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Controllability Analysis and Motors Failures Symmetry in a Coaxial
Octorotor

Majd Saied1,2, Hassan Shraim1, Clovis Francis1, Isabelle Fantoni2 and Benjamin Lussier2

Abstract— This paper presents a fault tolerant control strat-
egy for a coaxial octorotor regarding one motor failure. A
controllability study, based on the construction of the attainable
control set method, is presented for a coaxial octorotor with
one or more failing motors. The fault is diagnosed using a non
linear Super-Twisting sliding mode observer. The octorotor is
recovered after a motor failure by controlling its dual motor.
The effectiveness of this approach is illustrated by numerical
simulations on an octorotor simulator.

I. INTRODUCTION

Fault Tolerant Control (FTC) in autonomous systems is a
challenging task, especially for safety critical systems such as
aircrafts. The main objective of FTC is to maintain desirable
performances of the system despite faults and prevent local
errors from developing into failures. In the literature, FTC
approaches have been classified into two types [1]: passive
and active approaches. Passive FTC is usually based on ro-
bust control and handles faults and failures without requiring
information from a Fault Detection and Identification (FDI)
scheme. Active FTC needs information about the faults that
occur, and can be divided into projection type FTC and
online reconfiguration/adaptation [2].

For quadrotors vehicles, different FTC methods were
exploited to handle partial and complete actuator failures.
For partial failures, in [3], the authors developed a FTC
strategy combined with trajectory replanning. This approach
changes the reference trajectory in function of the remaining
resources in the system after a partial fault in one of the
actuators. Control Re-Allocation for a modified quadrotor
is proposed as a solution in [4]. Robust controllers such as
sliding mode [5] were also investigated for the FTC problem
for quadrotors. However, few works address the problem
of FTC of quadrotor in case of total motor failure. [8]
presented periodic solutions to control the quadrotor after
losing one, two opposing or three propellers. The strategy
consists of spinning the vehicle around an axis and then
control this axis for translational movements. In [7], the
quadrotor is modeled as a birotor with fixed propellers
and follows a planned emergency landing trajectory when
a motor failure occurs. A survey on fault tolerant control
strategies for a quadrotor is given in [9]. One major drawback
of quadrotors is that there is no effector redundancy, and
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a total motor failure thus leads to a system that it is not
fully controllable. Multirotors with more than four rotors
(hexarotors, octorotors) have been proposed as a solution,
but few works in the literature addressed the problem of FTC
for multirotors with actuator redundancy. The commonly
used method is the control allocation. For a star-shaped
octorotor, a cascade inverse method of control allocation is
proposed in [10] to allocate, after several motors failures,
the controller commands to the actuators while ensuring
that actuator saturation does not occur. For the same type
of vehicle, [11] presented a LPV based sliding mode fault
tolerant controller, and [12] presented an active FTC scheme
based on Dynamic Control Allocation method. For FTC of
an hexarotor, a control allocation problem formulated as a
parametric program is proposed and validated experimentally
in [13].

In our paper, a fault tolerant control strategy for a coaxial
octorotor in case of one motor failure is presented. The fault
is diagnosed using a super twisting sliding mode observer,
and the system recovery is based on the built-in hardware
redundancy of the octorotor.

This paper is organized as follows: Section II presents the
equations governing the coaxial octorotor dynamics. Section
III is dedicated to the control algorithm and section IV to
the controllability study. The fault tolerant architecture is
presented in section V. The results are then validated in
numerical simulations on an octorotor simulator in section
VI, and the paper concludes with perspectives in section VII.

II. EQUATIONS OF MOTION

The configuration of the coaxial octorotor is presented in
Fig. 1. It is similar to a quadrotor with two coaxial counter-
rotating motors at the ends of each arm. Even though two
coaxial rotors are less efficient than two isolated identical
rotors (Fig. 2), the coaxial octorotor presents several ad-
vantages compared to the the classical star-shaped one: the
classical octorotor needs more arms, and these arms need to
be longer to guarantee adequate spacing among the rotors.

