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Abstract

In this paper, our aim is to measure mortality rates which are specific to individual

observable factors when these can change during life. The study is based on longitudinal

data recording marital status and socio-professional features at census times, therefore the

observation scheme is interval-censored since individual characteristics are only observed at

isolated dates and transition times remain unknown. To this aim, we develop a parametric

maximum likelihood estimation procedure for multi-state models that takes into account

both interval-censoring and reversible transitions. This method, inspired by recent ad-

vances in the statistical literature, allows us to capture characteristic-specific mortality

rates, in particular to recover the mortality compensation law at high ages, but also to

capture the age pattern of characteristics changes. The dynamics of several population

compositions is addressed, and allows us to give explanations on the pattern of aggregate

mortality, as well as on the impact on typical life insurance products. Particular attention

is devoted to characteristics changes and parameter uncertainty that are both crucial to

take into account.
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1 Introduction

Mortality at the individual level is known to depend on several observable factors,
among the first ones age and gender. At a deeper level, one can have access to
datasets recording other observable characteristics, such as socio-economic features
or marital status. In this context, to capture mortality differentials depending on
several characteristics is a key issue to better assess longevity/mortality risk at sev-
eral levels. This paper is indeed motivated by reserving purposes regarding specific
insurance portfolios, but also by a population dynamics point of view. This point
of view, detailed in Bensusan et al. (2010-2015), allows to better understand how
aggregate mortality and other demographic quantities as the age pyramid evolve
with an underlying dynamic heterogeneity, based on populations evolving due to
characteristic-specific mortality rates but also birth rates, as well as characteristics
changes during life (see also Boumezoued (2015)).

From a statistical point of view, in the case where these characteristics are stable
during life, classical survival analysis can be used to measure characteristic-specific
mortality rates. However, when these characteristics can change over time, the
model to be used is a multi-state model: a given individual switches from a state
to another until death, which is an absorbing state. The first advantage of such
model is to capture the characteristic-specific mortality rates but also the transition
intensities from a characteristic to another. This provides a measure of the level of
each possible transition in the model. Another advantage of such approach concerns
parameter uncertainty: as the whole dynamics is captured, this approach provides
the variance of the transition rates, as well as their correlations. This way, it is
possible to take into account estimation error in the life trajectories of a given group
of individuals.

To study life trajectories embedding characteristics changes, it is not possible to
use the classical survival analysis estimators as Kaplan-Meier for the survival curve
or Nelson-Aalen for the cumulative intensity. Indeed, such estimators will suffer
from several statistical biases when applied to life trajectories with several inter-
mediate states, since for example the user will proceed to an arbitrary distribution
of individuals by mode, set once for all, or because the terminal event (death in
most cases) is treated as independent censoring (see e.g. Joly et al. (2002)). The
statistical estimation of continuously observed multi-state models, involving clas-
sical censoring and truncation, can be performed by the standard non-parametric
estimator of Aalen-Johansen (see Aalen and Johansen (1978) and the book of An-
dersen et al. (1993)). Although the Aalen-Johansen estimator, as a generalization
of the Nelson-Aalen estimator in a multi-state framework, can be used with several
kinds of incomplete observations, its use requires to know the exact transition dates.
However in practice, the multi-state process is most often observed at some isolated
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times: indeed, in so-called longitudinal data related to medical visits or times of
census, the state of the individual (marital status, social class, ...) is known at in-
spection dates only. Even if this gives some information, the transition times remain
unknown: such observation scheme is called interval censoring. Note also that times
of death are often exactly recorded, so that in fact the observation scheme is mixed:
interval-censored intermediate states and exactly know absorbing state. Several de-
mographic and actuarial studies in this field tackle this issue by limiting the scope
to a discrete-time model, or making assumptions about the transition times in each
interval.

In the demographic and actuarial literature, one can find several studies focusing
on the statistical estimation of multi-state models in discrete time, or continuous
time with exactly known transition times. Many of them focus on health insur-
ance and Long Term Care (LTC). Gaüzère et al. (1999) estimate what is called
an irreversible illness-death process, a process with states 1=healthy, 2=illness and
3=death, where only transitions 1→2, 1→3 and 2→3 are allowed. Gaüzère et al.
(1999) assume that transitions occur at the middle of the censoring interval, there-
fore uses the classical non-parametric framework of Aalen-Johansen since transition
times are given by data modification. Czado and Rudolph (2002) estimates the
transition intensities of multi-state model with Cox-proportional hazard model with
known transition times, whereas Helms et al. (2005) proposes to directly compute
the estimated transition probabilities by means of Aalen-Johansen estimator in this
context. Also, Levantesi and Menzietti (2012) focus on a discrete-time irreversible
illness-death model to study how transition probabilities change over time and mea-
sure the so-called systematic risk. Apart from specific LTC and health insurance
issues, the study of mortality differentials in general life insurance has also gained
recent attention for a better understanding of national mortality and a better assess-
ment of longevity/mortality risk. For example, Kwon and Jones (2006) and Kwon
and Jones (2008) calibrate a discrete-time multi-state model from Canadian health
longitudinal data (Canadian National Population Health Survey), and study the
impact of mortality differentials on typical life and health insurance mechanisms.

To our knowledge, no actuarial studies focused on the assessment of mortality
differentials in the presence of interval censoring, despite this is the main characteris-
tic of longitudinal data. In this context, our aim is to capture mortality differentials
with continuous age by means of reversible multi-state models when the data is
interval-censored. We first develop a parametric maximum likelihood estimation
procedure, which is inspired by recent advances in the statistical literature, and sec-
ond apply it to a representative sample of the French national population made by
the French institute INSEE, called Échantillon Démographique Permanent1

1The authors thank H. Bensusan, as well as A. Frachot and A. Trognon for the access to a part
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In the statistical literature, several contributions focused on multi-state model
estimation with interval-censored data. On the whole, they can be classified de-
pending on the type of method (parametric, semi-parametric, non-parametric), the
class of multi-state models considered (illness-death reversible or not, competing
risk, general multi-state) and the Markov assumption (Markov, semi-Markov, non-
Markov). Since the seminal work of Kalbfleisch and Lawless (1985) in the case
of constant intensities, methods have been developed for irreversible illness-death
Markov models. In this context, one can find non-parametric approaches in e.g.
Frydman (1995) and Frydman and Szarek (2009), and both semi-parametric and
parametric methods in e.g. Joly et al. (2002), Commenges and Gégout-Petit (2007)
and Commenges et al. (2007) (see also Foucher et al. (2007) and Touraine (2013)).
As for reversible processes, one can find in the literature methods dedicated to spe-
cial cases of multi-state models and intensities, as Kang and Lagakos (2007) and
Titman and Sharples (2010) (see also Wei (2015)). Kang and Lagakos (2007) fo-
cused on maximum likelihood estimation for homogenous semi-Markov multi-state
models, assuming that at least one transition intensity is constant. Titman and
Sharples (2010) developed an alternative method based on phase-type waiting times
and hidden Markov chain models. Recently, Wei (2015) introduced a method based
on quasi-Monte Carlo methods applied to time-independent semi-Markov models.

