
HAL Id: hal-01215522
https://hal.science/hal-01215522v1

Submitted on 22 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Mechanizing the Minimization of Deterministic
Generalized Büchi Automata
Souheib Baarir, Alexandre Duret-Lutz

To cite this version:
Souheib Baarir, Alexandre Duret-Lutz. Mechanizing the Minimization of Deterministic Generalized
Büchi Automata. 34th Formal Techniques for Networked and Distributed Systems (FORTE), Jun
2014, Berlin, Germany. pp.266-283, �10.1007/978-3-662-43613-4_17�. �hal-01215522�

https://hal.science/hal-01215522v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Mechanizing the Minimization of
Deterministic Generalized Büchi Automata

Souheib Baarir?1,2 and Alexandre Duret-Lutz3

1 Université Paris Ouest Nanterre la Défense, Nanterre, France
2 Sorbonne Universités, UPMC Univ. Paris 6, UMR 7606, LIP6, Paris, France

souheib.baarir@lip6.fr
3 LRDE, EPITA, Le Kremlin-Bicêtre, France

adl@lrde.epita.fr

Abstract. Deterministic Büchi automata (DBA) are useful to (prob-
abilistic) model checking and synthesis. We survey techniques used to
obtain and minimize DBAs for different classes of properties. We extend
these techniques to support DBA that have generalized and transition-
based acceptance (DTGBA) as they can be even smaller. Our minimiza-
tion technique—a reduction to a SAT problem—synthesizes a DTGBA
equivalent to the input DTGBA for any given number of states and
number of acceptance sets (assuming such automaton exists). We present
benchmarks using a framework that implements all these techniques.

1 Introduction

Deterministic Büchi automata (DBA) are used in several domains like probabilistic
model checking [3] or synthesis of distributed systems [13]. DBAs are commonly
obtained from Büchi automata (BA) by applying Safra’s construction [20] or,
when it works, some powerset-based construction [9]. Since applications are
usually more efficient when dealing with small automata, it makes sense to try to
minimize these DBA (i.e., find an equivalent DBA such that no smaller equivalent
DBA exist). Two techniques can be used depending on the class of the DBA
at hand. Weak DBAs (where accepting cycles cannot mix with rejecting cycles)
are minimizable almost like finite automata [16]. For the general case, which is
NP-complete [21], Ehlers [11] gives a reduction to a SAT problem.

For model checking, several efficient algorithms have been developed to check
the emptiness of BAs, but also generalized Büchi automata (GBA) [19], and even
transition-based generalized Büchi automata (TGBA) [8]. GBAs have multiple
sets of accepting states, while TGBAs have multiple sets of accepting transitions.
All these automata types are expressively equivalent, but GBAs and TGBAs
are more concise than BAs. Furthermore, TGBAs are naturally obtained from
linear-time temporal logic (LTL) formulae [10].

In this paper, we discuss the construction of minimal deterministic transition-
based generalized Büchi automata (DTGBA) for which we do not know any

? This work has been supported by the project ImpRo/ANR-2010-BLAN-0317.

general minimization technique. To handle (non-deterministic) TGBA as input,
we propose (and implement) two processing chains that convert TGBA into
minimal DTGBA. One attempts to determinize transition-based Büchi automata
via a powerset construction, the other uses Safra’s construction. Although these
two determinizations do not work with generalized acceptance, we interpret the
resulting automaton as a DTGBA with a single acceptance set and attempt to
minimize it using more acceptance sets. The minimization technique we propose
is a generalization of Ehlers’ SAT-based procedure [11] to deal with DTGBA
instead of DBA. This way we effectively obtain a minimal DTGBA, even though
we use determinization procedures that do not support generalized acceptance.

The paper is organized as follows. Section 2 defines the various types of
automata, some conversions between them, and key concepts. Section 3 reviews
the hierarchy of recurrence properties and algorithms that exist to determinize or
minimize automata in that class. Section 4 shows how to encode the minimization
of a DTGBA as a SAT-problem, and then discusses its use. Finally, Section 5
presents results on the minimization of DTGBA obtained from LTL formulae.

2 Preliminaries

Let AP be a finite set of (atomic) propositions, and let B = {⊥,>} represent
Boolean values. An assignment is a function ` : AP → B that valuates each
proposition. Σ = BAP is the set of all assignments of AP. X∗ (resp. Xω) denotes
the set of finite (resp. infinite) sequences over a set X. The empty sequence is
denoted ε. A word w ∈ (BAP)ω is an infinite sequence of assignments. A language
(also called property) is a set of words. For any infinite sequence π we denote by
inf(π) the set of elements that appear infinitely often in π.

Definition 1 (Labeled Transition System). An LTS is a tuple S = 〈AP, Q, ι,
δ〉 where AP is a finite set of atomic propositions, Q is a finite set of states,
ι ∈ Q is the initial state, δ ⊆ Q × BAP × Q is the transition relation, labeling
each transition by an assignment.

A run of an LTS is an infinite sequence π = (q0, `0, q1)(q1, `1, q2)(q2, `2, q3) · · · ∈
δω of transitions such that q0 = ι. For any such run, we denote by π|Q =
q0q1q2 · · · ∈ Qω the sequence of states it visits, and we say that π recognizes the
word `0`1`2 · · · ∈ (BAP)ω.

A cycle C = (q1, `1, q2)(q2, `2, q3) . . . (qn, `n, q1) is a finite sequence of tran-
sitions that forms a loop and visits the finite sequence C|Q = q1 . . . qn of states.
For notational convenience, we sometime interpret C|Q as a set of states.

As an implementation optimization, and to simplify illustrations, it is practical
to use edges labeled by Boolean formulae to group transitions with same sources
and destinations: for instance two transitions (s1, ab̄, s2) and (s1, ab, s2) will be
represented by an edge from s1 to s2 and labeled by the Boolean formula a.

For convenience of notation, we may view the relation δ as a one-argument
function δ : Q→ 2(B

AP×Q) with δ(q) = {(`, d) | (q, `, d) ∈ δ} or as a two-argument
function δ : Q×BAP → 2Q with δ(q, `) = {d | (q, `, d) ∈ δ}.

s2

s0

s1 a ∧ b

b̄

ā ∧ b

b̄

a ∧ b

ā ∧ b

ā

a

(a) BA

s1

s0

ā

a

b̄

b

(b) GBA

s1

s0

ā

a

b̄

b

(c) TBA

s0a ∧ b

a ∧ b̄

ā ∧ b

ā ∧ b̄
(d) TGBA

Fig. 1: Minimal deterministic automata recognizing the LTL formula GFa ∧ GFb.

