∗ξ · ξ + ε2(2π)4D∗ · (ξ ⊗ ξ ⊗ ξ ⊗ ξ)
=

f̂(ξ)

ε−2λ1(εξ)
+O(ε4) . (5.8)

Then, replacing φ1 by its Taylor expansion (5.4) and f̂(ξ)
ε−2λ1(εξ)

by (5.8), formula (5.6) becomes
formally, by applying the inverse Fourier transform,

uε(x) = vε(x)− εχ(1)
(x

ε

)

· ∇vε(x) + ε2χ(2)
(x

ε

)

· ∇∇vε(x) +O(ε3) , (5.9)

which is a high order approximation, much better than just the homogenized solution u. Remark
that (5.9) is similar to a truncated version of the ansatz (2.25), due to [6] in the context of the
two-scale asymptotic expansion method.

Note that the approximation (5.9) is very formal at this stage since the “high order homoge-
nized equation” (5.7) is not well-posed because D∗ is non-positive by Theorem 4.1. Nevertheless,
the above formal discussion is useful to understand the role of D∗ and make a comparison with
B
∗ as follows.

We now switch to the method of two-scale asymptotic expansion. We first rewrite the “high
order” homogenized equation (2.27) using formula (4.1), B∗ = −D

∗ − a∗ ⊗ d∗, which implies

− div (a∗∇vε) + ε2D∗∇4vε + ε2div (d∗∇ [div (a∗∇vε)]) = f +O(ε4).

Using its truncation − div (a∗∇vε) = f +O(ε2), we deduce

− div (a∗∇vε) + ε2D∗∇4vε = f + ε2div (d∗∇f) +O(ε4), (5.10)

which shares the same differential operator as (5.7) but has a different right hand side.
We now explain the difference between (2.27), or its equivalent version (5.10), and the “high

order” homogenized equation (5.7) from the Bloch wave method. The main point is that the
previous Bloch wave method was not considering a fixed right hand side f(x) but rather its
well prepared version fε, defined by (5.2). Therefore, to make a fair comparison we have to
re-do the analysis of Section 2 but with fε instead of f . We now outline the only changes to
take into account. The first equations in the cascade of equations (2.3), namely those defining
u0, u1 and u2 do not change.

The first change happens with the equation for u3 which now is

Ayyu
new

3 + Axyu2 + Axxu1 = −χ(1)(y) · ∇f(x) . (5.11)

We denote by unew

3 the “new” solution of (5.11) and by u3 the previous solution, i.e. that with
a zero right hand side, defined by (2.18). Since χ(1) = (χj)1≤j≤d has zero average on Y , the
compatibility condition of the Fredholm lemma 2.1 is satisfied and the deduced equation (2.13)
for ũ1 is unchanged. The new solution is therefore obtained from the previous one by adding a
new term due to the right hand side in (5.11)

unew

3 (x, y) = u3(x, y)− w(y) · ∇f(x) , (5.12)

where w = (wj)1≤j≤d is the solution of (4.4).
The next change occurs in the equation for u4 which now is

Ayyu
new

4 + Axyu
new

3 + Axxu2 = χ(2)(y) · ∇∇f(x) . (5.13)
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The right hand side in (5.13) does not contribute to the compatibility condition of the Fredholm
lemma 2.1 since χ(2)(y) has zero average in Y . However the additional term −w(y) · ∇f(x) in
unew

3 gives an extra contribution in equation (2.20) for its new solution ũnew

2 which is now

− divx (a
∗∇xũ

new

2 ) = B
∗∇4

xu+ divx

ˆ

Y

a(y)∇y (w(y) · ∇xf(x)) dy .

