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Introduction

Many physical phenomena are described by quasilinear Schrödinger equations of the form

iu t + ∆u + u (|u| 2 )∆ (|u| 2 ) + f (|u| 2 )u = 0 in (0, ∞) × R N , u(0, x) = a 0 (x) in R N , (1.1 
) eq.schr0-intro

where and f are given functions, i is the imaginary unit, N ≥ 1, u : R N → C is a complex valued function. For example, the case (s) = √ 1 + s is used to modelize the self-channeling of a high-power ultra short laser in matter (see [START_REF] Borovskii | Dynamical modulation of an ultrashort high-intensity laser pulse in matter[END_REF][START_REF] De Bouard | Global existence of small solutions to a relativistic nonlinear Schrödinger equation[END_REF][START_REF] Ritchie | Relativistic self-focusing and channel formation in laserplasma interactions[END_REF]). If (s) = √ s, equation (1.1) appears in dissipative quantum mechanics ([12]). This model equation is also used in plasma physics and fluid mechanics ( [START_REF] Goldman | Upper hybrid solitons ans oscillating two-stream instabilities[END_REF][START_REF] Litvak | One dimensional collapse of plasma waves[END_REF]), in the theory of Heisenberg ferromagnets and magnons ( [START_REF] Bass | Nonlinear electromagnetic spin waves[END_REF]) and in condensed matter theory ([20]). However, little is known about the Cauchy problem (1.1) (see [6,[START_REF] De Bouard | Global existence of small solutions to a relativistic nonlinear Schrödinger equation[END_REF][START_REF] Kenig | The Cauchy problem for quasilinear Schrödinger equations[END_REF]) and the question of global wellposedness is still an open problem in many cases. In this direction, many efforts have been made to prove existence and stability of particular global solutions such as solitary waves (see [7,[START_REF] Colin | Solutions for a quasilinear Schrödinger equation: a dual approach[END_REF][START_REF] Colin | Stability and instability results for standing waves of quasi-linear Schrödinger equations[END_REF][START_REF] Liu | Solitons solutions for quasi-linear Schrodinger equations[END_REF],). In particular, these problems were addressed in [START_REF] Colin | Stability and instability results for standing waves of quasi-linear Schrödinger equations[END_REF] where the following equation is studied (taking (s) = s, f (s) = s p-1

2 )

iu t + ∆u + κu∆|u| 2 + |u| p-1 u = 0 in (0, ∞) × R N (1.2) eq1
with κ = 1. In [START_REF] Colin | Stability and instability results for standing waves of quasi-linear Schrödinger equations[END_REF], a local well-posedness theory is proposed in Sobolev spaces H s with s large and reads as follows.

cjs1 Theorem 1 ( [START_REF] Colin | Stability and instability results for standing waves of quasi-linear Schrödinger equations[END_REF]). Let N ≥ 1, s = 2E(N/2) + 2 (E(z) stands for the integer part of z) and assume that a 0 ∈ H s+2 (R N ) and f (s) = s p-1 2

∈ C s+2 (R + ). Then there exist T > 0 and a unique solution u to (1.2) satisfying

u(0, x) = a 0 (x), u ∈ L ∞ (0, T ; H s+2 (R N )) ∩ C([0, T ]; H s (R N )),
and the conservation laws

u(t) 2 = a 0 2 , (1.3) massc E κ (u(t)) = E κ (a 0 ), (1.4) energyc for all t ∈ [0, T ]
, where E κ is defined by

E κ (u) = 1 2 R N |∇u| 2 dx + κ 4 R N |∇|u| 2 | 2 dx - 1 p + 1 R N |u| p+1 dx. (1.5) enercla
Before going further, let us introduce some notations. For ω > 0 and κ > 0, we say that u ω,κ (t, x) = e iωt φ ω,κ (x) is a standing wave solution to

(1.2) if φ ω,κ is a solution to -∆φ -κφ∆|φ| 2 + ωφ = |φ| p-1 φ in R N . (1.6) gs1
Let m ω,κ be such that m ω,κ = inf{S ω,κ (φ) : φ is a nontrivial weak solution of (1.6)}.