Definition 2 (Deterministic and Complete). An LTS S = 〈AP, Q, ι, δ〉 is
deterministic iff |δ(q, `)| ≤ 1 for all q ∈ Q and ` ∈ BAP, and it is complete iff
|δ(q, `)| ≥ 1 for all q and `.

To characterize the infinite runs of an LTS that should be accepted, we consider
several variants of Büchi automata that differ by their acceptance condition.

Definition 3 (Büchi-like Automata). A Büchi-like automaton is a pair A =
〈S,F〉 where S is an LTS, and F is a finite set whose semantic is defined
differently for each type of acceptance. Given a run π and a cycle C:

BA: for Büchi Automata, F ⊆ Q, π is accepted iff inf(π|Q) ∩ F 6= ∅, and C is
accepting iff C|Q ∩ F 6= ∅;

GBA: for Generalized Büchi Automata, F ⊆ 2Q, π is accepted iff ∀F ∈
F , inf(π|Q) ∩ F 6= ∅, and C is accepting iff ∀F ∈ F , C|Q ∩ F 6= ∅;

TBA: for Transition-based Büchi Automata, F ⊆ δ, π is accepted iff inf(π)∩F 6=
∅, and C is accepting iff C ∩ F 6= ∅;

TGBA: for Transition-based Generalized Büchi Automata, F ⊆ 2δ, π is accepted
iff ∀F ∈ F , inf(π) ∩ F 6= ∅, and C is accepting iff ∀F ∈ F , C ∩ F 6= ∅.

In all cases the language L (A) of an automaton is the set of words recognized by
accepting runs of A. A cycle is rejecting iff it is not accepting.

DBA, DGBA, DTBA, and DTGBA, denote the restrictions of the above
types to automata where the associated LTS S is deterministic.

As an example, Fig. 1 shows one deterministic and complete automaton of
each type. For BA, the states in F (called accepting states), are traditionally
denoted by double circles. For GBA, F = {F1, F2, . . .} is a set of acceptance sets
Fi ⊆ Q, and each of these Fi is pictured using colored dots on the side of the
states it contains (a state may have multiple such dots if it belongs to multiple
acceptance sets). For transition-based acceptance (TBA or TGBA), we put those
colored dots on the transitions (of course, only one color is used for TBA).

Definition 4 (SCC). A strongly connected component (SCC) of an automaton
〈S,F〉 is a set of states that are pairwise connected in S, and that is maximal
with respect to inclusion. An SCC is accepting if it contains an accepting cycle,
otherwise, it is rejecting. An SCC with a single state and no cycle is called trivial.

Definition 5 (Automaton Typeness). An automaton A = 〈S,F〉 is said to
be β-type if there exists an automaton B = 〈S,F ′〉 of acceptance type β such that
L (A) = L (B). In other words, A is β-type if we can change its acceptance set
so that it accepts the same language with the same transition structure but with a
different type of acceptance condition (the β one).

For instance any BA 〈S,F〉 is GBA-type, because it can be trivially repre-
sented as the GBA 〈S, {F}〉. Any GBA 〈S, {F1, . . . , Fn}〉 is TGBA-type, since
it is equivalent to the TGBA 〈S, {F ′1, . . . , F ′n}〉 with Fi = {(s, `, d) | (s, `, d) ∈
δ ∧ s ∈ Fi} (i.e., the membership of any state to some accepting set Fi is trans-
ferred to all its outgoing transitions). Similarly all BA are TBA-type, and all
TBA are TGBA-type. These trivial conversions can sometime be used in the op-
posite direction. For instance a TGBA is “trivially” GBA-type if all the outgoing
transitions of each state belong to the same acceptance sets.

Since a TGBA can represent any considered type (BA, GBA, TBA) using
the same transition structure, it is often practical to consider only TGBAs and
treat the other types as particular cases. For algorithms that cannot deal with
generalized acceptance, a TGBA can be degeneralized into a TBA or a BA [2].
For instance the TBA of Fig. 1(c) was degeneralized from the TGBA of Fig. 1(d).

Definition 6 (Realizability). A property (or an automaton) is β-realizable if
there exists an automaton with β acceptance that accepts the same language.

Any Büchi-like automaton is β-realizable for β ∈ {BA,GBA,TBA,TGBA}.
Furthermore any deterministic Büchi-like automaton is Dβ-realizable. However
it is well known than not all BAs are DBA-realizable, and this fact holds for the
three other types of Büchi acceptance as well.

Definition 7 (Weakness). An automaton is inherently weak if it contains no
accepting cycle that has a state in common with a rejecting cycle.

This notion of inherent weakness [5] generalizes the more common notion of
weak automaton [4, 6] where states of an SCC should be either all accepting or
all non-accepting. Defining F as the set of states that belong to some accepting
cycle will turn any inherently weak automaton into a Weak BA (WBA) [5].

Definition 8 (Minimal-state automaton [17]). For a language L ⊆ Σω, let
≈L⊆ Σ∗×Σ∗ be the right-congruence defined by u ≈L v iff uα ∈ L ⇐⇒ vα ∈ L
for all α ∈ Σω. Let [·] denote the equivalence classes of L, i.e., [u] = {v ∈ Σ∗ |
u ≈L v}. The minimal-state automaton of L, denoted MSA(L) is the (complete
and deterministic) LTS 〈AP, {[u] | u ∈ Σ∗}, [ε], δ〉 where δ([u], `) = [u`].

3 Existing Determinization and Minimization Procedures

We now discuss several existing procedures to determinize and minimize Büchi
automata. Some of these apply only to specific subclasses of temporal properties.

Reactivity

Recurrence

TCONG

CONG

Persistence

Obligation

WBA-realizable

WDBA-realizable

BA-realizable

DBA-realizable

DBA-realizable
with MSA

DTBA-realizable
with MSA

Fig. 2: Hierarchy of temporal properties in relation with subclasses of Büchi BA.

Figure 2 shows a classification of temporal properties, using the names
from Manna and Pnueli [18], and with an additional couple of interesting sub-
classes. The whole square represents the entire set of BA-realizable properties,
also called reactivity properties. This set includes persistence properties, which
can be realized by weak automata, and recurrence properties ,which can be real-
ized by deterministic automata. The intersection of these last two sets defines the
obligation properties, which can be realized by weak and deterministic automata.
The obligation class includes the well-known subclasses of safety and guarantee
properties (not depicted here), as well as all their Boolean combinations.

Determinization. Assume that a recurrence property ϕ is represented by a
possibly non-deterministic BA Aϕ = 〈T,F〉, and for which we wish to obtain
a DBA Dϕ = 〈T ′,F ′〉. We can consider different procedures depending on the
class to which ϕ belongs.