From (4.6) we know that
´

Y
a∇ywi · ej dy =

´

Y
χi χj dy = d∗ij, which implies that the last

equation can be rewritten as

− divx (a
∗∇xũ

new

2 ) = B
∗ ∇4

xu+ divx (d
∗∇xf) . (5.14)

Replacing f(x) by − divx(a
∗∇xu) and recalling (4.5) yields

− divx (a
∗∇xũ

new

2 ) = B
∗ ∇4

xu− (B∗ + D
∗)∇4

xu = −D
∗∇4

xu . (5.15)

Multiplying (5.15) by ε2 and adding it to the homogenized equation (2.7) leads to

− divx
(

a∗∇x

(

u+ ε2ũnew

2

))

+ ε2D∗∇4
x

(

u+ ε2ũnew

2

)

= f +O(ε4) , (5.16)

which is precisely the “high order” homogenized equation (5.7) for vε, up to a small O(ε4)
remainder. Therefore, the two methods agree if one considers the proper right hand sides for
the ε-equation. Note that (5.16) can be deduced, not only for the right hand side fε, but for
its first-order approximation f(x)− εχ(1)

(

x
ε

)

· ∇f(x) since the second-order term in (5.5) does
not contribute to the compatibility condition of (5.13) and higher order terms are negligible.
In other words, we have just proved the following result.

Proposition 5.2. The “high order” homogenized equation (5.7), obtained by the Bloch wave
method, is equivalent to that, (2.27) or (5.10), obtained by the two-scale asymptotic expansion
method if, in the latter case, the right hand side f is replaced by its corrected version

fε(x) = f(x)− εχ(1)
(x

ε

)

· ∇f(x).

Remark 5.3. The high order homogenized equations (5.7) and (5.10) are not well posed since,
by virtue of Proposition 3.4, the tensor D∗ has the “wrong” sign (the bilinear form associated
to the operator D∗∇4

x is non-positive). Similarly, the other higher order homogenized equation
(2.27) is not well posed since its fourth tensor −B

∗ is not positive too. We now explain how
to modify these equations in order to make them well-posed by using a classical Boussinesq
trick (see e.g. [9] for historical references ; the same trick has been applied in recent works [17],
[19], [16], [1], [2]). The Boussinesq trick is also well known in the study of continuum limits
of discrete spring-mass lattices [20]. The key point is that both equations (5.7) and (2.27) are
actually defined, up to the addition of a small remainder term of order ε4: therefore one can
modify them adding any term of the same order ε4, without altering their approximate validity.
Let us explain the Boussinesq trick for (5.7) (the case of (2.27) is completely similar). We define
the minimum value

m = min
|ξ|=1

D
∗ · (ξ ⊗ ξ ⊗ ξ ⊗ ξ)

a∗ξ · ξ
, (5.17)

which is a non-positive number m ≤ 0 because of Proposition 3.4 (if m > 0 were positive, (5.7)
is well posed and there is nothing to do). Introducing the non-negative second order tensor
C = −mId ≥ 0, we define a fourth order tensor D∗ by

D
∗ · (ξ ⊗ ξ ⊗ ξ ⊗ ξ) = D

∗ · (ξ ⊗ ξ ⊗ ξ ⊗ ξ) + (a∗ξ · ξ) (Cξ · ξ) ≥ 0 ∀ξ ∈ R
d , (5.18)
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which is non-negative in view of (5.17). Then, the Fourier transform of (5.7)

4π2 (a∗ξ · ξ) v̂ε(ξ) + ε2(2π)4D∗ · (ξ ⊗ ξ ⊗ ξ ⊗ ξ)v̂ε(ξ) = f̂(ξ) (5.19)

can be replaced by

4π2 (a∗ξ · ξ) v̂ε(ξ) + ε2(2π)4D∗ · (ξ ⊗ ξ ⊗ ξ ⊗ ξ)v̂ε(ξ) = f̂(ξ) + ε24π2 (Cξ · ξ) f̂(ξ) +O(ε4),

since truncating (5.19) implies 4π2 (a∗ξ · ξ) v̂ε(ξ) = f̂(ξ) +O(ε2). By the inverse Fourier trans-
form we deduce a well-posed equation which is equivalent to the higher order homogenized
equation (5.7), up to order ε4,