The advantage of non-parametric methods is to overcome assumptions about
the shape of the transition intensities, which is also the case to some extent for
semi-parametric methods as smooth basis functions remain unspecified. This is par-
ticularly useful for applications for which we have no idea of the age structure of
these intensities. Unfortunately, in the case of small samples and/or high number
of interval-censored transition times, non-parametric methods may be unstable: the
use of parametric methods then captures, for such kind of data, a maximum amount
of information on the dynamics (see e.g. Foucher et al. (2007)). Let us emphasize
that for several statistical studies, it is more reasonable to implement a parametric
method taking into account interval censoring, rather than using a nonparametric
method assuming that transition times are known (see e.g. Touraine et al. (2013)).
Indeed, modifying the data by setting middle-interval transition times (or even uni-
formly distributed) leads to fix the age pattern of the transition intensities between
groups: to have intensities with jumps at fixed points for middle-interval assump-
tion, or to be constant on the interval for uniformly simulated transition times. In
this context, parametric methods allows to capture the age pattern of transition
rates while avoiding several biases due to data modification. Parametric methods
are also relevant to include information that we have on the shape of the mortality
rates, for example a Gompertz-type mortality rate at reasonable ages. In this con-

of this dataset.
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text, and given the sample we want to study, we propose here a parametric approach
that will allow us to include a maximum of a priori information on the shape of the
intensity and reduce at best the dimension of the problem.

In the current statistical literature, parametric maximum likelihood procedures
have not been developed for interval-censored data, when intensities depend on age
or time, concerning Markov multi-state models which can have reversible transitions.
So first, closely to e.g. Joly et al. (2002), Commenges et al. (2007), Foucher et al.
(2007) and Touraine et al. (2013) who focus on irreversible processes, we develop
such method. Second, we apply it to the French representative sample Échantil-
lon Démographique Permanent to capture mortality forces which depend on socio-
economic features or marital status, as well as transition intensities between the
several groups. Special attention is given to parameter uncertainty, which can be
different depending on the socio-economic group and the transition rate considered.
This way, we are able to analyze the age-pattern of aggregate mortality which de-
pends on the underlying sub-populations dynamics, as well as the impact on typical
insurance products of heterogeneity and the associated level and uncertainty.

The remainder of this paper is organized as follows. In Section 2, we describe
the longitudinal data we use as a basis for our estimation procedure. The para-
metric maximum likelihood method that takes into account interval-censoring and
reversible transitions in the multi-state model is detailed in Section 3, and the results
we obtain are described in Section 4. Finally, in Section 5 we study the age pattern
of aggregate mortality and we analyze the impact of heterogeneity on typical life
insurance products.

2 Longitudinal data

In this section, we describe the data we want to analyze, which makes the statistical
method developed in the next section conditional upon it. The Permanent De-
mographic Sample (Échantillon Démographique Permanent) of the French institute
INSEE is a longitudinal dataset which aims at observing a representative sample of
the national population while recording several individual characteristics over time.
It contains information of about 992,711 individuals observed since 1968 and born
from 1862, the 1, 2, 3 or 4 of October. These individuals have been (potentially)
observed at the census dates 1968, 1975, 1982, 1990 and 1999, and for each cen-
sus, a set of characteristics was recorded: we here have access to socio-professional
categories as well as marital status. Such a sample is useful to study the link be-
tween the level of mortality and individual characteristics, but also the way these
characteristics change over time.
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Scope of the study This part of the Permanent Demographic Sample that we
have access to is a remarkable database, especially given its completeness, its focus
on real cohorts and regarding the set of characteristics involved. Also, the detailed
analysis of specific levels of mortality in sub-populations and changes in their char-
acteristics during life is a statistical task that poses two major constraints:
a) The size of the subpopulations considered has to be sufficient, which will guide
us first to regroup several modalities of the classification of INSEE, and second to
include one type of characteristics (socio-professional category or marital status) at
a time.
b) The observation of the life trajectories must be sufficiently repeated over time,
which will push us to consider specific cohorts making the five censuses (1968, 1975,
1982, 1990, 1999) available and exploitable given the characteristic considered.

Finally, note that the interval-censoring mechanism involved here has the par-
ticularity to be common to all individuals. Therefore the age at which a given
individual is observed depends on his/her date of birth. We are here in the case
of dependent interval-censoring which is a statistical framework that is beyond the
scope of the present paper. Therefore, we focus on specific cohorts and taking into
account several cohorts at a time is left for further research. In the following, we
detail the dataset we are interested in regarding the socio-professional groups as well
as marital status.

Socio-professional categories For each year of census, (1968, 1975, 1982, 1990
and 1999), we have access to the socio-professional category of each observed indi-
vidual. It is classified by the INSEE in a detailed way, therefore we choose to split
them in two groups. The group 1 includes farmers, craftsmen, salesmen, low-skilled
workers and people without work. The group 2 includes directors of 10 employees or
more, managers, higher intellectual professions, middle management and employees.
This classification, although arbitrary, will be useful to illustrate our methodology
as well as to give interesting insights on the mortality differentials that are of inter-
est for insurance purposes. In this study, we first focus on the male population of
the 1930 birth cohort, which is the first to present a negligible number of students
in 1968, which makes all times of census exploitable with the multi-state model
described in Figure 1. This leads to a sample of 4266 individuals alive at the first
census, observed or not. Group 1 of the 1930 birth cohort represents about 70 %
of the population in 1968, and group 2 its complementary 30 %. In Figure 2, we
represent the proportion of group 1 at each census. Over time, the composition
of the cohort evolves according to two effects: first due to the fact that mortality
for each group may be different, second due to characteristics changes during the
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lifetime of individuals2.

Marital status As well, we focus on marital status. Since we want to explore
the impact of this characteristic at highest ages, we focus on the 1907 female birth
cohort leading to observe individuals with age 60 at the first census. This leads to
a sample of 3038 individuals alive at the first census, observed or not. The focus
on marital status leads us to consider two groups. The first characteristic label
regroups "single", "divorced" or "widowed", and the second characteristic label is
"married". This choice is driven by the data which would not have been sufficient
if we wanted to analyze transitions between "non-married" sub-groups. Although
we lose some information on the original dataset, we are able to analyze the impact
of being married or not, and the transitions between both, all of them being crucial
for insurance purposes. The multi-state dynamics therefore considered is depicted
in Figure 1. In Figure 3, we represent the proportion of non-married individuals at
each census. As well, recall that the cohort composition evolves first due to the fact
that mortality for each group may be different, and second due to characteristics
changes during the lifetime of individuals.