The dynamics of this vehicle are developed using the
Euler-Lagrange approach. For simplification purpose, it is
assumed that [14]:

• The structure of the vehicle is supposed rigid and
symmetrical;

• The thrust and the drag are proportional to the square
of the rotors speed;

• The center of gravity and the body fixed frame origin
are assumed to coincide;

• The inertia matrix off-diagonal terms are zero;



Fig. 1: The coaxial octorotor and the reference frames

• The motor dynamics are ignored.
Consider a body-fixed frame RB : {O,X ,Y ,Z} with the

three axes originating at the center of mass of the vehicle,
and an inertial frame RI : {o,x,y,z} fixed to the Earth. The
rotation matrix R defines the attitude of RB with respect to
RI :

R =

 CθCψ CψSθSφ − CφSψ CφCψSθ + SφSψ
CθSψ SθSφSψ + CφCψ CφSθSψ − CψSφ
−Sθ CθSφ CθCφ


(1)

where φ, θ and ψ are the Euler angles, and Sφ,θ,ψ and Cφ,θ,ψ
are the sine and the cosine of the corresponding angle. The
octorotor mathematical model is given as follows:

Ẋ(t) = f(X(t)) + g(X(t))τ(t) (2)

where

f(t,X) =



ẋ
0
ẏ
0
ż
−g
aφ

c1qr − c2qΩr
aθ

c4pr + c5pΩr
aψ
c7pq



, g(t,X) =



0 0 0 0
bx 0 0 0
0 0 0 0
by 0 0 0
0 0 0 0
bz 0 0 0
0 0 0 0
0 c3 0 0
0 0 0 0
0 0 c6 0
0 0 0 0
0 0 0 c8


(3)

The terms in (3) are defined as:

aφ = p+ q sin(φ) tan(θ) + r cos(φ) tan(θ)
aθ = q cos(φ)− r sin(θ)
aψ = q sin(φ) sec(θ) + r cos(φ) sec(θ)
bx = (cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ))/m
by = (cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ))/m
bz = (cos(φ) cos(θ))/m
c1 = (Iyy − Izz)/Ixx, c2 = Jr/Ixx, c3 = 1/Ixx
c4 = (Izz − Ixx)/Iyy, c5 = Jr/Iyy, c6 = 1/Iyy
c7 = (Ixx − Iyy)/Izz, c8 = 1/Izz

(4)

[x y z]T and [φ θ ψ]T denote respectively the absolute
position and the Euler angles of the aerial vehicle expressed
in the fixed frame RI . [p q r]T denote its angular velocity

Fig. 2: Comparison between theoretical and experimental thrust of a pair
of coaxial motors. The thrust is measured using a 6 degree of freedom

force/torque sensor.

in the body frame RB ; m is the mass of the aerial vehicle;
Ixx, Iyy, Izz represent the inertia of the octorotor about the
three axis; Jr is the rotor inertia.
The rotating speed relation between the body coordinates and
the generalized coordinates can be written as follows: φ̇

θ̇

ψ̇

 =

 1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ

 p
q
r

 (5)

In case of small angles, this matrix is identical to the identity
matrix I3, and then the following approximations will be
verified: φ̇ = p, θ̇ = q and ψ̇ = r.

The inputs of the system are:

τ(t) = [ uf τφ τθ τψ]T (6)

representing the total thrust, roll torque, pitch torque and yaw
torque respectively. The variable

Ωr = ω2 + ω3 + ω6 + ω7 − ω1 − ω4 − ω5 − ω8 (7)

is the overall residual propeller speed from the unbalanced
rotor rotation, and ω1... ω8 are the motors speeds. The input
torque and force can be related to the squared speeds ω2

i

through:

uf = F12 + F34 + F56 + F78

τφ = (F78 + F56 − F34 − F12) ∗ l ∗
√

2/2

τθ = (F34 + F56 − F78 − F12) ∗ l ∗
√

2/2
τψ = (τ2 + τ3 + τ6 + τ7)− (τ1 + τ4 + τ5 + τ8)

(8)

The thrust produced by each pair of coaxial rotors i and
j is given by [15] :

Fij = αij ∗ (Fi + Fj) ∗ (1 + Ss

Sprop
)

Fi = Kf ∗ ω2
i

(9)

αij is the coefficient of loss of aerodynamic efficiency due
to the aerodynamic interference between the upper and lower
rotors of each pair of coaxial rotors. S = (1 + Ss

Sprop
)

represents the shape factor of the propellers, with Ss denoting
the propeller’s surface and Sprop the surface of the circle that



the propeller would make when rotating. Kf is the thrust
factor. The torque produced by each rotor is expressed by:

τi = Kt ∗ ω2
i (10)

with Kt is the reaction torque coefficient.

III. CONTROL STRATEGY

A control strategy for stabilizing the octorotor while
hovering is presented in this section. The altitude and the
yaw positions are controlled by a PID controller that makes
use of information obtained respectively from an ultrasonic
sensor and an Inertial Measurement Unit (IMU):

u = Kpe+Kdė+KI

∫ t

0

e(τ)dτ (11)

Kp, Kd and KI are the controller’s gains, and e is the state
error compared to the desired position.

