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CentraleSupélec – LSS – Université ParisSud, Gif sur Yvette, France
e-mail: romain.couillet@supelec.fr

and

Florent Benaych-Georges

MAP 5, UMR CNRS 8145 – Université Paris Descartes, Paris, France
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Abstract: This article proposes a first analysis of kernel spectral cluster-
ing methods in the regime where the dimension p of the data vectors to be
clustered and their number n grow large at the same rate. We demonstrate,
under a k-class Gaussian mixture model, that the normalized Laplacian ma-
trix associated with the kernel matrix asymptotically behaves similar to a
so-called spiked random matrix. Some of the isolated eigenvalue-eigenvector
pairs in this model are shown to carry the clustering information upon a sep-
arability condition classical in spiked matrix models. We evaluate precisely
the position of these eigenvalues and the content of the eigenvectors, which
unveil important (sometimes quite disruptive) aspects of kernel spectral
clustering both from a theoretical and practical standpoints. Our results
are then compared to the actual clustering performance of images from the
MNIST database, thereby revealing an important match between theory
and practice.
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1. Introduction

Kernel spectral clustering encompasses a variety of algorithms meant to group
data in an unsupervised manner based on the eigenvectors of certain data-driven
matrices. These methods are so widely spread that they have become an essential
ingredient of contemporary machine learning (see [31] and references therein).
This being said, the theoretical foundations of kernel spectral clustering are
not unified as it can be obtained from several independent ideas, hence the
multiplicity of algorithms to meet the same objective.

Denote x1, . . . , xn ∈ R
p the data vectors to be clustered in k similarity classes

and κ : Rp × R
p → R+ some data-affinity function (which by convention takes

large values for resembling data pairs and small values for distinct vectors).
We shall denote by K the kernel matrix defined by Kij = κ(xi, xj). One of
the original approaches [31] to data clustering consists in the relaxation of the
following discrete problem

(RatioCut) argminC1∪...∪Ck={x1,...,xn}

k∑
a=1

∑
xi∈Ca

xj /∈Ca

κ(xi, xj)

|Ca|
(1.1)
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where the minimum is taken over disjoint sets Ca, a = 1, . . . , k. Here the nor-
malization by |Ca| (with | · | the set cardinality) ensures that classes have ap-
proximately balanced weights. Letting M ∈ Rn×k be the matrix with [M ]ia =

|Ca|−
1
2 δ{xi∈Ca} (1 ≤ i ≤ n, 1 ≤ a ≤ k) and M the set of such matrices, this can

be shown to be strictly the same as

(RatioCut) argminM∈M trMT(D −K)M

where, with D � D(K1n) (with D(·) the diagonal operator), D −K is the so-
called (unnormalized) Laplacian matrix of K and M contains the information
about the Ci classes. Observing that MTM = Ik, one may relax the above
problem to

(RelaxedRatioCut) min
M∈R

n×k

MTM=Ik

trMT(D −K)M

which then reduces to an eigenvector problem. From the original form of M ∈
M, the data clusters can then readily be retrieved from the entries of M .

Alternatively, the intuition from the popular Ng–Jordan–Weiss algorithm [25]

starts off by considering the so-called normalized Laplacian In −D− 1
2KD− 1

2 of
K and by noticing that, if ideally κ(xi, xj) = 0 when xi and xj belong to

distinct classes (and κ(xi, xj) �= 0 otherwise), then the vectors D
1
2 1Ca ∈ R

n,
where 1Ca is the indicator vector of the class index Ca (composed of ones for
the indices of Ca and zero otherwise), are eigenvectors for the zero eigenvalue
of the normalized Laplacian. In practice, κ(xi, xj) is merely expected to take
small values for vectors of distinct classes, so that the algorithm consisting in
retrieving classes from the eigenvectors associated to the smallest eigenvalues
of the (nonnegative definite) normalized Laplacian matrix will approximately
perform the desired task.

Theoretically speaking, assuming x1, . . . , xn ∈ R
p independently distributed

as a k-mixture probability measure, it is proved in [32] that the various spectral
clustering algorithms are consistent as n → ∞ in the sense that they shall
return the statistical clustering allowed by the kernel function κ. Despite this
important result, it nonetheless remains unclear which clustering performance
can be achieved for all finite n, p couples. This is all the more needed that
spectral clustering methods are being increasingly used in settings where p can
be of similar size, if not much larger, than n. In this article, we aim at providing
a first understanding of the behavior of kernel spectral clustering as both n and
p are large but of similar order of magnitude. To this end, we shall leverage
the recent result from [17] on the limiting spectrum of kernel random matrices
for independent and identically distributed zero mean (essentially Gaussian)
vectors. Our approach is to generalize the latter to a k-class Gaussian mixture
model for the normalized Laplacian of K, rather than for the kernel matrix K
itself.