With these two possible classifications, we want to illustrate two facts: hetero-
geneity implies different mortality levels, and also different orders of magnitude of
uncertainty around these levels. By the study of the dynamics of life trajectories
within a cohort, it is possible to get further insights on the age pattern of aggregate
mortality. We also want to illustrate that this is crucial to take into account char-
acteristics changes during life, in particular when computing the price of typical life
insurance products. Note that we estimate mortality forces by age for a real cohort,
which contrasts with many actuarial studies that compute transition probabilities
based on a mix of all age classes at a given year, therefore does not quantify realistic
age patterns.

Remark 1. (On missing data) This dataset mentions all observed deaths before the
year 2008, the end of the follow up. Therefore, if an individual is observed at the
last census, and no date of death is given, then it is reasonable to think that he/she
is alive at the end of the follow up. However, if both date of death and last census
are missing, there is a small probability that the individual trajectory has been lost.
In the case where no date of death is mentioned and several censuses at the end
are missing, then to avoid any bias we assume that the trajectory is right-censored
at the last observed census. This data modification is needed to make sure that no
wrong information is added in the model, although it slightly increases the number

2As well, migration flows may have a small impact in such a way that they make some census
unavailable, and these are treated as independent classical censoring or truncation.
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of unobserved high age trajectories.
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Figure 1: Multi-state models considered, for Socio-Professional Categories (left) or
marital status (right)
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Figure 2: Proportion of individuals labelled 1 (SPC-) among observed individuals
at each census in the 1930 birth cohort

3 Parametric maximum likelihood method for interval-
censored data

In this section, the aim is to express the likelihood associated with the interval-
censored observation of the Markov multi-state models depicted in Figure 1.

3.1 Likelihood derivation

The Markov process Let us consider the Markov multi-state models depicted
in Figure 1 with intermediate states 1 and 2, and absorbing state 3. Let us denote
(Xt) such process with state space {1, 2, 3}, and let αkl(t) be the transition intensity
from state k to state l. Note that the time component t represents the age of the
individual. The process starts at initial age t = a in state 1 with probability p,
in state 2 with probability 1 − p. Let us also define α11(t) := α12(t) + α13(t) and
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3.1 Likelihood derivation
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Figure 3: Proportion of individuals labelled 1 (non-married) among observed indi-
viduals at each census in the 1907 birth cohort

α22(t) := α21(t) + α23(t) the waiting intensities in states 1 and 2 respectively. From
any intensity αkl(t), one defines the cumulative intensity as Akl(s, t) =

∫ t
s
αkl(u)du.

We are interested in the dynamics of the process until it reaches the absorbing state
3 at a random age denoted T (which is the lifetime).

Observation scheme The individual with life trajectory (Xt) is (potentially)
observed at ages R1, ..., R5, which correspond to times of census that are common
to all individuals. Let δi be the census indicator: δi = 1 if the individual has been
observed at age Ri, whereas δi = 0 if not. We assume that the observation δi is
independent from the process (Xt). Note that the last potential census time for a
given individual is the one that precedes his/her age of death (i.e. his/her lifetime),
denoted T . Note also that individual characteristics are not observed at time of
death in the dataset. Let us denote τ the age corresponding to the end of the
follow-up: this is the age of death if T = τ , in this case we denote d = 1, or this
is a right-censoring time if τ < T , which case we denote d = 0. Finally, let us
characterize the set of exploitable censuses. Denote I the set of i such that δi = 1;
note that for i ∈ I, we have Ri ≤ τ . Let Ī the biggest element of I, that is the index
of the last census for which the individual is observed, and I the smallest, that is
the index of the first exploitable census. Lastly, for an index i ∈ I, we denote i+
the following element. For example, if the individual is observed at the census i+ 1,
one has i+ = i+ 1.

The likelihood For a life-trajectory observed according to the observation scheme
described above, whose state at time Ri is denoted xi for each i ∈ I, the contribution
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3.1 Likelihood derivation

to the likelihood is, using the Markov property,

P(XRI
= xI)

∏
i∈I,i<Ī

P(XRi+
= xi+ | XRi

= xi)P(T ≥ τ | XRĪ
= xĪ)P(T = τ | T ≥ τ,XRĪ

= xĪ)
d.

(1)

In the end, as we assume that life trajectories of individuals are independent, the
total likelihood will be given as the product of all individual contributions. Let us
now compute each elementary term in (1) separately.

(i) Let us start with the terms P(XRi+
= xi+ | XRi

= xi) which reflect the
contribution to the likelihood of a trajectory between two observed censuses. Let us
first treat the case where the individual was seen at the census following that in Ri,
that is i+ = i+1, and where also the two censuses are different, that is xi 6= xi+ . For
two consecutive censuses, we assume that only one transition may have occurred.
This may seem as a strong assumption, but in fact, this seems reasonable to think
that in time intervals of about 7 years, it is not likely that two or more transitions
occur regarding the socio-professional category or marital status. Of course, this
can not be tested in our data, but we argue that this approach is a step forward
for such purpose, since it does not make any assumption about the transition times
themselves. As such, we assume that in the dataset the life trajectory is piecewise
irreversible.

In this context, the contribution to the likelihood which takes into account
interval-censoring amounts to integrate over all possible transition times u ∈ [Ri, Ri+1].
It reflects the fact that it remains in the state xi during the time interval [Ri, u], that
it instantaneously jumps at time u, and that it stays in state xi+1 during [u,Ri+1],
that is

P(XRi+1
= xi+1 | XRi

= xi) =

∫ Ri+1

Ri

e−Axixi (Ri,u)αxixi+1
(u)e−Axi+1xi+1 (u,Ri+1)du. (2)

Let us also treat the other case where the two consecutive observations are the same,
i.e. xi+1 = xi. Since we do not allow two transitions during a census interval, the
only possibility is that the individual stayed in this state, that is

P(XRi+1
= xi | XRi

= xi) = e−Axixi (Ri,Ri+1). (3)

Now, let us focus on the case where a census is missing between the two observed
censuses i and i+. In this configuration, we reduce to the previous cases by summing
over all the possible values taken by the process at intermediate census. For example,
if i+ = i+ 2, we get by conditioning and using the Markov property,

P(XRi+2
= xi+2 | XRi

= xi) =
∑

k∈{1,2}

P(XRi+2
= xi+2 | XRi+1

= k)P(XRi+1
= k | XRi

= xi),
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3.1 Likelihood derivation

whereas if i+ = i+ 3, we get∑
k∈{1,2}

∑
l∈{1,2}

P(XRi+3
= xi+3 | XRi+2

= l)P(XRi+2
= l | XRi+1

= k)P(XRi+1
= k | XRi

= xi),

which extends in the same way to the case i+ = i+4, the maximum case in our study.