− div (a∗∇vε) + ε2D∗ · ∇4vε = f − ε2div (C∇f) +O(ε4) . (5.20)

From a numerical point of view, (5.20) should be solved (without the O(ε4) error term) rather
than the ill-posed original equation (5.7). Of course, any choice of matrix C, which makes (5.18)
non-negative, is acceptable. Therefore, there is a whole family of higher order homogenized
equation (5.20), all of them being equivalent up to order ε4. In this context, the dispersive
effect is measured by the fourth-order tensor D∗ and not by D

∗ alone.
In 1-d, since B

∗ = 0, we have D
∗ = −E

∗ = −a∗d∗ with d∗ > 0. Therefore, in 1-d it is
possible to choose D

∗ = 0 and C = d∗.

Remark 5.4. This entire section was written in a formal way for the ease of presentation. In
particular, we never explained in which sense the remainder terms O(εk) have to be understood.
Rigorous results about the better approximation properties of the high order homogenized
equation (5.7) have first been established in [19], [16], in the context of the wave equation.

6 Application to wave propagation

The above analysis can be extended from the elliptic equation (1.1) to a time dependent setting.
Although we could expose the case of a parabolic equation, it makes more sense to consider the
wave equation because of the importance of dispersive effects for wave propagation in periodic
media (see e.g. [24], [19], [16], [5], [1], [2]). Therefore, for the rest of this section we consider
the following wave equation, posed in the entire space R

d,











∂2uε
∂t2

− div (aε∇uε) = f,

uε(0, x) = uinit(x),
∂uε
∂t

(0, x) = vinit(x),
(6.1)

with periodic coefficients aε(x) := a
(

x
ε

)

, a right hand side f(t, x) and initial date uinit(x), vinit(x).

Two-scale asymptotic expansion method. As is well known, the same asymptotic analysis
than in Section 2 can be performed, up to delicate corrector issues for which the reader is referred
to [8]. We only sketch the differences with the analysis of the elliptic case. The two-scale ansatz
for the solution of (6.1) is

uε(t, x) =
∞
∑

n=0

εn un

(

t, x,
x

ε

)

,
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where un(t, x, ·) are Y -periodic and satisfy the cascade of equations


































































order ε−2, 0 = Ayyu0

order ε−1, 0 = Ayyu1 + Axyu0

order ε0, f = Ayyu2 + Axyu1 + Axxu0 +
∂2u0

∂t2

order ε1, 0 = Ayyu3 + Axyu2 + Axxu1 +
∂2u1

∂t2

...

order εn, 0 = Ayyun+2 + Axyun+1 + Axxun +
∂2un

∂t2

...

(6.2)

The equations for u0 and u1 do not change and they yield

u0(t, x, y) = u(t, x) and u1(t, x, y) = −χi(y)
∂u

∂xi
(t, x) + ũ1(t, x).

An additional time derivative appears in all the higher order equations of (6.2). The com-
patibility condition (Fredholm alternative) of the equation for u2 leads to the homogenized
equation

∂2u

∂t2
− div (a∗∇u) = f, (6.3)

with the same homogenized matrix a∗ defined by (2.8). Then, u2 is given by

u2(t, x, y) = χij(y)
∂2u

∂xixj
(t, x)− χi(y)

∂ũ1
∂xi

(t, x) + ũ2(t, x), (6.4)

with the same functions χij defined by (2.12). The equation for u3 becomes

Ayyu3 = −
∂2ũ1
∂t2

(t, x) + χi(y)
∂3u

∂t2∂xi
(t, x)−Axyu2 −Axxu1. (6.5)

Since χi has zero-average, the compatibility condition of (6.5) leads to an equation, similar to
(2.13),