If ϕ is known to be an obligation (for most LTL formulae, this can be checked
syntactically [6]), then a weak DBA (WDBA) Dϕ can be obtained from Aϕ
in a quite efficient way [9]: T should be determinized by the classical powerset
construction to create T ′ = P(T), and the set F ′ can be computed by selecting
one word of each SCC of T ′ and checking whether it is accepted by Aϕ. Dax
et al. [9] additionally show that if it is not known whether a property ϕ is an
obligation, this procedure may still be applied but its result Dϕ must then be
checked for equivalence with Aϕ.

The class CONG is defined as the set of languages L which are realizable by
a BA automaton whose LTS is MSA(L), this includes all obligations as well as
some properties that are not expressible by weak automata. For instance the
property specified by the formula G(a→ X¬a) ∧ GF(a) is in CONG: it has three
equivalence classes [ε], [a], and [aa], and the corresponding MSA can be used to
define the DBA shown in Fig. 3(a).

The formula GFa is not in CONG because its MSA has a single state (the
language has no distinguishing prefixes), yet there is no single-state DBA that
can recognize GFa. However there exists a 1-state DTBA for this property, shown
in Fig. 3(b). We could therefore define the class TCONG of properties that are

[ε] [a] [aa]
a

ā
a

ā
>

(a)

[ε] aā

(b)

Fig. 3: (a) G(a→ X¬a) ∧ GFa specifies a property in CONG: it is realizable by a
DBA whose LTS is the MSA of its language. (b) Although GFa is not in CONG,
its MSA can serve as a support for an equivalent DTBA.

DTBA-realizable with their MSA as LTS. Note that GFa ∧ GFb whose MSA also
has a single state, is not in TCONG: its minimal DTBA is shown in Fig. 1(c).

Dax et al. [9] show that you can apply the classical powerset construction to
determinize the LTS of any BA Aϕ = 〈T,F〉 recognizing a property in CONG, and
the resulting deterministic LTS T ′ = P(T) can be labeled as a DBA Dϕ = 〈T ′,F ′〉
recognizing L (Aϕ). The algorithm used to obtain the necessary F ′ is more
complex than the one used for weak automata as it requires an enumeration of
all the elementary cycles in T ′. Futhermore, the DBAs obtained this way are
not necessary minimal. This construction can be extended straightforwardly to
transition-based acceptance; this way we may obtain DTBAs for properties (such
as GFa) where the original state-based procedure would not deliver any DBA.

Another determinization procedure, which applies to all recurrence properties,
is to use Safra’s construction [20] to convert a BA into a deterministic Rabin
automaton (DRA). More generally, Schewe and Varghese [22] have recently
proposed a determinization algorithm that inputs a TGBA and outputs a DRA.
DRA that express recurrence properties are all DBA-type, and Krishnan et al.
[15] show how to compute the associated DBAs.

Unfortunately, all these determinization procedures produce only DBA (or
DTBA). To our knowledge, there is no determinization procedure that would
produce a deterministic automaton with generalized acceptance.

Minimization. Minimizing a DBA, i.e., building a DBA such that no smaller
equivalent DBA exist, is in general, an NP-complete problem [21].

However, weak DBAs (i.e., obligation properties) can be minimized using an
algorithm identical to those performed on deterministic finite automata: the only
requirement is to choose the acceptance of trivial SCCs correctly [16].

For the more general recurrence properties, Ehlers [11] gives an encoding of
an equivalent minimal DBA as the solution of a SAT problem. His technique can
also be extended straightforwardly to minimize a DTBA.

Until now there were no minimization procedure for generalized Büchi au-
tomata. In the next section we show an encoding inspired by Ehlers’ [11] for
minimizing DTGBAs. For any DTGBA A with n states and m acceptance sets,
our encoding attempts to synthesize an equivalent DTGBA with n′ states and
m′ acceptance sets for some given n′ or m′ (and possibly m′ > m). By combining
this procedure with existing (non-generalized) determinizations, we effectively
obtain a minimal DTGBA with multiple acceptance sets, even though we do not
know of any determinization procedure that supports generalized acceptance.

4 Synthesis of Equivalent DTGBA

Given a complete DTGBA R = 〈〈AP,QR, ιR, δR〉,FR〉, and two integers n
and m, we would like to construct (when it exists) a complete DTGBA C =
〈〈AP,QC , ιC , δC〉,FC〉 such that L (R) = L (C), |QC | = n and |FC | = m. We
call R the reference automaton, and C, the candidate automaton.

Since C and R are complete and deterministic, any word of Σω has a unique
run in R and C, and testing L (R) = L (C) can be done by ensuring that each
word is accepted by R iff it is accepted by C. In practice, this is checked by
ensuring that any cycle of the synchronous product C ⊗R corresponds to cycles
that are either accepting in C and R, or rejecting in both.

This observation is used by Ehlers [11] for his SAT encoding. In his case, a
cycle in a DBA can be detected as accepting as soon as it visits an accepting state.
We use a similar encoding for our setup. However, because of the generalized
acceptance condition of DTGBAs, we have to keep track of all the acceptance sets
visited by paths of the product to ensure that cycles have the same acceptance
status in both C and R.

4.1 Encoding as a SAT Problem

Let SCCR ⊆ 2QR denote the set of non-trivial strongly connected components
of R, and let Acc(q′1, `, q

′
2) = {A ∈ FR | (q′1, `, q′2) ∈ A} be the set of acceptance

sets of R that contain the transition (q′1, `, q
′
2) ∈ δR.

We encode C with two sets of variables:
– The variables {〈q1, `, q2〉δC | (q1, q2) ∈ Q2

C , ` ∈ Σ} encode the existence of
transitions (q1, `, q2) ∈ δC in the candidate automaton.

– Variables {〈q1, `, Ai, q2〉FC
| (q1, q2) ∈ Q2

C , ` ∈ Σ,Ai ∈ FC} encode the
membership of these transitions to the acceptance set Ai ∈ FC of C.

For the product C ⊗R, we retain the reachable states, and parts of paths that
might eventually be completed to become cycles.
– A variable in {〈q, q′, q, q′, ∅, ∅〉 | q ∈ QC , q′ ∈ QR} encodes the existence of a

reachable state (q, q′) in C⊗R. The reason we use a sextuplet to encode such
a pair is that each (q, q′) will serve as a starting point for possible paths.

– A variable in {〈q1, q′1, q2, q′2, F, F ′〉 | (q1, q2) ∈ Q2
C , S ∈ SCCR, (q′1, q

′
2) ∈

S2, F ⊆ FC , F ′ ⊆ FR} denotes that there is a path between (q1, q
′
1) and

(q2, q
′
2) in the product, such that its projection on the candidate automaton

visits the acceptance sets F ⊆ FC , and its projection on the reference
automaton visits the acceptance sets F ′ ⊆ FR. This set of variables is used
to implement the cycle equivalence check, so the only q′1 and q′2 that need to
be considered should belong to the same non-trivial SCC of R.