Here, S ω,κ is the action associated with (1.6) and reads

S ω,κ (φ) = E κ (φ) + ω 2 R N |φ| 2 dx
for φ ∈ X, where E κ is defined in (1.5), and

X = {φ ∈ H 1 (R N , C) : R N |∇|φ| 2 | 2 dx < ∞}.
We denote by G ω,κ the set of ground states, that is, the solutions φ to (1.6) satisfying

S ω,κ (φ) = m ω,κ . (1.7)
In [START_REF] Colin | Stability and instability results for standing waves of quasi-linear Schrödinger equations[END_REF], the authors prove the existence of regular radially symmetric ground state solution in any dimension considering Equation (1.6) with κ = 1. Uniqueness of ground states is also obtained in the one-dimensional case, while, in higher dimensions, this question seems to be more delicate. However, a partial result is given in [START_REF] Adachi | Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities[END_REF] (see Theorem 1.2). Furthermore, for 3 + 4 N < p < 3N +2 N -2 , a blow-up result is presented in [START_REF] Colin | Stability and instability results for standing waves of quasi-linear Schrödinger equations[END_REF] which reads as follows.

cauchy Theorem 2 ( [START_REF] Colin | Stability and instability results for standing waves of quasi-linear Schrödinger equations[END_REF]). Assume that κ > 0, ω > 0,

3 + 4 N < p < 3N + 2 N -2 ,
and that f (σ) = σ p-1 2

∈ C s+2 (R + ). Let φ be a ground state solution of (1.6). Then, for all > 0, there exists a 0 ∈ H s+2 (R N ) such that a 0 -φ H s+2 (R N ) < and the solution u(t) of (1.2) with u(0) = a 0 blows up in finite time in the H s+2 (R N ) norm.

It is then natural to investigate the situation when 1 < p < 3+ 4 N . For this case, in [START_REF] Colin | Stability and instability results for standing waves of quasi-linear Schrödinger equations[END_REF] the authors prove a stability result in a weak sense (namely stability in the set), leaving as an open problem the question of orbital stability. Introduce the stability issue for the minimizers of the problem :

m κ (c) = inf{E κ (u) : u ∈ X, u 2 2 = c}, (1.8) defvalc
where the energy E κ is defined in (1.5). The result is then following one.

stab Theorem 3 ([9]). Assume that κ > 0 and

1 < p < 3 + 4 N ,
and let c > 0 be such that m κ (c) < 0. Then the set

G κ (c) = {φ ∈ X : E κ (φ) = m κ (c), φ 2 2 = c} is nonempty. Moreover, if f (σ) = σ p-1 2 ∈ C s+2 (R + ), then G κ (c)
is stable, that is : for every > 0, there exists δ > 0 such that, for any initial data a 0 ∈ H s+2 (R N ) such that inf φ∈Gκ(c) ρ(a 0 , φ) < δ the solution u(t) of (1.2) with initial condition u(0) = a 0 satisfies

sup 0<t<T 0 inf φ∈Gκ(c) ρ(u(t), φ) < ,
where T 0 > 0 is the existence time for u(t), and we put

ρ(v, w) = v -w H 1 + R N |∇|v| 2 | 2 dx - R N |∇|w| 2 | 2 dx (1.9) rho for v, w ∈ X.
Note that in [START_REF] Colin | Stability and instability results for standing waves of quasi-linear Schrödinger equations[END_REF], a discussion on the values of m κ (c) with respect to p and c is given. See also Definition 3.1 in [START_REF] Shatah | Stable standing waves of nonlinear Klein-Gordon equations[END_REF] and Definition 4.1 in [START_REF] Chen | Existence of stable standing waves and instability of standing waves to a class of quasilinear Schrödinger equations with potential[END_REF] for (1.9).