Our focus, for reasons discussed below, is precisely on the following version
of the normalized Laplacian matrix

L � nD− 1
2KD− 1

2 (1.2)
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which we shall from now on refer to, with a slight language abuse, as the Lapla-
cian matrix ofK. The kernel function κ will be such that κ(x, y) = f(‖x−y‖2/p)
for some sufficiently smooth f independent of n, p, that is1

K =

{
f

(
1

p
‖xi − xj‖2

)}
1≤i,j≤n

. (1.3)

For xi in class Ca, we assume that xi ∼ N (μa, Ca) with

(μa, Ca) ∈ {(μ1, C1), . . . , (μk, Ck)}

(k shall remain fixed while p, n → ∞) such that, for each (a, b), ‖μa−μb‖ = O(1)
while ‖Ca‖ = O(1) (here, and throughout the article, ‖·‖ stands for the operator
norm) and tr(Ca − Cb) = O(

√
p). This setting can be considered as a critical

growth rate regime in the sense that, supposing trCa and trC2
a to be of order

O(p) (which is natural if ‖Ca‖ = O(1)) and ‖μa − μb‖ = O(1), the norms of
the observations in each class Ca fluctuate at rate

√
p around trCa, so that

clustering ought to be possible so long as tr(Ca − Cb) = O(
√
p).

The technical contribution of this work is to provide a thorough analysis of
the eigenvalues and eigenvectors of the matrix L in the aforementioned regime.
In a nutshell, we shall demonstrate that there exist critical values for the (inter-
cluster differences between) means μi and covariances Ci beyond which some
(relevant) eigenvalues of L tend to isolate from the majority of the eigenvalues,
thus inducing a so-called spiked model for L. When this occurs, the eigenvectors
associated to these isolated eigenvalues will contain information about class
clustering. Our objective is to precisely describe the structure of the individual
eigenvectors as well as to evaluate correlation coefficients among these, keeping
in mind that the ultimate interest is on harnessing spectral clustering methods.
The outcomes of our study shall provide new practical insights and methods to
appropriately select the kernel function f .

Before delving concretely into our main results, some of which may seem
quite cryptic on the onset, we introduce below a motivation example and some
visual results of our work.

The proofs of some of the technical mathematical results are deferred to our
companion paper [3].

Notations: The norm ‖ · ‖ stands for the Euclidean norm for vectors and the
associated operator norm for matrices. The notation N (μ,C) is the multivariate
Gaussian distribution with mean μ and covariance C. The vector 1m ∈ R

m

stands for the vector filled with ones. The delta Dirac measure is denoted δ.
The operator D(v) = D{va}ka=1 is the diagonal matrix having v1, . . . , vk (scalars
of vectors) as its ordered diagonal elements. The distance from a point x ∈ R

to a set X ⊂ R is denoted dist(x,X ). The support of a measure ν is denoted
supp(ν).

1This choice is merely motivated by the wide spread of these (so-called radial) kernels in
statistics. The alternative choice κ(x, y) = f(xTy/p) could be treated similarly and in fact
turns out (based on a parallel study) to be much simpler to handle and less rich in clustering
capabilities.



Kernel spectral clustering of large dimensional data 1397

Fig 1. Samples from the MNIST database.

We shall often denote {va}ka=1 a column vector with a-th entry (or block
entry) va (which may be a vector itself), while {Vab}ka,b=1 denotes a square
matrix with entry (or block-entry) (a, b) given by Vab (which may be a matrix
itself).

2. Motivation and statement of main results

Let us start by illustratively motivate our work. In Figure 2 are displayed in red
the eigenvectors associated with the four largest eigenvalues of L (as defined in
(1.2)) for x1, . . . , xn a set of (preprocessed2) vectorized images sampled from
the popular MNIST database (handwritten digits) [23]. The vector images are
of size p = 784 (for images are of size 28 × 28) and we take n = 192 samples,
with the first 64 xi’s being images of zeros, next 64 images of ones, and last 64
images of twos. An example of these is displayed in Figure 1 (the vector values
follow a grayscale from zero for black to one for white). The kernel function
f (defining the kernel matrix K through (1.3)) is taken to be the standard
f(x) = exp(−x/2) Gaussian kernel.