With these variables, the automaton C can be obtained as a solution of the
following SAT problem. First, C should be complete (i.e., δC is total):∧

q1∈QC , `∈Σ

∨
q2∈QC

〈q1, `, q2〉δC (1)

The initial state of the product exists. Furthermore, if (q1, q
′
1) is a state of

the product, (q′1, `, q
′
2) ∈ δR is a transition in the reference automaton, and

(q1, `, q2) ∈ δC is a transition in the candidate automaton, then (q2, q
′
2) is a state

of the product too:

∧〈ιC , ιR, ιC , ιR, ∅, ∅〉∧
∧

(q1,q2)∈Q2
C , q

′
1∈QR,

(`,q′2)∈δR(q′1)

〈q1, q′1, q1, q′1, ∅, ∅〉∧〈q1, `, q2〉δC→〈q2, q′2, q2, q′2, ∅, ∅〉 (2)

Any transition of the product augments an existing path, updating the sets F
and F ′ of acceptance sets visited in each automata. Unfortunately, we have to
consider all possible subsets G ∈ 2FC of acceptances sets to which the candidate
transition (q2, `, q3) could belong, and emit a different rule for each possible G.

∧
∧

(q1,q2,q3)∈Q3
C ,

(F,G)∈(2FC)2,

S∈SCCR, (q
′
1,q

′
2)∈S

2,

F ′∈2FR , (`,q′3)∈δR(q′2)

〈q1, q′1, q2, q′2, F, F ′〉
∧〈q2, `, q3〉δC
∧

∧
A∈G
〈q2, `, A, q3〉FC

∧
∧
A6∈G

¬〈q2, `, A, q3〉FC

→ 〈q1, q′1, q3, q′3, F ∪G,

F ′ ∪Acc(q′2, `, q′3)〉
(3)

If a path of the product is followed by a transition (q′2, `, q
′
3) ∈ δR and a transition

(q2, `, q3) ∈ δC that both closes the cycle (q3 = q1 ∧ q′3 = q′1), but such that this
cycle is non-accepting with respect to the reference automaton (Acc(q′2, `, q

′
3) ∪

F ′ 6= FR), then the cycle formed in the candidate automaton by (q2, `, q1) should
not be accepting (at least one acceptance set of FC \ F is missing):

∧
∧

(q1,q2)∈Q2
C , F∈2

FC ,

S∈SCCR, (q
′
1,q

′
2)∈S

2, F ′∈2FR ,

(`,q′3)∈δR(q′2), q
′
3=q

′
1,

Acc(q′2,`,q
′
3)∪F

′ 6=FR

〈q1, q′1, q2, q′2, F, F ′〉 ∧ 〈q2, `, q1〉δC → ¬
∧

A∈FC\F

〈q2, `, A, q1〉FC
(4)

Conversely, if a path of the product is followed by a transition (q′2, `, q
′
3) ∈ δR

and a transition (q2, `, q3) ∈ δC that both closes the cycle (q3 = q1 ∧ q′3 = q′1),
but such that this cycle is accepting with respect to the reference automaton
(Acc(q′2, `, q

′
3) ∪ F ′ = FR), then the cycle formed in the candidate automaton by

(q2, `, q1) should also be accepting ((q2, `, q1) should belong at least to all missing
acceptance sets FC \ F):

∧
∧

(q1,q2)∈Q2
C , F∈2

FC ,

S∈SCCR, (q
′
1,q

′
2)∈S

2, F ′∈2FR ,

(`,q′3)∈δR(q′2), q
′
3=q

′
1

Acc(q′2,`,q
′
3)∪F

′=FR

〈q1, q′1, q2, q′2, F, F ′〉 ∧ 〈q2, `, q1〉δC →
∧

A∈FC\F

〈q2, `, A, q1〉FC
(5)

Optimizations. As suggested by Ehlers [11], the set of possible solutions can be
optionally constrained with some partial symmetry breaking clauses. Assuming
QC = {q1, ..., qn} and Σ = {`0, . . . , `m−1} we can order the transitions of the
solution lexicographically with respect to their source and label, as (q1, `0, d1),
(q1, `1, d2), . . . , (q1, `m−1, dm), (q2, `0, dm+1), etc., and constrain the solution so
that the destination of the first transition should be chosen between d1 ∈ {q1, q2},
the destination of the second between d2 ∈ {q1, q2, q3}, etc.

∧
∧

1≤i≤|Q|, 0≤j<|Σ|, (i−1)|Σ|+j+3≤k≤n

¬〈qi, `j , qk〉δC (S)

ReduceStatesDTGBA(R,m = R.nb acc sets()):
repeat:

n← R.nb states()
C ← SynthesizeDTGBA(R,n− 1,m)
if C does not exists: return R
R← C

Fig. 4: Given a complete DTGBA A, attempt to build an equivalent smaller one
with the same number of acceptance sets.

Equations (3)–(5) can be encoded more efficiently when q′1 and q′2 belong to a
weak SCC. In that case it is not necessary to remember the history F ′ of the
acceptance sets seen by paths in that SCC, since all paths are either accepting or
rejecting. Variables of the form 〈q1, q′1, q2, q′2, F, F ′〉 where F ′ ∈ 2FR can hence be
restricted to just F ′ = ∅, limiting the number of variables and clauses emitted.

State-based Output. To produce automata with state-based acceptance, it
suffices to consider all variables 〈q, `, Ai, q′〉FC

that share the same q and Ai as
aliases. This way, the DTGBA output is DGBA-type.

4.2 Usage

We call SynthesizeDTGBA(R,n,m) the procedure that:

1. inputs a complete DTGBA R, two integers n = |QC | and m = |FC |,
2. produces a DIMACS file with all the above clauses,

3. calls a SAT solver to solve this problem,

4. builds the resulting DTGBA C if it exists. The construction of this automaton
depends only on the value of variables {〈q, `, q′〉δC | (q, q′) ∈ Q2

C , ` ∈ Σ} ∪
{〈q, `, Ai, q′〉FC

| (q, q′) ∈ Q2
C , ` ∈ Σ,Ai ∈ FC}.

Although equation (1) constraints C to be complete, there is no explicit
constraint for C to be deterministic. By construction, any word w is accepted in
R iff it is accepted by any run that recognizes w in C. In the presence of two
transitions 〈q, `, d1〉δC and 〈q, `, d2〉δC when building C, we can safely ignore one
of them to ensure determinism.

Minimization: |FC | = |FR|. Given a complete DTGBA R = 〈〈AP,QR, ιR, δR〉,
FR〉, we may use SynthesizeDTGBA in a loop such as the one shown in Fig. 4
to reduce the number of states of the automaton. By default, we keep the same
number m = |FR| of acceptance sets for the candidate automaton.