(ii) Let us now focus on the term P(T ≥ τ | XRĪ
= xĪ), and first assume that

Ī = 5 (case 1), i.e. that we are at the last possible census. We have to distinguish
here between our two applications.

Let us start with socio-professional category. In our study, the retirement age is
attained before the last census, therefore characteristics of individuals remain stable
until death. The contribution to the likelihood amounts to compute the probability
that the terminal event is not reached during the time interval [R5, τ ], that is

P(T ≥ τ | XR5 = x5) = e−Ax53(R5,τ). (4)

Let us now focus on marital status. In this context, it is crucial to take into
account the fact that at high ages after the last census, individuals can switch from
married (group 2) to non-married (group 1) due to widow. Since transitions 2→ 1

are allowed until death, and that in addition marital status at death is unknown,
we have to explore two possibilities: either the individual stayed married and died,
or switches to group 1 before death. Also, we assume that after the last census in
1999, no transition 1 → 2 occurs (which is natural since individuals have age 91).
The two possible contributions thus write

P(T ≥ τ | XR5 = 2) = e−A22(R5,τ) +

∫ τ

R5

e−A22(R5,u)α21(u)e−A13(u,τ)du, (5)

and
P(T ≥ τ | XR5 = 1) = e−A13(R5,τ). (6)

Let us now assume that Ī ≤ 4 (case 2). We do not distinguish between the two
applications anymore. Remark that the time of the follow-up end τ is always greater
than RĪ . Let us first assume that τ belongs to the time interval [RĪ , RĪ+1]. In this
case, there are two possible trajectories: either the individual stayed in his/her state
xĪ until time τ , or he/she switched to another intermediate state before τ . Let us
denote yĪ the intermediate state which is different from xĪ , that is yĪ = 2 if xĪ = 1

and yĪ = 1 if xĪ = 2. The contribution to the likelihood can then be written as

P(T ≥ τ | XRĪ
= xĪ) = e−AxĪxĪ

(RĪ ,τ) +

∫ τ

RĪ

e−AxĪxĪ
(RĪ ,u)αxĪyĪ (u)e−AyĪyĪ

(u,τ)du. (7)

Let us now assume that τ is greater than RĪ+2. Then the contribution writes

P(T ≥ τ | XRĪ
= xĪ) =

∑
k∈{1,2}

P(T ≥ τ | XRĪ+1
= k)P(XRĪ+1

= k | XRĪ
= xĪ),
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3.1 Likelihood derivation

and this reduces to the computation of elementary terms of the form (2), (3), (4),
(5), (6) and (7).
In practice with our data, the right-censoring times (that is the end of follow-up
of the individual) are either the end of the follow-up for the whole sample, which
is after the last possible census, or a census time at which the individual has been
observed (see Remark 1 in Section 2). Therefore, formula (7) is only used here to
compute the contribution of an observed death, with the last term detailed below.

(iii) In the case where d = 1, we have to compute

P(T ≥ τ | XRĪ
= xĪ)P(T = τ | T ≥ τ,XRĪ

= xĪ) = P(T = τ | XRĪ
= xĪ).

The term P(T = τ | XRĪ
= xĪ) can be computed using the same reasoning: if Ī = 5,

we add a multiplicative factor αx53(τ) of instantaneous death to Equations (4) and
(6) as

P(T = τ | XR5 = x5) = e−Ax53(R5,τ)αx53(τ),

or to Equation (5) as

P(T = τ | XR5 = 2) = e−A22(R5,τ)α23(τ) +

∫ τ

R5

e−A22(R5,u)α21(u)e−A13(u,τ)α13(τ)du.

If Ī ≤ 4 and τ lies in the interval [RĪ , RĪ+1], we add the instantaneous death
probability to Equation (7) in order to get

P(T = τ | XRĪ
= xĪ) = e−AxĪxĪ

(RĪ ,τ)αxĪ3(τ)+

∫ τ

RĪ

e−AxĪxĪ
(RĪ ,u)αxĪyĪ (u)e−AyĪyĪ

(u,τ)αyĪ3(τ)du.

The other cases are easily obtained by the three previous elementary terms.

(iv) Finally, let us compute the term P(XRI
= xI). If I = 1, this corresponds to

the initial distribution of the process, that is

P(XR1 = x1) = p1x1=1 + (1− p)1x1=2. (8)

In the case where I ≥ 2, it reduces to the computation of elementary terms of the
form (2)-(3) and (8) by

P(XRI
= xI)

=
∑

j1∈{1,2}

...
∑

jI−1∈{1,2}

P(XRI
= xI | XRI−1

= jI−1)

I−2∏
i=1

P(XRi+1
= xi+1 | XRi

= xi)P(XR1 = x1).

This concludes the computation of the contributions in Equation (1).
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3.2 Parametric framework

3.2 Parametric framework

We detail here the parametric assumptions we make on the shape of the transition
intensities, that is on the age pattern of characteristic-specific mortality rates as
well as transitions between states. As previously mentioned, parametric methods
are relevant to include information that we have on the shape of the intensities, for
example a Gompertz-type mortality rate at reasonable ages. Given the sample we
want to study, involving small samples coupled with interval-censored observations,
such approach allows us to include a maximum of information and to reduce at best
the dimension of the problem.

Mortality rates For the characteristic-specific mortality rates, which are nothing
but the transition rates from the intermediate states to the absorbing state, we
assume a Gompertz-type setting (see Gompertz (1825)), since ages between around
40 and 70 years are involved for socio-economic groups and between around 60 to
100 for marital status. This can be written, for (k, l) ∈ {(1, 3), (2, 3)},

αkl(t) = ckl exp(dklt).

The cumulative intensity can thus be written

Akl(s, t) =

∫ t

s

αkl(u)du =
ckl
dkl

(exp(dklt)− exp(dkls)) .