The roll and pitch angles are controlled using saturation
functions, where each state is bounded separately (12). The
stability of this control law is proved in [17].

τφ = Ixx

g [σpy(kpy(y − yd)) + σdy(kdy ẏ)−
σpφ(kpφφ)− σdφ(kdφφ̇)]

τθ = − Iyy

g [σpx(kpx(x− xd)) + σdx(kdxẋ)−
σpθ(kpθθ)− σdθ(kdθ θ̇)]

(12)

where kpy , kdy , kpφ, kdφ, kpx, kdx, kpθ and kdθ are positive
gains, and σpy , σdy , σpφ, σdφ, σpx, σdx, σpθ, and σdθ are
saturation functions defined as follows: σbi(s) = bi if s > bi

σbi(s) = s if −bi < s < bi
σbi(s) = −bi if s < −bi

(13)

IV. CONTROLLABILITY

Before establishing a fault tolerant control strategy, the
controllability of the octorotor in case of motors failures is
studied in this section. The control inputs of the multirotors
are constrained to be non negative (the rotors can only
provide unidirectional lift, upward or downward). This makes
the classical controllability theories not sufficient to test the
controllability of the octorotor.

Static controllability of the octorotor is investigated below
using the method based on the construction of the attainable
control set (ACS) developed in [13]. The ACS is a subspace
in TRPY (Thrust Force; Roll, Pitch, Yaw torques) which
defines the limits in thrust and torque that can be allocated
when the motors speeds constraints are satisfied. It is ob-
tained by mapping the boundary of the motors constraints
set to a virtual control set by using the control effectiveness
matrix B:

B =


t1 ... t8
r1 ... r8
p1 ... p8
y1 ... y8

 (14)

with:
ti = σij .Kf .S

ri = dri .σij .Kf .S.l.
√

2/2

pi = dpi .σij .Kf .S.l.
√

2/2
yi = dyi .Kt

(15)

ti, ri, pi and yi are respectively the thrust and the torques
around the three axes produced by the actuator i. dri/pi/yi is
either 1 or -1 depending on whether the force created by the
motor generates a positive or negative moment (determined
by (8)).

Fig. 3: Attainable control set for a coaxial octorotor in fault-free case cut
at Y=0; (T: Thrust , R: Roll torque, P: Pitch torque, Y: Yaw torque).

Fig. 4: Attainable control set for a coaxial octorotor, in case of failures of
motors 1 and 2, cut at Y=0 and T=mg; (T: Thrust , R: Roll torque, P:

Pitch torque, Y: Yaw torque).

Fig. 5: Attainable control set for a coaxial octorotor, in case of failures of
motors 1, 2 and 3, cut at Y=0 and T=mg; (T: Thrust , R: Roll torque, P:

Pitch torque, Y: Yaw torque).



According to [13], to assess the controllability of the
octorotor, the 4-dimensional polytope TRPY (Fig. 3) is cut
at the nominal flying conditions T = mg and Y = 0. If the
origin of the R− P plane is contained in the polygon, then
the octorotor is controllable.

For a coaxial octorotor, there are 162 fault combina-
tions considering that at least four motors are healthy. The
controllability study shows that a coaxial octorotor is not
controllable in case of failures of two coaxial motors as
shown in Fig. 4 and Fig. 5. In these cases, reduced attitude
controllability should be investigated. Moreover, we see in
Fig. 4 and 5 that, as the point (R=0, P=0, Y=0) is not in the
attainable control set of the system (it is at this set’s limit in
Fig. 4, and outside in Fig. 5), the system is unable to hover
as soon as two coaxial motors fail.

V. FAULT TOLERANT CONTROL STRATEGY

Active FTC requires information about the fault, its lo-
cation and its severity to apply the corresponding system
recovery law. This is done via an error detection and fault
diagnosis module.

Fig. 6: Control system using error detection and supervisor modules

The octorotor presents redundancy in actuators, and thus
identifying the failed motor can be a challenging task. Most
of the researches in FTC of multirotors with redundant
actuators do not consider Fault Diagnosis in their study
assuming that the faults, their locations and magnitudes are
already known. In our system, a second order sliding mode
based on the super-Twisting algorithm is used for error
detection and fault diagnosis in the octorotor. This strategy
is proposed in [16]. The main idea is to use the equivalent
output injection to estimate the unknown input and thus to
identify losses in the actuators.