Minimization with Generalization: |FC | > |FR|. A greater reduction might
be obtained by increasing the number m = |FC | of acceptance sets. This can
be interpreted as the converse of a degeneralization: instead of augmenting the
number of states to reduce the number of acceptance sets, we augment the
number of acceptance sets in an attempt to reduce the number of states.

It is however not clear how this increase of m should be done. Figure 5 shows
an example of a property that can be expressed by a 4-state DTGBA if m = 1,
a 2-state DTGBA if m = 2 and a 1-state DTGBA if m = 4. Interestingly, the

1

2

3

4

ab ∨ cd

d̄b̄

d
bā
c̄

bād̄

dc̄
b̄a
d̄
b̄
∨
cd̄
b̄

ab ∨ cd

āc̄

cbād̄

adc̄b̄

ad̄b̄

dāc̄

ab ∨ cd

ād̄
a
d
c̄b̄
ac
d̄b̄

dbāc̄

cā
d̄
∨
bā
d̄

ab ∨ cd

c̄b̄

(a) |F| = 1

1

2

b̄d̄c̄

db̄c̄cb̄d̄

ab ∨ cd

bā(c̄ ∨ d̄) a ∨ cd

ād̄c̄

dāc̄cād̄

ab ∨ cd
(b) |F| = 2

1

ab ∨ cd

dbc̄ā

cbād̄

bc̄ād̄

adc̄b̄

dc̄āb̄

a
cd̄
b̄

cā
d̄
b̄

a
c̄d̄
b̄ c̄ād̄b̄

(c) |F| = 4

Fig. 5: Examples of minimal DTGBA recognizing (GFa ∧ GFb) ∨ (GFc ∧ GFd).

smallest DTGBA for m = 3 also has two states. Consequently an algorithm that
increments m as long as it reduces the number of states would never reach m = 4.

We leave open the problem of finding the smallest m such that no smaller
equivalent DTGBA with a larger m can be found. Instead, we use the following
heuristic: let m be the number of acceptance set that were “naturally” used
to translate the formula ϕ into a TGBA Aϕ (before any degeneralization or
determinization). In the case of (GFa ∧ GFb) ∨ (GFc ∧ GFd), each F operator will
require one acceptance set during the translation [10], so we would use m = 4.

5 Implementation and Experiments

5.1 Implemented Tools

Figure 6 gives an overview of the processing chains we implemented to produce
a minimal DTGBA or DTBA. With the exception of ltl2dstar 0.5.1, a tool
written by Joachim Klein [14] to convert LTL formulae into deterministic Rabin
or Streett automata, all the other white boxes correspond to algorithms that have
been implemented in Spot 1.2, and have been integrated in two command-line
tools: ltl2tgba at the top of the picture, and dstar2tgba at the bottom.

ltl2tgba takes as input an LTL formula and translates it into a TGBA
A = 〈S,F〉 [10]. If the desired number of acceptance sets m was not supplied on
the command-line, we set m← |F| right after this step. We now attempt WDBA
minimization [9], if that succeeded, we output a minimal weak DBA (looking for
transition-based or generalized acceptance will not reduce it further). Otherwise,
we simplify the TGBA using simulation-based reductions [2]. If the resulting
TGBA has more than one acceptance set but we plan to build a DTBA (i.e.
m = 1), we degeneralize it. If the resulting TBA is nondeterministic, we attempt

ltl2tgba

dstar2tgba

translate
to TGBA

attempt
WDBA
minim.

simplify
TGBA

fail

LTL
formula

degen
to TBA

nondet. or
|F| > m = 1

else

attempt
powerset
to DTBA

nondet.
not in
TCONG

4

fail

det. 2

success 3

DTBA SAT
minimization

DTGBA SAT
minimization

m = 1

m > 1minimal
DTGBA

minimal
DTBA

minimal
WDBA

success 1

ltl2dstar

(DRA)

attempt
conversion
to DBA

attempt
WDBA
minim.

simplify
DBAsuccess fail

not a
recurrence

fail

su
cc

es
s

Fig. 6: The two tool chains we use to convert an LTL formula into a DTBA or a
DTGBA. |F| is the number of acceptance condition of the current automaton,
while m is the desired number of acceptance sets.

the transition-based variant of Dax et al. [9]’s powerset construction followed by
a cycle-enumeration to decide the acceptance of each transition. This procedure
works only on a TBA, hence the previous degeneralization is also performed
on any nondeterministic TGBA. If this powerset construction fails to produce
an equivalent DTBA, it means the input property is not in TCONG. Otherwise
the deterministic automaton is sent for SAT-based minimization. We have two
procedures implemented: “DTGBA SAT” is the encoding described in Sec. 4.1,
while “DTBA SAT” is an adaptation of Ehlers’ encoding [11] to transition-based
Büchi acceptance and is more-efficient to use when m = 1 (see Annex A). Not
apparent on this picture, is that these two algorithms can be configured to output
automata that are DBA-type or DGBA-type, as discussed in the last paragraph
of Sec. 4.1. To solve SAT problems, we use glucose 2.3 [1], which is ranked first
in the hard-combinatorial benchmark of the 2013 SAT Competition.

If the automaton could not be determinized by ltl2tgba, the second approach
with dstar2tgba is used instead. This approach starts with ltl2dstar to convert
the input LTL formula into a deterministic Rabin automaton (DRA). The
produced DRA is then converted to a DBA [15] if such a DBA exists, otherwise
it means that the formula is not a recurrence. The resulting DBA is turned into
a minimal WDBA if it expresses an obligation [9], otherwise it is simplified using
simulation-based reduction, before finally proceeding to SAT-based minimization.

5.2 Experiments

To assert the effectiveness of our minimization procedures, we took LTL formulas
expressing recurrence properties, and attempted to build a minimal DBA, DTBA,
and DTGBA for each of them. The LTL formulae are all those listed by Ehlers

[11], and those of Esparza et al. [12] that are DBA-realizable. We also added a
few formulas of our own.

For comparison, we also ran Ehlers’ DBAminimizer (dated November 2011) [11]:
a tool that takes deterministic Rabin automata, as produced by ltl2dstar, and
converts them into their minimal DBA by solving a SAT problem with PicoSat
(version 957). This tool is named “DBAm..zer” in our tables.

We executed our benchmark on a machine with four Intel Xeon E7-2860
processors and 512GB of memory. We limited each minimization procedure (the
entire process of taking an LTL formula or a Rabin automaton into a minimal
DBA, including writing the problem to disk, not just the SAT-solving procedure)
to 2 hours, and each process to 40GB of memory.