In this context, the aim of this paper is to give a partial answer to the conjecture raised in [START_REF] Colin | Stability and instability results for standing waves of quasi-linear Schrödinger equations[END_REF] concerning the orbital stability of the ground state solutions in the particular case p = 3 and N = 3, that is, we look for the following equation

iu t + ∆u + κu∆|u| 2 + |u| 2 u = 0 in (0, ∞) × R 3 , (1.10) eq2
where κ denotes a positive parameter. Note that, in this article, the parameter κ will play a fundamental role in our analysis. The standing wave solution to (1.10)

u ω,κ (t, x) = e iωt φ ω,κ (x) is such that φ ω,κ solves -∆φ -κφ∆|φ| 2 + ωφ = |φ| 2 φ in R 3 . (1.11) gs2
Remark 1. Here, the assumption p = 3 is essential to ensure that

f (s) = s p-1 2 
is regular enough to apply Theorem 1, and also remark that

1 + 4 N < p = 3 < 3 + 4 N
for the case N = 3. Since s = 2E(3/2) + 2 = 4 given in Theorem 1, the Cauchy problem for (1.10) is locally well-posed in H 6 (R 3 ). It will be then interesting to develop a local existence theory in the energy space but it seems out of reach for the moment.

We first recall the notion of orbital stability we are interested in.

def-os Definition 1. We say that a standing wave solution u ω (t, x) = e iωt φ ω of (1.10) is orbitally stable if for any > 0 there exists δ > 0 such that if u 0 ∈ H 6 (R 3 ) and ρ(u 0 , φ ω ) < δ, then the solution u(t) of (1.10) with u(0) = u 0 exists for all t ≥ 0, and satisfies

sup t≥0 inf θ∈R,y∈R 3 ρ(u(t), e iθ φ ω (• + y)) < ,
where ρ is defined in (1.9) with N = 3. Otherwise, e iωt φ ω is called orbitally unstable.

Remark 2. In Definiton 1, we use the function ρ instead of the classical H 1 -norm. This comes from the fact that the action S ω,κ and the energy E κ are not well-defined on H 1 (R 3 ).

Our main result reads as follows.

main Theorem 4. Assume that p = 3, N = 3, and let ω > 0, κ > 0. Let φ ω,κ be a ground state of Equation (1.11). Then, there exists κ 0 > 0 such that for all κ ∈ (0, κ 0 ), the standing wave solution u ω,κ (t, x) = e iωt φ ω,κ (x) to (1.10) is orbitally unstable in the sense of Definition 1.

Remark 3. According to Theorem 4, it is then natural to think that the conjecture raised in [START_REF] Colin | Stability and instability results for standing waves of quasi-linear Schrödinger equations[END_REF], that is the orbital stability for ground states in the case 1 < p < 3 + 4 N is false, which is not intuitive. We explain now why Theorem 3 and Theorem 4 are not contradictory. Take any solution v of the minimization problem (1.8) with c = φ ω,κ 2 2 . Then, by classical argument, there exists a Lagrange multiplier ω * such that v solves

∆v -κv∆|v| 2 + ω * v = |v| 2 v.
(1.12) lagrange

On one hand, we don't know if ω * = ω and on the other hand, it is not clear that v is a ground state of Equation (1.12). Moreover, we conjecture that

φ ω,κ / ∈ G κ (c) with c = φ ω,κ 2 
2 and κ ∈ (0, κ 0 ).

By the general theory of Grillakis, Shatah and Strauss (see [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry, I[END_REF][START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry, II[END_REF]), for fixed κ, the stability/instability issue of a standing wave u ω,κ (t, x) = e iωt φ ω,κ is closely related to the monotonicity of the curve Λ κ : ω -→ ||φ ω,κ || 2 2 . Indeed, under some spectral properties of the elliptic operator appearing in Equation (1.11), one can say that, for fixed ω, u ω,κ is stable (resp. unstable) if Λ κ is strictly increasing (resp. decreasing) at ω. However, when dealing with quasilinear operator, it seems very delicate (may be impossible) to obtain the monoticity of Λ κ . We thus need an alternative argument which is given by the following proposition which was developed in [START_REF] Ohta | Instability of standing waves for the generalized Davey-Stewartson system[END_REF][START_REF] Fukuizumi | Instability of stading waves for nonlinear Schrödinger equations with potential[END_REF].

altarg Proposition 1. Let φ ω,κ be a ground state of Equation (1.11) and denote

φ λ ω,κ (x) = λ 3/2 φ ω,κ (λx). If ∂ 2 λ E κ (φ λ ω,κ
)| λ=1 < 0, then the standing wave solution u ω,κ (t, x) = e iωt φ ω,κ of (1.10) is orbitally unstable in the sense of Definition 1.