Transitions between socio-economic groups As for the transitions between
intermediate states which represent different socio-economic groups, unlike mor-
tality we do not have baseline data to guide us on the parametric form of the
age-dependent transition intensities. Also, we tested a non-parametric method as-
suming known middle-interval transition times, but unfortunately the Nelson-Aalen
increments were so erratic that it was not possible to get insights on possible mono-
tonicity of even the shape of the transition intensities. Nevertheless, a reasonable
framework and widely used is the monotonous transition intensities of Weibull type
that will help in our study to give the possibility of an increase or decrease of the
transition intensities during life, see e.g. Joly et al. (2002), Commenges et al. (2007),
Foucher et al. (2007) and Touraine et al. (2013). Another advantage is that a partic-
ular case is the constant intensity framework, which will allow us to compare nested
models with some statistical criteria. For (k, l) ∈ {(1, 2), (2, 1)}, the Weibull-type
parametrization of the intensity αkl(t) writes

αkl(t) = aklb
−akl
kl takl−1, (9)

whose cumulative intensity is

Akl(s, t) =

∫ t

s

αkl(u)du = b−aklkl (takl − sakl). (10)
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3.2 Parametric framework

In our application regarding socio-professional category, we have to choose an age
after which the characteristic is stable. Here we choose this age to be 60, just before
common retirement age. Although arbitrary, this allows us to take into account the
job status at the very end of the career while avoiding edge effects due to a common
retirement age. Then the intensity (9) and its cumulative (10) are modified in this
way. In the following, we denote Model 1 the model such that akl = 1 and Model 2
the model with the Weibull parametrization.

Transitions between marital status Parametric assumptions about the age
pattern of marital status transition rates are crucial. Indeed, contrary to socio-
professional category, marital status can change at very high ages mainly due to
married → widowed transitions. Also, based on observed census, the parametric
assumption combined with the maximum likelihood procedure allows us to capture
an estimated value of these transition rates in the age range where no observation
is available, that is between the last possible census (year 1999) and the end of the
follow-up (year 2008). We performed preliminary studies and got insights on the
shape of transition rates from married to widowed at high ages: at first sight, for a
women at a given (high) age t, the transition rate α21(t) corresponds to the mortal-
ity rate of the spouse averaged over all its possible ages. With the use of national
mortality data and also the observed distribution of ages between the members of a
given couple, we computed such quantities and exhibited the possible corresponding
age pattern. This one was in-between an exponential growth and a power law be-
havior, therefore we aim at testing two parametric families for such transitions. The
first one is a Gompertz type shape denoted α21(t) = a21 exp (b21t) , and the second
one is a Weibull type distribution αkl(t) = a21b

a21
21 t

a21−1. As for the transition rate
α12(t), due to the very small number of transitions from non-married to married
in the age range considered, we propose to include a constant transition intensity
α12(t) = b12. In the following, we denote Model 3 the model in which the transi-
tion intensity from married to non-married is of Weibull type and Model 4 in the
Gompertz-type parametrization.

To conclude, the set of parameters over which the likelihood L(θ) has to be
maximized is at most

θ = (p, a12, a21, b12, b21, c13, c23, d13, d23). (11)

Parameter uncertainty Once the likelihood is maximized, we obtain the value
of estimated parameters. In the applications, one is also interested in parameter
uncertainty, that is the fluctuations of the estimated parameters around the true
(unknown) value. This way, it is possible to measure for a given model the error we
commit on the parameters due to the finite size of the sample and the particulari-
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ties of the interval-censored observation scheme. A standard result about maximum
likelihood estimators is their asymptotic normality: as the size of the sample goes to
infinity, the random set of parameters is multivariate normal, centered around the
true value θ, whose estimated value is denoted θ̂, with variance-covariance matrix
given by the opposite of the Hessian inverse at (unknown) θ, which is estimated by
the same matrix taken at θ̂, that is Σ̂ = −H(θ̂) where Hi,j(θ) = ∂2

∂θi∂θj
logL(θ). Note

that as usual in such statistical analysis, it is assumed that we are in the asymp-
totic normality regime, for which we estimate numerically the mean and covariance
matrix as previously detailed. This makes us able to perform joint simulations of
the parameters, an then compute the distribution of several quantities of interest as
transition intensities by evaluating it in each simulation.

4 Results

4.1 Results for socio-economic groups

Comparison of the two nested models We first perform the maximization
of the likelihood in the model where the transition intensities between intermedi-
ate states are constant (Model 1). We tested several initial parameters, and in
particular we chose parameters that were close to a fitted Gompertz curve on na-
tional data. We emphasize that the maximization step requires a lot of computer
resources, since for a given evaluation of the (log-)likelihood we have to compute
each individual contribution. We obtain a log-likelihood of -14743.74 by means of
the Nelder-Mead algorithm. The estimated parameters are shown in Table 1 with
three significative numbers. In addition, we also perform the maximization under
the Weibull parametrization for the transitions between intermediate states (Model
2), and we obtain a log-likelihood of -14727.55. The parameters are given in Table
1 as well. As expected, since the models are nested, the Weibull parametrization
leads to a higher log-likelihood. With the methodology described in the previous
section, we estimate the variance-covariance matrix of the intensity parameters both
for Models 1 and 2. Finally, the characteristic-specific mortality forces as well as
the transition rates between groups are depicted in Figures 4 and 5 with their 95%
confidence intervals. With these graphs, we get several interesting insights. First,
as expected, the specific mortality rates of the two groups are significatively differ-
ent (in a statistical sense), and in particular that of group 1 individuals is higher.
Also, transitions between groups are quite similar in the constant intensity Model
1, but the use of Model 2 shows that the age pattern of these transition rates are
really different. Since the method quantifies the magnitude and fluctuations around
transition intensities, we observe that both level and uncertainty are characteristic-
specific, therefore we expect different behavior if we forecast a sample of this cohort
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4.1 Results for socio-economic groups

with a specific composition. This issue is addressed in Section 5. As well, let us
remark that the level and uncertainty of the transition intensities between groups
is different. In this context, we are interested in quantifying the impact of these
characteristics changes on the dynamics.

Parameter Model 1 Model 2
p 0.703 0.703
a12 1 0.621
a21 1 3.17
b12 80.1 50.8
b21 56.3 74.0
c13 0.000191 0.000189
c23 0.000152 0.000173
d13 0.0721 0.0723
d23 0.0703 0.0683

Table 1: Estimated parameters for the two models. Recall that for model 1, the set
of parameters is reduced since a12 and a12 are set at value 1.