For presentation, we partitioned our set of formulae into four classes, based
on which path they would take in ltl2tgba, denoted by the x marks in Fig. 6.
1 Formulae that correspond to obligations properties. On these formulas, the

powerset construction can be used to obtain a DBA [9], and this DBA can
be minimized in polynomial time [16]. Using a SAT-based minimization in
this case would be unreasonable.

2 Formulae for which ltl2tgba translator naturally produces deterministic
automata, without requiring a powerset construction.

3 Formulae that ltl2tgba can successfully convert into a DTBA by applying
a powerset construction.

4 Formulae that ltl2tgba would fail to convert into a DTBA, and for which
dstar2tgba is needed.
For size reason, we only present an excerpt of the results for the most

interesting classes: 4 (Table 1) and 3 (Table 2).4

For each formula we show the size of the DRA constructed by ltl2dstar,
the size of the DTBA or DBA built by dstar2tgba before SAT-minimization,
and the size of the minimal DBA, DTBA or DTGBA after SAT-minimization.
In the case of DTGBA the desired number of acceptance sets m is shown in the
second column (this m was computed by running only the translation algorithm
of ltl2tgba, and picking m← |F| on the result).

Column “C.” indicates whether the produced automata are complete: rejecting
sink states are always omitted from the sizes we display, and this explains
differences when comparing our tables with other papers that measure complete
automata. When C = 0, a complete automaton would have one more state.

Cases that took more than 2 hours or 40GB are shown as “(killed)”; an
additional “≤ n” gives the number of states of the smallest automaton success-
fully computed. SAT problems requiring more than 231 clauses, the maximum
supported by state-of-the-art solvers, are shown as “(intmax)”. Cases where the
output of the SAT minimization is smaller than the input are shown with a light
gray background. Bold numbers show cases where the minimal DTBA is smaller
than the minimal DBA (transition-based acceptance was useful) and cases where
the minimal DTGBA is smaller than the minimal DTBA (generalized acceptance

4 Detailed results and instructions to reproduce the benchmark can be found at
http://www.lrde.epita.fr/~adl/forte14/.

http://www.lrde.epita.fr/~adl/forte14/

Table 1: Formulae that we do not know how to determinize other than via DRA.

DRA
DBA

DBAm..ze
r

minDBA

minDTBA

minDTGBA

m C. |Q| |Q| |Q| time |Q| time |Q| time |Q| |F| time

(ā ∧ Fa)R(b̄RXFc) 2 1 60 24 (killed) 11 1585 7 14 7 1 815
ā ∧ ((FbU a)WXc) 2 0 31 20 (killed) (killed≤15) (killed≤14) (killed≤13)
(aR(bRFc))WXGb 1 1 31 24 (killed) (killed≤11) 8 188 8 1 190
(aRFb)UXc̄ 2 1 19 13 11 1356 11 2405 10 55 10 1 182
F(a ∧ Fb)WXc 2 1 25 16 (killed) (killed≤12) 11 1445 10 2 364
(FāRFb̄)WGc̄ 2 1 18 15 5 59 5 14 4 12 4 1 444
((FaU b)RFc)WXc̄ 3 1 47 32 11 1216 11 1792 9 55 (intmax)
G((a ∧ b) ∨ Ga ∨ F(c̄ ∧ XXc)) 1 1 49 27 (killed) 9 577 7 307 7 1 307
GaR(Fb̄ ∧ (cU b)) 2 0 10 9 8 13 8 27 6 1 5 2 36
G(F(ā ∧ Fa)U(bUXc)) 3 1 52 35 (killed) 10 1304 7 981 (intmax)
GF(a ∧ F(b ∧ Fc)) 3 1 10 10 4 1 4 1 3 1 1 3 156
G(Fā ∨ (FbU c)) 3 1 29 23 4 1368 4 77 3 76 (intmax)
G(FāUX(Fb̄ ∧ Xb)) 3 1 58 37 (killed) 4 480 3 512 (intmax)
GF(a ∧ XXXFb) 2 1 66 6 66 4927 3 0 2 0 1 2 1
G(Gā ∨ ((FbU c)U a)) 3 1 20 18 10 174 10 191 9 59 18 1 3183
X(ā ∧ Fa)R(aMFb) 2 1 11 11 9 3 9 2 9 2 9 1 10
X(ā ∨ G(a ∧ b̄))RF(c ∧ Fb) 2 1 29 18 11 1467 11 1905 10 46 9 2 667
XFāRF(b ∨ (ā ∧ Fc̄)) 3 1 17 12 7 0 7 1 6 0 6 1 101
X((Fa ∧ XFb)RXFc) 3 1 54 34 (killed) (killed≤13) 10 149 (intmax)

Table 2: Formulae determinized via the TBA-variant of the procedure of Dax
et al. [9].

DRA
DTBA

DBA
DBAm..ze

r

minDBA

minDTBA

minDTGBA

m C. |Q| |Q| |Q| |Q| time |Q| time |Q| time |Q| |F| time

(aUXā) ∨
2 0

10 12 8 3.9 6 0.5 6 1 3.6
XG(b̄ ∧ XFc) 10 8 8 8 4.2 8 2.3 6 0.1 6 1 1.7

F(a ∧ GFb) ∨ (Fc ∧
5 1

4 5 5 0.0 4 0.0 4 1 1.9
Fa ∧ F(c ∧ GFb̄)) 7 6 6 5 0.1 5 0.0 4 0.0 4 1 68.9

GF(a↔ XXb) 1 1
7 11 6 2.7 4 0.1 4 1 0.1

9 9 9 6 1.2 6 1.8 4 0.2 4 1 0.2

GF(a↔ XXXb) 1 1
15 23 (killed≤11) (killed≤8) (killed≤8)

17 17 17 (killed) (killed≤11) (killed≤8) (killed≤8)

(GFb ∧ GFa) ∨
4 1

5 9 5 2.0 4 0.1 1 4 25.3
(GFc ∧ GFd) 13 8 8 5 2.2 5 1.5 4 1.3 1 4 406.0

X((aMF((b ∧ c) ∨
3 1

14 18 (killed≤12) 11 3934.0 10 3 2010.5
(b̄ ∧ c̄)))W(Gc̄U b)) 29 22 22 (killed) (killed≤12) 11 4628.4 22 1 1617.2

X(aR((b̄ ∧ Fc̄)MXā)) 2 0
10 12 10 4188.5 9 52.7 8 2 13.0

13 13 13 10 1449.4 10 3424.5 9 52.3 8 2 37.1

X(G(āM b̄) ∨
1 0

7 8 7 0.2 6 0.1 6 1 0.1
G(a ∨ Gā)) 14 13 13 7 1.3 7 1.1 6 0.4 6 1 0.4

XXG(FaUXb) 2 1
10 14 8 2.9 6 1.1 5 2 17.5

21 18 18 8 80.6 8 11.3 6 12.2 5 2 337.0

was useful). Dark gray cells show cases where the tool returned an automaton that
was not minimal. For dstar2tgba, it is because glucose answers INDETERMINATE
when it is not able to solve the problem: dstar2tgba then pessimistically assumes
that the problem is unsatisfiable and returns the input automaton.