This paper is organized as follows. In Section 2, we prove Theorem 4 using Proposition 1. In Section 3 we give the proof of Proposition 1.

Proof of Theorem 4 proofmain

In this section, we prove Theorem 4. To this end, we first introduce the following scaling : for every u ∈ X and λ ∈ R + , we denote

u λ (x) = λ 3/2 u(λx), x ∈ R 3 . A direct computation gives E κ (u λ ) = λ 2 2 R 3 |∇u| 2 dx + κ λ 5 4 R 3 |∇|u| 2 | 2 dx - λ 3 4 R 3 |u| 4 dx, ∂ 2 λ E κ (u λ )| λ=1 = R 3 |∇u| 2 dx + 5κ R 3 |∇|u| 2 | 2 dx - 3 2 R 3 |u| 4 dx. Introducing I ω,κ (u) = R 3 |∇u| 2 dx + κ R 3 |∇|u| 2 | 2 dx + ω R 3 |u| 2 dx - R 3 |u| 4 dx, and 
P ω,κ (u) = 1 3 1 2 R 3 |∇u| 2 dx + κ 4 R 3 |∇|u| 2 | 2 dx + ω 2 R 3 |u| 2 dx - 1 4 R 3 |u| 4 dx,
we recall the classical identities associated with Equation (1.11).

poho Proposition 2. Any regular solution φ of Equation (1.11) satisfies i) I ω,κ (φ) = 0, ii) P ω,κ (φ) = 0 (Pohozaev identity).

Proof. For i), multiply Equation (1.11) by u and integrate over R 3 . Since it is classical, we omit the details. For the Pohozaev identity ii), we refer to [START_REF] Colin | Stability and instability results for standing waves of quasi-linear Schrödinger equations[END_REF], Lemma 3.1.

Owning Proposition 2 i), for every regular solution φ of (1.11), since

κ R 3 |∇|φ| 2 | 2 dx = - R 3 |∇φ| 2 dx -ω R 3 |φ| 2 dx + R 3 |φ| 4 dx, one has ∂ 2 λ E κ (φ λ )| λ=1 = -4 R 3 |∇φ| 2 dx -5ω R 3 |φ| 2 dx + 7 2 R 3 |φ| 4 dx.
Let φ ω,κ be a ground state of Equation (1.11). Note that the parameter κ plays an important role in the analysis. According to Proposition 1, the proof of Theorem 4 requires that

∂ 2 λ E κ (φ λ ω,κ )| λ=1 < 0. (2.1) id1
We then propose a perturbative argument based on the study of the case κ = 0. More precisely, let us introduce the classical cubic Schrödinger equation (obtained by taking κ = 0 in (1.10))

iu t + ∆u + |u| 2 u = 0 in (0, ∞) × R 3 , (2.2) eq3
and the associated stationary equation

-∆φ + ωφ = |φ| 2 φ in R 3 . ( 2 

.3) gs3

We set E = E 0 and S ω = S ω,0 . It is then clear that E and S ω are respectively the energy and the action associated with Equation (2.3). Note that for this equation, the situation is well-known (see [4]), that is, for ω > 0, the standing wave u ω,0 (t, x) = e iωt φ ω (x), where φ ω is a ground state of (2.3), is orbitally unstable.

stat1 Lemma 1. Any regular solution φ to (2.3) satisfies

R 3 |∇φ| 2 dx = 3 4 R 3 |φ| 4 dx, ω R 3 |φ| 2 dx = 1 4 R 3 |φ| 4 dx.
Proof. From Proposition 2 taking κ = 0, φ satisfies

     R 3 |∇φ| 2 dx + ω R 3 |φ| 2 dx = R 3 |φ| 4 dx, 1 6 R 3 |∇φ| 2 dx + ω 2 R 3 |φ| 2 dx = 1 4 R 3 |φ| 4 dx
from which the result follows immediately by resolving this system.

Remark 4. Take any non-zero regular solution φ ω of (2.3), then denoting φ λ ω (x) = λ 3/2 φ ω (λx) and using Lemma 1, one obtains directly

∂ 2 λ E(φ λ ω ) = R 3 |∇φ ω | 2 dx - 3 2 R 3 |φ ω | 4 dx = - 3 4 R 3 |φ ω | 4 dx < 0.
We then expect that (2.1) holds for small κ.