∂2ũ1
∂t2

− div (a∗∇ũ1) = C∗∇3u = 0, (6.6)

with the same vanishing tensor C∗, defined by (2.14). From this we deduce a new formula
for u3, where the first term (the only new one, compared to (2.18)) is due to the source term
proportional to χi in (6.5), namely

u3(t, x, y) = wi(y)
∂3u

∂xi∂t2
(t, x) + χijk(y)

∂3u

∂xi∂xj∂xk
(t, x)

+χij(y)
∂2ũ1
∂xi∂xj

(t, x)− χi(y)
∂ũ2
∂xi

(t, x) + ũ3(t, x),

(6.7)

where the functions wi and χijk are still defined by (4.4) and (2.19), respectively. Plugging
(6.7) in the right hand side of the equation for u4, its compatibility condition gives an equation
for ũ2 which is similar to (2.22) except for an additional term due to the new term wi

∂3u
∂xi∂t2

in
u3. More precisely we get

∂2ũ2
∂t2

− div (a∗∇ũ2) = B
∗ ∇4u+ div

(

∂3u

∂xi∂t2

ˆ

Y

a∇ywidy

)

, (6.8)
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where B
∗ is defined by (2.21). From (4.6) we know that

´

Y
a∇ywi · ej dy =

´

Y
χi χj dy = d∗ij,

and (4.1) states that D∗ = −B
∗ − a∗ ⊗ d∗. Thus the last term in (6.8) simplifies

div

(

∂3u

∂xi∂t2

ˆ

Y

a∇ywidy

)

= div

(

d∗∇
∂2u

∂t2

)

.

Using the homogenized equation (6.3), i.e. replacing ∂2u
∂t2

by f + div (a∗∇u), we deduce that
(6.8) is equivalent to

∂2ũ2
∂t2

− div (a∗∇ũ2) = −D
∗ ∇4u + div (d∗∇f) ,

from which we can obtain the higher order homogenized equation for the function vε(t, x) =
u(t, x) + ε2ũ2(t, x), that is

∂2vε
∂t2

− div (a∗∇vε) + ε2D∗∇4vε = f + ε2div (d∗∇f) + O(ε4). (6.9)

Note that the initial data did not enter the entire asymptotic process which is, of course,
purely formal at this stage. The fourth-order tensor in (6.9) is D∗, as given by the Bloch wave
method, and not B

∗ as in the previous elliptic case, see (2.27). Nevertheless, in the elliptic
case, we also recover the tensor D

∗ in (5.10) but this is at the price of a manipulation of the
equation (replacing div (a∗∇vε) by −f in some terms). Here, in the hyperbolic case, we directly
obtain D

∗ without any appearance of B∗. In both cases, elliptic and hyperbolic, we obtain a
modification of the source term: see the same right hand sides in (5.10) and (6.9).

Bloch-wave expansion method: Let us replace the fixed (with respect to ε) initial data and
source term in (6.1) by well-prepared initial data and force in terms of Bloch waves. Denoting
by ûinit(ξ), v̂init(ξ) and f̂(t, ξ) the Fourier transforms of uinit(x), vinit(x) and f(t, x) (in the sense
of (5.3)), we introduce these new forcing term and initial data

fε(t, x) =

ˆ

ε−1Y

f̂(t, ξ)φ1

(x

ε
, εξ
)

e2πix·ξdξ ,

uinit

ε (x) =

ˆ

ε−1Y

ûinit(ξ)φ1

(x

ε
, εξ
)

e2πix·ξdξ, vinit

ε (x) =

ˆ

ε−1Y

v̂init(ξ)φ1

(x

ε
, εξ
)

e2πix·ξdξ,

and change (6.1) into











∂2uε
∂t2

− div (aε∇uε) = fε(t, x),

uε(0, x) = uinit

ε (x),
∂uε
∂t

(0, x) = vinit

ε (x).
(6.10)