The couple of cases where we are able to produce a minimal DBA, but
DBAminimizer failed, are because we apply more efficient simplification routines
on the DBA before it is passed to the SAT-minimization, our encoding takes
advantage of SCCs in the reference automaton, and we use a different SAT
solver. The cases where we fail to output minimal DBA, but successfully output
a DTBA (or even a DTGBA) are due to the fact that DTBA and DTGBA will
produce smaller automata, so the last iteration of the algorithm of Fig. 4, the
one where the problem is UNSAT (often the more time-consuming problem), is
applied to a smaller automaton. Finally bold numbers of the minDTGBA column
confirm that using generalized acceptance can actually reduce the size of a DBA
or DTBA. Note that useless acceptance sets have been removed from all DTGBA
produced [2], so |F| might be smaller than m.

Table 2 shows an excerpt of class 3 : formulae that can be determinized by
the powerset construction of Dax et al. [9]. As this construction enumerates all
cycles of the determinized automaton to fix its acceptance sets, it is potentially
very long. We therefore compare our two approaches: each formula of the table
has two result lines, the upper line corresponds to ltl2tgba (with the powerset
construction), while the lower line shows results via ltl2dstar (with Safra’s
construction). In this table, the former approach is almost always the fastest.

These tables show that even if powerset and Safra’s construction are only
able to deal with a single acceptance set, so force us to degeneralize automata,
we can successfully reconstruct minimal DTGBAs with generalized acceptance.

6 Conclusion and Future Work

Deterministic Büchi automata are mandatory in some applications like verifica-
tion of Markov decision processes, probabilistic model checking, or synthesis of
distributed systems from LTL specifications. In these contexts small automata
are more than welcome. Furthermore, it is well known that transition-based
and generalized acceptance contributes to the conciseness of automata. However,
to our knowledge, there did not exist any algorithm to produce minimal and
generalized deterministic Büchi automata. Furthermore, we do not know of any
determinization algorithm that would build a generalized automaton.

In this paper, we have presented a complete framework with two complete
processing chains for determinizing and minimizing transition-based generalized
Büchi automata. Even though we construct non-generalized deterministic au-
tomata before minimizing them, our SAT-based minimization can be used to
produce minimal DTGBA for a given number of acceptance sets m.

Our results show that this SAT-based technique is effective for medium-sized
automata. For large automata, SAT-solving is expensive, but it could still be
run with a time constraint to produce a smaller (but not necessarily minimal)
DTGBA.

In the future we plan to improve our encoding by using more structural
information about the reference automaton to reduce the number clauses and
variables used, and, hopefully, deal with larger automata. We also need to
investigate the problem, mentioned in Section 4.2, of selecting the “best” m for
a given automaton, and the possibility to extend Dax et al.’s technique to a class
of properties that are realizable by a DTGBA whose LTS is a MSA (this class
would contain TCONG).

Other recent algorithms from the literature should also be considered for
integration in our setup. For instance our TGBA simplification step of Fig. 6 could
be improved using other simulation techniques [21, 7], and an implementation of
determinization technique of [22] could also contribute to reducing the size of
the automaton that has to be minimized.

References

1. G. Audemard and L. Simon. Predicting learnt clauses quality in modern SAT
solvers. In IJCAI’09, pp. 399–404, July 2009.

2. T. Babiak, T. Badie, A. Duret-Lutz, M. Křet́ınský, and J. Strejček. Compositional
approach to suspension and other improvements to LTL translation. In SPIN’13,
vol. 7976 of LNCS, pp. 81–98. Springer, July 2013.

3. C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
4. R. Bloem, K. Ravi, and F. Somenzi. Efficient decision procedures for model checking

of linear time logic properties. In CAV’99, vol. 1633 of LNCS, pp. 222–235. Springer,
1999.

5. B. Boigelot, S. Jodogne, and P. Wolper. On the use of weak automata for deciding
linear arithmetic with integer and real variables. In IJCAR’01, vol. 2083 of LNCS,
pp. 611–625. Springer, 2001.

6. I. Černá and R. Pelánek. Relating hierarchy of temporal properties to model
checking. In MFCS’03, vol. 2747 of LNCS, pp. 318–327, Aug. 2003. Springer.

7. L. Clemente and R. Mayr. Advanced automata minimization. In POPL’13, pp.
63–74. ACM, 2013.

8. J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud. On-the-fly emptiness checks for
generalized Büchi automata. In SPIN’05, vol. 3639 of LNCS, pp. 143–158. Springer,
Aug. 2005.

9. C. Dax, J. Eisinger, and F. Klaedtke. Mechanizing the powerset construction for
restricted classes of ω-automata. In ATVA’07, vol. 4762 of LNCS. Springer, 2007.

10. A. Duret-Lutz. LTL translation improvements in Spot. In VECoS’11, Sept. 2011.
British Computer Society.

11. R. Ehlers. Minimising deterministic Büchi automata precisely using SAT solving.
In SAT’10, vol. 6175 of LNCS, pp. 326–332. Springer, 2010.

12. J. Esparza, A. Gaiser, and J. Kretinsky. Rabinizer: Small deterministic automata
for LTL(F,G). In ATVA’12, vol. 7561 of LNCS, pp. 95–109. Springer, 2012.

13. B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In LICS’05, pp.
321–330, June 2005.

14. J. Klein and C. Baier. Experiments with deterministic ω-automata for formulas of
linear temporal logic. Theoretical Computer Science, 363:182–195, 2005.

15. S. C. Krishnan, A. Puri, and R. K. Brayton. Deterministic ω-automata vis-a-
vis deterministic Büchi automata. In ISAAC’94, vol. 834 of LNCS, pp. 378–386.
Springer, 1994.

16. C. Löding. Efficient minimization of deterministic weak ω-automata. Information
Processing Letters, 79(3):105–109, 2001.

17. O. Maler and L. Staiger. On syntactic congruences for ω-languages. In STACS’93,
vol. 665 of LNCS, pp. 586–594. Springer, 1993.

18. Z. Manna and A. Pnueli. A hierarchy of temporal properties. In PODC’90, pp.
377–410, 1990. ACM.

19. K. Y. Rozier and M. Y. Vardi. A multi-encoding approach for LTL symbolic
satisfiability checking. In FM’11, pp. 417–431. Springer, 2011.