Before going further, let us introduce Theorem 1.1 of [START_REF] Adachi | Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities[END_REF] which gives precise informations, for fixed ω, on the asymptotic behavior of the ground states of (1.11) as κ -→ 0.

wata Theorem 5 ( [START_REF] Adachi | Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities[END_REF]). Suppose ω > 0, κ > 0, and let φ ω,κ be a ground state (positive and radial solution) of (1.11) . Let φ ω be a ground state (positive and radial solution) of (2.3). Then, φ ω,κ → φ ω in H 1 (R 3 ) as κ → 0.

Equipped with Theorem 5 we are now able to prove that (2.1) holds for small κ.

Proof of Theorem 4. For fixed ω > 0, let φ ω,κ be a ground state of (1.11) and φ ω given by Theorem 5. By Sobolev embeddings, there exists a constant C > 0 such that

R 3 |φ ω,κ -φ ω | 4 dx ≤ C||φ ω,κ -φ ω || 4 H 1 (R 3 ) -→ κ→0 0.
Then Theorem 5 and Lemma 1 ensure that

∂ 2 λ E κ (φ λ ω,κ )| λ=1 = -4 R 3 |∇φ ω,κ | 2 dx -5ω R 3 |φ ω,κ | 2 dx + 7 2 R 3 |φ ω,κ | 4 dx -→ κ→0 -4 R 3 |∇φ ω | 2 dx -5ω R 3 |φ ω | 2 dx + 7 2 R 3 |φ ω | 4 dx = - 3 4 R 3 |φ ω | 4 dx < 0.
Then by continuity of the curve κ → ∂ 2 λ E κ (φ λ ω,κ )| λ=1 , we deduce that there exists κ 0 > 0 such that for all κ ∈ (0, κ 0 ), one has

∂ 2 λ E κ (φ λ ω,κ )| λ=1 < 0.
The proof of Theorem 4 follows from Proposition 1.

3 Proof of Proposition 1.

sect3

In this section, we give the proof of Proposition 1 which follows from that of Theorem 3 of [START_REF] Ohta | Instability of standing waves for the generalized Davey-Stewartson system[END_REF] (see also [START_REF] Fukuizumi | Instability of stading waves for nonlinear Schrödinger equations with potential[END_REF]). We begin with the variational characterization of the ground states of Equation (1.11). For convenience, we introduce for v ∈ X,

R(v) = 1 4 R 3 |∇v| 2 dx + ω 4 R 3 |v| 2 dx. Note that R(v) = S ω,κ (v) -1 4 I ω,κ (v). varia Lemma 2. Let φ ω,κ ∈ G ω,κ . Then i) m ω,κ = inf {R(v) : v ∈ X, I ω,κ (v) = 0} = inf {R(v) : v ∈ X, I ω,κ (v) ≤ 0} , ii) S ω,κ (φ ω,κ ) = inf {S ω,κ (v) : v ∈ X, R(v) = R(φ ω,κ )} .
Proof. Denote

m 1 ω,κ = inf {R(v) : v ∈ X, I ω,κ (v) = 0} , m 2 ω,κ = inf {R(v) : v ∈ X, I ω,κ (v) ≤ 0} . By Lemma 3.4 of [9], one has S ω,κ (φ ω,κ ) = m ω,κ = inf {S ω,κ (v) : v ∈ X, I ω,κ (v) = 0} . Take any v ∈ H 1 (R 3 ) such that I ω,κ (v) = 0. Then, since S ω,κ (v) = R(v), we have m 1 ω,κ = m ω,κ . Moreover it is clear that m 2 ω,κ ≤ m 1 ω,κ .
Let us prove the converse inequality. Let v ∈ X such that I ω,κ (v) < 0. We claim that there exists λ v ∈ (0, 1) such that I ω,κ (λ v v) = 0. Indeed, for λ ∈ R,