After the identification of the failed motor, a recovery
strategy is applied, based on the built-in hardware redun-
dancy of the octorotor and a mathematical analysis of the
octorotor dynamics (8). It consists of synchronising the
failed motor and its dual one to compensate the losses
in roll, pitch and yaw torques. A reconfiguration of the
control law is necessary to compensate the altitude loss. The
duality between motors is deduced from their geometrical
distribution (Table I).

In normal flight, the speed of a motor i is given by:

ωi =

√
1

8
∗ (

uf
αijSKf

± τφ
αijSKfd

± τθ
αijSKfd

± τψ
Kt

)

(16)

Fig. 7: Simulator of the octorotor

After diagnosing the failure, a correction factor is added to
ensure that the same total thrust and moments as in normal
flight are generated, resulting in equation (17):

ωi = pi

√
(
1

8
+ ci)(

uf
αijSKf

± τφ
αijSKfd

± τθ
αijSKfd

± τψ
Kt

)

(17)
where pi is the percentage of motor failure and ci is the
correction factor.

Motor Dual Motor
1 6
2 5
3 8
4 7

TABLE I: Duality between motors

VI. VALIDATION

In order to test the performance of the FTC strategy,
simulations were carried out using an octorotor simulator
(Fig. 7). Before validating results in real experiments, all
the algorithms are first tested on a simulator written in C++
developed at Heudiasyc laboratory. Its purpose is to execute
on a computer the same code used in the real UAV. To do this,
the computer is running Linux with its real-time extension
Xenomai. The UAV evolves in a 3D environment thanks to
the Irrlicht 3D engine. The UAV program is connected to a
ground station from which parameters (control laws, filters...)
can be changed during the flight. This approach allows us a
significant time savings as well as safely injecting faults in
the system. A real experiment is presented in [18].

The model’s parameters are given in Table II. The
actuator faults are simulated. The octorotor is brought to
a hovering stable flight, then the motor 6 is turned off at
time t=36.2 s and after 0.44s (time needed by the diagnosis
module to detect the error and identify the failing motor),
its dual motor (motor 1) is turned off to compensate the loss.



Kf Thrust factor 3 ∗ 10−5 Ns2/rad2

Kt drag factor 7 ∗ 10−7 Nm/rad2

m mass of the vehicle 1.6 kg
l length of the arm 0.23m

Ixx, Iyy Inertia 4.2 ∗ 10−2 Kg.m2

Izz Inertia 7.5 ∗ 10−2 Kg.m2

TABLE II: The model’s parameters

In Fig. 9, the three Euler angles are shown. The vertical
dashed lines indicate the fault injection time. It can be
observed that the angles deviate quickly from the stable
position after the failure has occurred with the recovery not
being applied yet. However, they return to their initial values
when the recovery is performed after a delay of 0.44s. Fig.
8 shows the altitude z after a fault occurrence.

To demonstrate the motors failures symmetry, a second
scenario is presented where a failure is injected on motor 3.
Fig. 10 and Fig. 11 reveals that the behavior is similar to a
failure on motor 6 (with corresponding sign changes in the
Euler angles). Further experiments on other motors showed
again the symmetry considering the failed motor.

The main advantage of this method is its deterministic
character and fast computation in comparison with other
methods which need the resolution of optimization problems
online. Theoretically, it is able to recover the system after one
motor failure even if the octorotor is not in hovering flight.
However, its main drawback is that it will not be able to
recover the system after some two or more motors failures
cases.

The influence of the detection time is investigated in Fig.
12 and Fig. 13. It can be seen that the smaller the detection
time, the smaller the deviation of the octorotor from the
equilibrium position. The system is then restored faster. The
configuration delay is a critical but somewhat lax parameter
since it is possible to restore the system after a delay greater
than 1s.

VII. CONCLUSION

This paper presents a FTC method for a coaxial octoro-
tor regarding one motor failure. Particularly, it presents a
controllability study on a coaxial octorotor, and the motors
failures symmetry of our recovery architecture. In future
works, we intend to consider successive motors failures, to
further recover the octorotor from critical cases such as when
two coaxial motors fails, and to compare experimentally this
strategy with FTC based on control allocation and robust
controller.

Fig. 8: Altitude (m] after fault injection at time t=36.2s on motor 6.

Fig. 9: Euler angles [rad] after fault injection at time t=36.2s on motor 6.

Fig. 10: Altitude [m] after fault injection at time t=30s on motor 3.

Fig. 11: Euler angles [rad] after fault injection at time t=30s on motor 3.

Fig. 12: Euler angles [rad] after fault injection at time t=20s on motor 3
with different configuration delays.



Fig. 13: Altitude [m] after fault injection at time t=20s on motor 3 with
different configuration delays.
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