Figure 4: Estimated transition rates between groups for Model 1 (left) and Model
2 (right) with their 95 % confidence intervals

40 50 60 70 80

0.
00
0

0.
00
5

0.
01
0

0.
01
5

0.
02
0

0.
02
5

Transition rates for the 1930 cohort

Age

 

Transition from 1 to 2
Transition from 2 to 1

40 50 60 70 80

0.
00
0

0.
00
5

0.
01
0

0.
01
5

0.
02
0

0.
02
5

0.
03
0

Transition rates for the 1930 cohort

Age

 

Transition from 1 to 2
Transition from 2 to 1

Model comparison As usual when comparing nested models, the issue is to deter-
mine if the two additional parameters a12 and a21 increase the likelihood significantly
enough compared to the fact that the dimension of the problem is augmented. Sev-
eral possible criteria can help to identify the "best" model. We focus here on both
the classical Akaike Information Criterion (AIC) and also the Bayesian Information
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4.2 Results for marital status

Figure 5: Estimated characteristic-specific death rates for Model 1 (left) and Model
2 (right)
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Criterion (BIC), which is more parsimonious than the latter regarding the problem
dimension. The AIC can be computed as

AIC = −2 logL(θ̂) + 2× k,

where k is the number of parameters involved. Also the BIC can be computed as

BIC = −2 logL(θ̂) + log(n)× k,

where n is the number of observations. Note that the quantity n is in fact not
obvious to determine, since it can be the number of individual observed, or the
number of observed (uncensored) transitions. One can find discussions on this issue
in the literature, see e.g. Volinsky and Raftery (2000). For our application, we
choose n to be the number of observed points, that is the number of observed death
plus the number of recorded censuses, which is 18114. This makes the BIC the
most parsimonious as possible, since at most one transition can occur between two
censuses.

In the end, for each criterion, the model with the lowest value is indicated. The
results are given in Table 2 with five significative numbers. In each case, even
with a parcimonious BIC, Model 2 is chosen. Note however that it presents wider
confidence intervals for transition intensity 1 → 2. For the sake of comparison, we
think that is it interesting to develop the numerical results for both models, which
is done in the next section.

4.2 Results for marital status

In the Weibull-type marital Model 3 we obtain a log-likelihood of -14061.86 by
means of the Nelder-Mead algorithm, as for the Gompertz-type marital Model 4,
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4.2 Results for marital status

Criterion Model 1 Model 2
AIC 29501 29473
BIC 29556 29543

Table 2: AIC and BIC computed for models 1 and 2.

a log-likelihood of -14062.51 is obtained. The parameters are displayed in Table
3. We estimate the variance-covariance matrix of the parameters as before, both
for Models 3 and 4. On this basis, we represent the estimated intensities and their
associated pointwise 95%-confidence intervals in Figures 6 and 7 for transition be-
tween groups and characteristic-specific death rates respectively. Let us first focus
on the transition intensities between groups, see Figure 6. As expected when count-
ing the number of observed transitions, the transition intensity α12(t) = b12 from
non-married to married is very low compared to the reverse transition 2 → 1, al-
though it is not zero (see Table 3). We are here close to an irreversible multi-state
model, but it is shown in Section 5 that the analogy is not completely valid since a
small impact remains on stylized life insurance products.

On the mortality compensation law Let us now focus on characteristic-specific
log-mortality rates, see Figure 7. These show that for ages between around 60 and 85,
mortality rates are lower for married individuals, which is intuitive. But after some
age around 90, the situation is reversed, as for higher ages the mortality of married
individuals becomes higher. This may be a suprising result at first sight, but in fact,
this illustrates a well known demographic phenomenon referred to as the mortality
compensation law. This appears when one compares several sub-populations at the
same time, e.g. specific groups in a country or several national population, or the
same population in successive time periods. It states that if the mortality factor
is lower, namely here c23 < c13, then necessarily the age coefficient is higher, that
is d23 > d13 (see Table 3). In other words, a decrease of mortality at the lowest
ages in the age range leads to an increase of mortality at highest ages. Dynamically,
for stochastic mortality models with a formulation closely related to Gompertz,
such as Cairns et al. (2006), the times series of slope and intercept of log-mortality
rates appear to be negatively correlated, as already highlighted in Strehler and
Mildvan (1960). This phenomenon can be explained by the fact that the human
life span, that is the maximum biological life length driven by the intrinsic rate of
bodily deterioration, does not change much for reasonable time periods (see e.g.
Strulik and Vollmer (2013)). Note that the compensation law can be also measured
in two other ways, with their corresponding denominations: the compression of
the distribution of ages at death, and the rectangularization of the survival curve.
For further investigation of the compensation law and related effects, the reader is
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referred to e.g. Strehler and Mildvan (1960), Fries (1980), Gavrilov and Gavrilova
(1991), Wilmoth and Horiuchi (1999) and Strulik and Vollmer (2013). Note that
as we avoid proportional hazard assumptions, we are able to reproduce such effects.
This leads to several insights on the shape of aggregate mortality, as well as on the
impact of life insurance products. This is developed in the next section.

Parameter Model 3 Model 4
p 0.329 0.329
a21 5.99 0.000397
b12 0.00194 0.00193
b21 0.0131 0.0693
c13 1.22e-05 1.23e-05
c23 2.96e-06 3.11e-06
d13 0.103 0.103
d23 0.119 0.118

Table 3: Estimated parameters for Models 3 and 4.

Figure 6: Estimated transition rates between groups for Model 3 (left) and Model
4 (right) with their 95 % confidence intervals
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5 Aggregate mortality and the impact of hetero-
geneity on life insurance products

The aim of this section is to address the impact of the population dynamic hetero-
geneity on (i) the aggregate mortality rate and (ii) typical life insurance products

19



5.1 Population heterogeneity dynamics

Figure 7: Estimated characteristic-specific death rates (top) and their logarithm
(bottom) both for Model 3 (left) and Model 4 (right)
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embedding life or death benefits. We begin by describing the dynamics of an het-
erogenous population with specific composition.

5.1 Population heterogeneity dynamics

To understand the impact of the dynamic composition on several quantities of in-
terest, one has to detail how a particular sample evolves through time, taking into
account deaths but also characteristics changes during life. We see transition in-
tensities αkl(t) depending on age t to be stochastic quantities as they depend on
the realized parameter vector θ, see (11), whose distribution can be approximated
as detailed at the end of Section 3. We deal here with the mean trajectory of a
given sample, therefore demographic stochasticity (which is a consequence of finite
sample sizes) is not taken into account in itself. Let us recall that we are inter-
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5.2 Aggregate mortality

ested here in the uncertainty in the parameters due to the finite sample data size
and the interval-censoring mechanism. Let us denote g1(a) and g2(a) the initial
deterministic quantities (real numbers) of individuals in each group 1 or 2 with age
a, which is nothing but the age of our sample of interest at the first census (here

a = 37.25). Now, let us denote for t ≥ a, G(t) =

(
g1(t)

g2(t)

)
the repartition between

the two groups. Given the transition rates, this evolves (deterministically) according
to deaths and characteristic changes. The classical Chapman-Kolmogorov equation
gives us the average dynamics of our Markov process as

G′(t) = K(t)G(t), (12)

where the transition matrix K(t) is given by

K(t) =

(
−α13(t)− α12(t) α21(t)

α12(t) −α23(t)− α21(t)

)
.