20. S. Safra. Complexity of Automata on Infinite Objects. PhD thesis, The Weizmann
Institute of Science, Rehovot, Israel, Mar. 1989.

21. S. Schewe. Beyond hyper-minimisation—minimising DBAs and DPAs is NP-
complete. In FSTTCS’10, vol. 8 of LIPIcs, pp. 400–411, 2010. Schloss Dagstuhl
LZI.

22. S. Schewe and T. Varghese. Tight bounds for the determinisation and complemen-
tation of generalised Büchi automata. In ATVA’12, vol. 7561 of LNCS, pp. 42–56.
Springer, 2012.

A Synthesis of Equivalent DTBA

This section gives our transition-based adaptation of Ehlers’ encoding [11]. After
giving a straightforward adaptation of his encoding to deal with DTBA instead
of DBA, we list some additional optimizations we applied in our implementation.

From a reference DTBA R = 〈〈Σ,QR, ιR, δR〉,FR〉, we give a set of constraints
that ensures a candidate DTBA C = 〈〈Σ,QC , ιC , δC〉, FC〉 is equivalent to R.

We encode C with two sets of variables:

– The variables {〈q1, `, q2〉δC | (q1, q2) ∈ Q2
C , ` ∈ Σ} encode the existence of

transitions (q1, `, q2) ∈ δC in the candidate automaton.

– Variables {〈q1, `, q2〉FC
| (q1, q2) ∈ Q2

C , ` ∈ Σ} encode the membership of
these transitions to the acceptance set FC .

For the product C ⊗R, we retain the reachable states, and parts of paths that
might eventually be completed to become cycles.

– A variable in {〈q, q′〉G | q ∈ QC , q′ ∈ QR} encodes the existence of a reachable
state (q, q′) in C ⊗R.

– A variable in {〈q1, q′1, q2, q′2〉C | (q1, q2) ∈ Q2
C , (q′1, q

′
2) ∈ Q2

R} denotes that
there is an acyclic path between (q1, q

′
1) and (q2, q

′
2) in the product, such that

its projection on the candidate automaton C does not visit FC .

– A variable in {〈q1, q′1, q2, q′2〉R | (q1, q2) ∈ Q2
C , (q′1, q

′
2) ∈ Q2

R} denotes that
there is an acyclic path between (q1, q

′
1) and (q2, q

′
2) in the product, such that

its projection on the reference automaton R does not visit FR.

The problem is encoded as follows. The candidate automaton is complete:∧
q1∈QC , `∈Σ

∨
q2∈QC

〈q1, `, q2〉δC (6)

The initial state of the product exists. Furthermore if (q1, q
′
1) is a state of

the product, (q′1, `, q
′
2) ∈ δR is a transition in the reference automaton, and

(q1, `, q2) ∈ δC is transition in the candidate automaton, then (q2, q
′
2) is a state

of the product too:

∧ 〈ιC , ιR〉G ∧
∧

(q1,q2)∈Q2
C , q

′
1∈QR

(`,q′2)∈δR(q′1)

〈q1, q′1〉G ∧ 〈q1, `, q2〉δC → 〈q2, q′2〉G (7)

Each state of the product corresponds to an empty path that is non-accepting in
the reference and in the candidate automata:

∧
∧

q1∈QC , q′1∈QR

〈q1, q′1〉G → (〈q1, q′1, q1, q′1〉R ∧ 〈q1, q′1, q1, q′1〉C) (8)

Otherwise when one of the two transitions does not close the cycle (q3 6= q1∨q′3 6=
q′1), then the non-accepting path is prolonged:

∧
∧

(q1,q2,q3)∈Q3
C , (q

′
1,q

′
2)∈Q

2
R

(`,q′3)∈δR(q′2), (q
′
2,`,q

′
3)6∈FR

(q′3 6=q
′
1)∨(q3 6=q1)

〈q1, q′1, q2, q′2〉R ∧ 〈q2, `, q3〉δC → 〈q1, q′1, q3, q′3〉R (9)

If a path of the product that is non-accepting with respect to the reference au-
tomaton, is completed by a non-accepting transition (q′2, `, q

′
3) and a transition

(q2, `, q3) that both closes the cycle (q3 = q1 ∧ q′3 = q′1), then (q2, `, q1) is also
non-accepting:

∧
∧

(q1,q2)∈Q2
C , (q

′
1,q

′
2)∈Q

2
R,

(`,q′3)∈δR(q′2), (q
′
2,`,q

′
3) 6∈FR

q′3=q
′
1

〈q1, q′1, q2, q′2〉R ∧ 〈q2, `, q1〉δC → ¬〈q2, `, q1〉FC
(10)

Otherwise when one of the two transitions does not close the cycle (q3 6= q1∨q′3 6=
q′1) and the candidate transition (q2, `, q3) is non-accepting, then the non-accepting
path is prolonged (note that we don’t care whether (q′2, `, q

′
3) ∈ FR or not):

∧
∧

(q1,q2,q3)∈Q3
C , (q

′
1,q

′
2)∈Q

2
R,

(`,q′3)∈δR(q′2),

(q′3 6=q
′
1)∨(q3 6=q1)

〈q1, q′1, q2, q′2〉C∧〈q2, `, q3〉δC ∧¬〈q2, `, q3〉FC
→ 〈q1, q′1, q3, q′3〉C (11)

Conversely, if a path of the product that is non-accepting with respect to the
candidate automaton, is completed by an accepting transition (q′2, `, q

′
3) and a

transition (q2, `, q3) that both closes the cycle (q3 = q1 ∧ q′3 = q′1), then (q2, `, q1)
is also accepting:

∧
∧

(q1,q2)∈Q2
C , (q

′
1,q

′
2)∈Q

2
R,

(`,q′3)∈δR(q′2), (q
′
2,`,q

′
3)∈FR

q′3=q
′
1

〈q1, q′1, q2, q′2〉C ∧ 〈q2, `, q1〉δC → 〈q2, `, q1〉FC
(12)

The symmetry-breaking equation (S) of Section 4 applies here as well.
As we did in our DTGBA encoding of Sec. 4.1, variables of the form

〈q1, q′1, q2, q′2〉C or 〈q1, q′1, q2, q′2〉R should be limited to cases where q′1 and q′2
belong to the same SCC of R, since it is not possible to build a cycle outside an
SCC. Furthermore, variables of the form 〈q1, q′1, q1, q′1〉R or 〈q1, q′1, q2, q′2〉C are
actually superfluous. Each time we use such a variable in equations (9)–(12), we
could replace it by 〈q1, q′1〉G. Doing so will avoid generating |QC |× |QR| variables,
and all the clauses generated by equation (8) which is no longer needed.

	Mechanizing the Minimization of Deterministic Generalized Büchi Automata