I ω,κ (λv) = λ 2 R 3 |∇v| 2 dx+λ 4 κ R 3 |∇|v| 2 | 2 dx+λ 2 ω R 3 |v| 2 dx-λ 4 R 3 |v| 4 dx, which provides ∂ λ I ω,κ (λv)| λ=1 = 2 R 3 |∇v| 2 dx + 4κ R 3 |∇|v| 2 | 2 dx + 2ω R 3 |v| 2 dx -4 R 3 |v| 4 dx ≤ 4( R 3 |∇v| 2 dx + κ R 3 |∇|v| 2 | 2 dx + ω R 3 |v| 2 dx - R 3 |v| 4 dx = 4I ω,κ (v) < 0.
Since I ω,κ (v) < 0, I ω,κ (0) = 0 and ∂ λ I ω,κ (λv) > 0 for small λ, the claim is proved. Then

S ω,κ (λ v v) = R(λ v v) ≥ R(φ ω,κ ) = S ω,κ (φ ω,κ ) = m ωκ , and thus, since R(v) ≥ R(λ v v), one has m ωκ = m 2 ωκ . Now take v ∈ X such that R(v) = R(φ ω,κ ). If I ω,κ (v) < 0, then S ω,κ (v) < R(v) = R(φ ω,κ ) = m ω,κ
a contradiction with i). Then I ω,κ (v) ≥ 0, from which it follows that

S ω,κ (v) ≥ R(v) = R(φ ω,κ ) = m ω,κ .
Hence ii) is proved.

Following [START_REF] Ohta | Instability of standing waves for the generalized Davey-Stewartson system[END_REF], we introduce, for δ > 0 and φ ω,κ ∈ G ω,κ , the following set

N δ (φ ω,κ ) = v ∈ X : inf θ∈R, y∈R 3 ρ(v, e iθ φ ω,κ (• + y)) < δ . maj Lemma 3. Let φ ω,κ ∈ G ω,κ . If ∂ 2 λ E κ (φ ω,κ
)| λ=1 < 0, there exist positive constants ε and δ satisfying the following property : for any v ∈ N δ (φ ω,κ ) with

||v|| 2 = ||φ ω,κ || 2 , there exists λ(v) ∈ (1 -ε, 1 + ε) such that E κ (φ ω,κ ) ≤ E κ (v) + (λ(v) -1)Q(v), where Q(v) = R 3 |∇u| 2 dx + 5 4 κ R 3 |∇|u| 2 | 2 dx - 3 4 R 3 |u| 4 dx. Proof. First, remark that Q(v) = ∂ λ E κ (v λ )| λ=1
, and recall that v λ (x) = λ 3/2 v(λx). By the continuity of ∂ 2 λ E κ (v λ ) in λ and the fact that ρ(v, φ ω,κ ) ≤ δ, one can find ε > 0 and δ > 0 such that ∂ 2 λ E κ (v λ ) < 0 for all λ ∈ (1 -ε, 1 + ε) and v ∈ N δ (φ ω,κ ). A second order Taylor expansion at λ = 1 provides

E κ (v λ ) ≤ E κ (v) + (λ -1)Q(v), λ ∈ (1 -ε, 1 + ε), v ∈ N δ (φ ω,κ ). (3.1) maj1 For any v ∈ N δ (φ ω,κ ) satisfying ||v|| 2 = ||φ ω,κ || 2 , take λ(v) R 3 |∇φ ω,κ | 2 dx R 3 |∇v| 2 dx 1 2 , so that R(v λ(v) ) = R(φ ω,κ ). Furthermore, since ||v λ(v) || 2 = ||v|| 2 = ||φ ω,κ || 2 ,
using Lemma 2, we have

E κ (v λ(v) ) = S ω,κ (v λ(v) ) - ω 2 ||v λ(v) || 2 2 ≥ S ω,κ (φ ω,κ ) - ω 2 ||φ ω,κ || 2 2 = E κ (φ ω,κ ). (3.2) maj2
Combining (3.1) and (3.2), we obtain the desire result.