Note that the complexity of taking into account reversible transitions arises due to
the fact that in general no analytical solutions are available for G (see e.g. Andersen
et al. (1993)). This is also the case for the particular parametric forms we have chosen
for the intensities. Indeed, since the matrices K(s) and K(t) do not commute3 we
are not able to write an explicit formula for G(t). In practice, the assumption that
the reverse intensity is zero is often used when a few number of such transitions
occurred (see e.g. Czado and Rudolph (2002)). Although analytical solutions are
not available in our case, we are able to compute the ordinary differential equation
(12) numerically using a standard discretization scheme.

5.2 Aggregate mortality

In this part, our aim is to illustrate several patterns of aggregate mortality and
explain them based on the analysis of the underlying population structure. Let us
define the total number of individuals in the sample as

g(t) = g1(t) + g2(t). (13)

Note again that this is in fact a quantity in R+. Formally, the equivalent death rate
(in continuous time) is defined as

µ(t) = −g
′(t)

g(t)
=
g1(t)α13(t) + g2(t)α23(t)

g(t)
, (14)

which is nothing but an average of characteristic-specific death rates, whose weights
depend on the dynamics of the underlying population composition.

3The proof that K(s) and K(t) do not commute is left to the reader.
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5.2 Aggregate mortality

When looking at heterogeneity, a well known phenomenon is the fact that mor-
tality rejoins the lowest one, more precisely: the aggregate death rate, that is the
"equivalent" mortality force, gets closer to that of the group whose mortality is the
lowest. This fact is naturally observed when individuals do not change between the
groups. When characteristics changes are taken into account, the way aggregate
mortality evolves through age may be different, and in particular even the reverse
effect can be observed. The two applications we further develop below are able to
capture such facts.

Socio-economic groups Aggregate mortality of Equation (14) is computed us-
ing the dynamics (12), and the results are depicted in Figure 8 for the age range
concerned with the estimation procedure. In this case, based on the initial sample
proportions, and given the level of estimated transition intensities, aggregate mor-
tality slowly rejoins mortality of group 2, and the speed at which this effect occurs
is quantified. This is crucial because it shows how a quantification of mortality at
a deeper level leads to several insights on the shape of aggregate mortality. In our
study, we were in addition able to capture the variance-covariance matrix of the
parameters. Also, we can compute the associated 95%-confidence intervals, shown
in Figure 9.

To further validate the modeling framework and the parametric assumptions,
we can compare one hand the aggregate survival function obtained by taking into
account the interval censoring scheme and the underlying heterogenous dynamics,
and on the other hand the survival function computed on the sample regardless
of individual characteristics, e.g. by Kaplan-Meier estimator. This comparison is
shown in Figure 10 for Models 1 and 2. Note that the two curves shapes and levels
are very similar, although they may differ at high ages for extreme scenarios. This
could be explained by the Gompertz assumptions for mortality which is not a good
approximation for ages around 40 years, which may result in a slight underestimation
of mortality. Nevertheless, we believe that this is the best parametric option for
the whole age range and given the small amount of data. Note also that despite
these differences in some parameter scenarios, we capture on the other side more
information on the heterogenous dynamics, which is at the core of our study.

Marital status The study of the underlying population composition gives us
many insights on the age pattern of aggregate mortality. This is particularly the case
for the focus on marital status. In Figure 11, we depict the characteristic-specific and
aggregate log-mortality rates for Models 3 and 4, as well as their corresponding 95%-
confidence intervals in Figure 12. Let us describe the age pattern of aggregate log-
mortality: at age around 60, this quantity is closer to the "married" mortality, then
rejoins the "non-married" mortality at age around 85 and remains at this level until

22



5.2 Aggregate mortality

the end of the age range considered. This fact can not be described as "aggregate
mortality rejoins the lowest one", due to the impact of the evolving population
composition taking characteristics changes into account. Here, aggregate mortality
first rejoins the highest one, and then stays at the level of the "non-married" group
since it corresponds to the characteristic which is more and more represented in the
population due to characteristic changes at high ages.

For this study on marital status also, to further validate the modeling framework
and the parametric assumptions, we plot in Figure 13 the comparison between the
aggregate survival function obtained by taking into account the interval censoring
scheme and the underlying heterogeneity, and also the survival function computed on
the sample regardless of individual characteristics, e.g. by Kaplan-Meier estimator.
In this case, survival curves are really similar, showing that our method captures the
underlying heterogeneity that furthermore replicates the overall mortality observed
in the sample.

Figure 8: Characteristic-specific and aggregate mortality rate (left) and their loga-
rithm (right) for Model 1.
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5.3 Impact on life insurance products

Figure 9: Characteristic-specific and aggregate mortality forces 95%-confidence in-
tervals for Model 1 (left) and Model 2 (right).
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5.3 Impact on life insurance products

The aim of this section is to assess the impact of heterogeneity on life insurance
products as death or life benefits. Particular attention is devoted to characteristics
changes and parameter uncertainty. Let us start with a portfolio with some compo-

sition G(a) =

(
g1(a)

g2(a)

)
, and focus on two simplified actuarial quantities as the life

benefit and the death benefit, that start at age a and end at age ā. Let us consider
a constant interest rate r. The life benefit, also known as annuity contract, amounts
to pay 1 per time unit to still alive individuals until age ā, that is

LB :=

∫ ā

a

e−r(t−a)g(t)dt,

where g(t) is defined in (13). Another quantity of interest is the death benefit, which
pays 1 at each death before age ā. Note that formally, the number of deaths in the
time interval [t, t + dt) is g(t) − g(t + dt) ≈ −g′(t)dt. Then the death benefit, also
known as term insurance contract, is rigorously defined as

DB := −
∫ ā

a

e−r(t−a)g′(t)dt.

After integration by parts, it can also be rewritten in terms of the life benefit as

DB = g(a)− e−r(ā−a)g(ā)− rLB.

This gives another interpretation of the death benefit: it amounts for the insurer
to pay 1 at each individual in the portfolio (first term), then take back 1 from each
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5.3 Impact on life insurance products

Figure 10: Survival curves 95%-confidence intervals obtained in Model 1 (left) and
Model 2 (right) compared to the Kaplan-Meier estimate
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individual which is alive at the end at age ā (second term), and finally that each
alive individual pays back r per time unit to the insurer (third term).

The aim now is to compute the distribution of the life and death benefits, which
depends on the (random) set of parameters, under several configurations. In partic-
ular, we measure sensitivities due to (i) the composition of the initial population, (ii)
the fact that characteristics changes are taken into account or not, and (iii) several
values for the interest rate r.