Using Lemma 3.3 the solution of (6.10) is given by

uε(t, x) =

ˆ

ε−1Y

ûε1(t, ξ)φ1

(x

ε
, εξ
)

e2πix·ξdξ, (6.11)

where, for any ξ ∈ ε−1Y , ûε1(t, ξ) is a solution of the following ordinary differential equation











d2ûε1
dt2

+ ε−2λ1(εξ)û
ε
1 = f̂(t, ξ),

ûε1(0, ξ) = ûinit(ξ),
dûε1
dt

(0, ξ) = v̂init(ξ).
(6.12)
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Using the Taylor expansion (3.2) of λ1, we deduce that










d2ûε1
dt2

+
(

4π2a∗ξ · ξ + ε2(2π)4D∗ · (ξ ⊗ ξ ⊗ ξ ⊗ ξ)
)

ûε1 = f̂(t, ξ) +O(ε4),

ûε1(0, ξ) = ûinit(ξ),
dûε1
dt

(0, ξ) = v̂init(ξ).
(6.13)

At least formally, dropping the O(ε4) in the above equation, ûε1(t, ξ) is well approximated
by v̂ε(t, ξ) which is the Fourier transform of the solution vε(t, x) of the following high order
homogenized equation











∂2vε
∂t2

− div (a∗∇vε) + ε2D∗ · ∇4
xvε = f(t, x),

vε(0, x) = uinit(x),
∂vε
∂t

(0, x) = vinit(x),
(6.14)

Contrary to the elliptic case, the left hand side operator in (6.14) is identical to that in (6.9)
which was obtained by two-scale asymptotic expansions. Only the right hand side differs, as
was already explained in Section 5. As stated in Proposition 6.1, the right hand side of (6.9)
can be made equal to f if the source term is corrected or “well prepared” in the wave equation
(6.1). We summarize our results in the following proposition.

Proposition 6.1. The “high order” homogenized equation of the two-scale asymptotic expan-
sion method applied to the wave equation (6.1) is

∂2vε
∂t2

− div (a∗∇vε) + ε2D∗∇4vε = f + ε2div (d∗∇f) .

On the other hand, the “high order” homogenized equation obtained by the Bloch wave method
is

∂2vε
∂t2

− div (a∗∇vε) + ε2D∗∇4vε = f.

The latter can also be obtained by the method of two-scale asymptotic expansion if, in (6.1),
the source term f(t, x) is replaced by its corrected version

fε(t, x) = f(t, x)− εχ(1)
(x

ε

)

· ∇f(t, x).

Of course, as already remarked in Section 5, problem (6.14) is ill-posed because D
∗ has

the wrong sign. However, the same Boussinesq argument of Remark 5.3 works here and the
decomposition (5.18) allows us to transform (6.13) in



























(

1 + ε24π2Cξ · ξ
) d2ûε1
dt2

+
(

4π2a∗ξ · ξ + ε2(2π)4D∗ · (ξ ⊗ ξ ⊗ ξ ⊗ ξ)
)

ûε1

= f̂(t, ξ) + ε24π2 (Cξ · ξ) f̂(t, ξ) +O(ε4),

ûε1(0, ξ) = ûinit(ξ),
dûε1
dt

(0, ξ) = v̂init(ξ),

(6.15)

which is the Fourier transform of the well-posed problem (because C and D
∗ are non-negative)



























∂2vε
∂t2

− ε2div

(

C∇
∂2vε
∂t2

)

− div (a∗∇vε) + ε2D∗ · ∇4vε

= f(t, x)− ε2div (C∇f(t, x)) +O(ε4),

vε(0, x) = uinit(x),
∂vε
∂t

(0, x) = vinit(x).

(6.16)
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In other words, (6.16) is a stabilized version of (6.14) which does not sacrifice accuracy, up to
order O(ε4). In numerical practice, system (6.16) should be solved instead of (6.14).

It was proved in [19], [16] (see also [2]) that the solution vε of (6.16) provides an approxi-
mation of the exact solution uε of (6.1), up to an error term of order ε in the L∞

t (L2
x)-norm for

long times up to Tε−2.
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