Definition 2. Let δ be the constant of Lemma 3. We define

A = {v ∈ N δ (φ ω,κ ); E κ (v) < E κ (φ ω,κ ), ||v|| 2 = ||φ ω,κ || 2 , Q(v) < 0} .
Moreover, for any a 0 ∈ H 6 (R 3 ) ∩ N δ (φ ω,κ ), we introduce the exit time T (a 0 ) from N δ (φ ω,κ ) by

T (a 0 ) = sup {T ∈ (0, T 0 ) : u(t) ∈ N δ (φ ω,κ ), 0 ≤ t ≤ T } ,
where u(t) is the solution to (1.10) with initial data a 0 , and T 0 is the existence time of u(t).

virolo1 Lemma 4. Let φ ω,κ ∈ G ω,κ . If ∂ 2 λ E κ (φ ω,κ )| λ=1 < 0, then for any a 0 ∈ H 6 (R 3 ) ∩ A, one can find ε 0 > 0 depending only on a 0 such that for all t ∈ [0, T (a 0 )), Q(u(t)) ≤ -ε 0 . Proof. Starting from a 0 ∈ H 6 (R 3 ) ∩ A, we first introduce ε 1 = E κ (φ ω,κ ) -E κ (a 0 ).
By conservation of energy (see Theorem 1), one has E κ (u(t)) = E κ (a 0 ) and then Lemma 3 provides

ε 1 = E κ (φ ω,κ ) -E κ (a 0 ) = E κ (φ ω,κ ) -E κ (u(t)) ≤ (λ(u(t)) -1)Q(u(t)),
as long as u(t) ∈ N δ (φ ω,κ ). Then for 0 ≤ t < T (a 0 ), one can see that Q(u(t)) = 0, which provides, by the continuity of t -→ Q(u(t)) and Q(a 0 ) < 0, that Q(u(t)) < 0. By Lemma 3, one has |1 -λ(v(t))| ≤ ε for all 0 ≤ t < T (a 0 ) from which we derive

-Q(u(t)) ≥ ε 1 1 -λ(u(t)) ≥ ε 1 ε , t ∈ [0, T (a 0 )).
We then set ε 0 = ε 1 /ε, which ends the proof of Lemma 4. Before giving the proof of Proposition 1, we present a virial-type identity for Equation (1.10) (see Lemma 3.2 of [START_REF] Colin | Stability and instability results for standing waves of quasi-linear Schrödinger equations[END_REF]). From ∂ 2 λ E κ (φ λ ω,κ )| λ=1 < 0, we deduce, by a Taylor expansion of order 2, that for λ > 1 sufficiently close to 1, E κ (φ λ ω,κ ) < E κ (φ ω,κ ), Q(φ λ ω,κ ) = λ∂ λ E κ (φ λ ω,κ ) < 0.

Moreover it is obvious that lim λ→1 ρ(φ λ ω,κ , φ ω,κ ) = 0, which provides that for λ > 1 sufficiently close to 1, φ λ ω,κ ∈ A. Since φ ω,κ ∈ H 6 (R 3 ) and |x|φ ω,κ ∈ L 2 (R 3 ), by Lemma 5, one can write where u λ (t) is the solution of Equation (1.10) with u λ (0) = φ λ ω,κ . Applying Lemma 4, one can find ε λ > 0 such that Q(u λ (t)) ≤ -ε λ , 0 ≤ t ≤ T (φ λ ω,κ ).

(3.4) fin2

As a consequence of (3.3) and (3.4), we conclude that T (φ λ ω,κ ) < +∞.

virial Lemma 5 . 2 dt 2 R 3 |x| 2

 52232 Let a 0 ∈ H 6 (R 3 ) satisfy |x|a 0 ∈ L 2 (R 3 ). Then the solution u(t) of Equation (1.10) with u(0) = a 0 satisfies d |u(t, x)| 2 dx = 8Q(u(t)), ∀ t ∈ [0, T 0 ),where T 0 is the existence time of u(t).Proof of Proposition 1. First remark that, since||φ λ ω,κ || 2 = ||φ ω,κ || 2 , Q(φ ω,κ ) = ∂ λ E κ (φ λ ω,κ )| λ=1 = ∂ λ S ω,κ (φ λ ω,κ )| λ=1 = 0.

d 2 dt 2

 2 ||xu λ (t)|| 2 2 = 8Q(u λ (t)), 0 ≤ t ≤ T (φ λ ω,κ ), (3.3) fin1