Impact of socio-economic heterogeneity Let us fix a = 37.25 and ā = 78.5,
corresponding to the age range considered in the estimation procedure. This is
typical of death benefits, therefore numerical results are given in this context. The
set of parameters is given as follows:
(i) the initial population at age a = 37.25 is made of SPC+ (group 2) only (p = 0),
or representative of the initial sample (p = 0.703), or made of SPC- (group 1) only
(p = 1).
(ii) the random distribution of the value of the death benefit is represented using
the full model (12) and compared to the same where characteristics changes are not
taken into account (that is α12(t) = α21(t) = 0).
(iii) two values for the interest rate are tested, namely r = 1% in Figure 14 and
r = 3% in Figure 15.
These results are depicted for both Models 1 and 2.

Let us first focus on the initial population that is representative of the origi-
nal sample composition (p = 0.703), see the middle column in Figures 14 and 15.
From this test, it appears that considering characteristics to be stable slightly over-
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5.3 Impact on life insurance products

Figure 11: Characteristic-specific and aggregate log-mortality rate for Model 3 (left)
and Model 4 (right).
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estimates the value of the death benefit, in other words under-estimates the sample
size, or equivalently over-estimates mortality. Therefore, it seems that the propor-
tion of individuals in group 1 is over-estimated when characteristics changes are
omitted. Yet, let us recall that the transition intensity from 1 to 2 is on the whole
lower than 2 to 1, see Figure 4. But in fact, the total intensity of characteristics
changes from group 1 to group 2 is the product of the 1 → 2 transition intensity
times the number of individuals in group 1. Therefore, when the initial proportion
of group 1 is sufficiently large, the number of changes from 1 to 2 becomes higher
than those from 2 to 1, and the death benefit is over-estimated if changes are not
taken into account. This can be illustrated if we start from a population initially
made of group 1 individuals only (p = 1), see the right column in Figures 14 and
15. On the contrary, if the proportion of group 1 individuals is lower enough, the
death benefit is under-estimated when considering characteristics stable during life.
This is illustrated when starting with group 2 individuals only (p = 0), see the left
column in Figures 14 and 15. Note that of course, the death benefit is naturally
lower with individuals in group 2 compared to group 1, and our modeling framework
quantifies the difference between the two.

As for the comparison between the two Models 1 and 2, results are very similar,
both in terms of overall level and uncertainty. Finally, comparing Figures 14 and 15
allows us to test the sensitivity to the interest rate in each scenario. As expected,
the value of the death benefit (x-axis) decreases as r increases, but in each scenario
taking into account transitions between groups still has a huge impact.
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5.3 Impact on life insurance products

Figure 12: Characteristic-specific and aggregate log-mortality forces 95%-confidence
intervals for Model 3 (left) and Model 4 (right).
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Impact of marital status heterogeneity Concerning marital status hetero-
geneity, numerical results also show that it is crucial to take into account both
characteristic-specific mortality and transitions between states. Let us fix a = 60.25

and ā = 101.5, corresponding to the age range considered in the estimation proce-
dure, typical of a life benefit. For these results, the set of parameters is given as
follows:
(i) the initial population at age a = 60.25 is made of married individuals (group
2) only (p = 0), or representative of the initial sample (p = 0.329), or made of
non-married individuals (group 1) only (p = 1).
(ii) the random distribution of the value of the death benefit is represented using
the full model (12) and compared to the same where characteristics changes are not
taken into account (that is α12(t) = α21(t) = 0).
(iii) two values for the interest rate are tested, namely r = 1% in Figure 16 and
r = 3% in Figure 17.
These results on life benefits are depicted for both Models 3 and 4. The impact
of transitions out of marriage is clear, being mostly at these ages transitions from
married to widowed. This is depicted in Figures 16 and 17 when starting with mar-
ried individuals (left column) or a population which is representative of the original
sample (middle column). On the contrary, as the transition intensity from non-
married to married is small, the impact is not so important when starting from
non-married individuals only (right column). But let us emphasize that a difference
still remains, which can have a real impact when multiplied by a huge amount of
pensions. Also here, when comparing Models 3 and 4, the main difference appears
to be the uncertainty about the life benefit value, this one being lower in Model 4; in
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Figure 13: Survival curves 95%-confidence intervals obtained in Model 3 (left) and
Model 4 (right) compared to the Kaplan-Meier estimate
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this model, also less performing than Model 3 in terms of likelihood (see Subsection
4.2), confidence intervals are in fact lower both for mortality rates (see Figure 7)
and transitions rates between states (see Figure 6).

To conclude these numerical results assessing the impact of socio-economic or
marital status heterogeneity on typical life insurance products, let us emphasize that
the impact of taking into account characteristics changes depends on both the initial
population composition and the level of the several possible transition intensities.
The maximum likelihood procedure developed in this paper that takes into account
interval censoring allows us to quantify such effect based on longitudinal data.

Conclusion

In this paper, we have developed a parametric maximum likelihood method for mea-
suring mortality heterogeneity when characteristics changes are interval-censored,
which is a particularity of longitudinal data based on censuses. Indeed, for such
data individuals are often observed at isolated points in time so the times at which
characteristics change during life remain unknown. While applying such a method
to a representative sample of the French national population, which presents both
a small number of individuals and a systematic interval-censored observation mech-
anism, we were still able to capture characteristic-specific mortality rates linked
to socio-economic groups or marital status, as well as to measure the transition
rates between the groups. Special attention was devoted to parameter uncertainty
whose magnitude differed depending on the characteristics and the transition rates
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5.3 Impact on life insurance products

Figure 14: Death benefit distribution with r = 1% and p = 0 (left), p = 0.703

(middle) and p = 1 (right) for Model 1 (top) and Model 2 (bottom)
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considered.
Based on such estimates, we highlighted effects such that the mortality com-

pensation law between groups. We also addressed the dynamic evolution of several
populations with specific compositions, leading us to get insights on the age pat-
tern of aggregate mortality related to the underlying dynamic heterogeneity. We
were also able to quantify the impact on typical life insurance products of consider-
ing characteristics stable during life instead of taking into account their variability.
Interestingly, this impact depends on both the initial population composition and
the level of the transition intensities between groups; these insights are crucial for
longevity/mortality risk management.

The statistical estimation of mortality heterogeneity based on complex data re-
mains a challenging field of actuarial research. Further improvements would concern
higher dimensional multi-state models with more groups, as well as the estimation
of several cohorts simultaneously. To this aim, "larger" datasets are required, first
including more individuals to allow to increase the number of possible states, and sec-
ond with more frequent and deep records leading to reasonable observation schemes
and time windows, since particularly the study of the age pattern of heterogenous
mortality within real cohorts requires very long historical data.
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Figure 15: Death benefit distribution with r = 3% and p = 0 (left), p = 0.703

(middle) and p = 1 (right) for Model 1 (top) and Model 2 (bottom)
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Figure 16: Life benefit distribution with r = 1% and p = 0 (left), p = 0.329 (middle)
and p = 1 (right) for Model 3 (top) and Model 4 (bottom)
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