As recalled earlier, performing spectral clustering on x1, . . . , xn consists here
in extracting the leading eigenvectors from L and applying a procedure that
identifies the three classes and properly maps every datum to its own class.
As can be observed from Figure 2, the classes are visually clearly discriminated,
although it also appears that some data stick out which, no matter how thorough
the aforementioned procedure, are bound to be misclassified. A particularly
common algorithm to cluster the data consists in extracting the entry i from
each of the, say l, dominant eigenvectors to form a vector yi ∈ R

l. Clustering
then resorts to applying some standard unsupervised classification technique,
such as the popular k-means method [9, Chapter 9], to the small dimensional
vectors y1, . . . , yn. In Figure 3 are depicted the vectors yi for l = 2, successively
only accounting for the leading eigenvectors one and two (top figure) or two and
three (bottom figure) of L. The crosses, each corresponding to a specific yi ∈ R

2

vector, are colored according to their genuine class. As one can observe, for each
class there exists a non trivial correlation between the entries of yi, and thus
between the eigenvectors of L.

In order to anticipate the performance of clustering methods, and to be ca-
pable of improving the latter, it is a fundamental first step to understand the

2The full MNIST database is preprocessed by discarding from all images the empirical
mean and by then scaling the resulting vector images by p over the average squared norm of
all vector images. This preprocessing ensures an appropriate match to the base Assumption 1
below.
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Fig 2. Leading four eigenvectors of L (red) versus L̂ (black) and theoretical class-wise means
and standard deviations (blue); MNIST data.

behavior of the eigenvectors of Figure 2 along with their joint correlation, as
exemplified in Figure 3. The present work intends to lay the theoretical grounds
for such clustering performance understanding and improvement. Namely, we
shall investigate the existence and position of isolated eigenvalues of L and shall
show that some of them (not always all of them) carry information about the
class structure of the problem. Then, since, by a clear invariance property of
the model under consideration, each of the dominant eigenvectors of L can be
divided class-wise into k chunks, each of which being essentially composed of
independent realizations of a random variable with given mean and variance,
we shall identify these means and variances. Finally, since eigenvectors are cor-
related, we shall evaluate the class-wise correlation coefficients.

As a first glimpse on the practical interest of our results, in Figure 2 are
displayed in blue lines the theoretical means and standard deviations for each
class-wise chunk of eigenvectors, obtained from the results of this article. That
is, the means and standard deviations that one would obtain if the data were
genuinely Gaussian (which here for the MNIST images they are obviously not).
Also, Figure 3 proposes in blue ellipses the theoretical one- and two-standard de-
viations of the joint eigenvector entries, again if the data were to be Gaussian. It
is quite interesting to see that, in spite of their evident non-Gaussianity, the the-
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Fig 3. Two dimensional representation of the eigenvectors one and two (top) and two and
three (bottom) of L, for the MNIST dataset. In blue, theoretical means and one- and two-
standard deviations of fluctuations.

oretical findings visually conform to the data behavior. We are thus optimistic
that the findings of this work, although restricted to Gaussian assumptions, can
be applied to a large set of problems beyond strongly structured ones.

We summarize below our main theoretical contributions and their practical
aftermaths, all detailed more thoroughly in the subsequent sections. From a
technical standpoint, our main results may be summarized as follows:

(1) as n, p → ∞ while n/p = O(1), ‖L′ − L̂′‖ → 0 (in operator norm) almost
surely, where L′ is a slight modification of L and L̂′ is a matrix which is
an instance of the so-called spiked random matrix models, as introduced
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in [7, 8, 4, 5, 19] (but closer to the model studied independently in [13]);
that is, the spectrum of L̂′ is essentially composed of (one or several)
clusters of eigenvalues and finitely many isolated ones. This result is the
mandatory ground step that allows for the theoretical understanding of
the eigenstructure of L;

(2) matrix L̂′ only depends on the successive derivatives f (�), � = 0, 1, 2,
of f evaluated a specific value τ (that can in passing be empirically es-
timated). Any two functions with same first derivatives thus provably
exhibit the same asymptotic clustering performances. Besides, different
choices of f (�)(τ) sets specific emphasis on the importance of the means
or covariances μa, Ca in the eigenstructure of L̂′;

(3) as is standard in spiked models, there exists a phase transition phenomenon
by which, the more distinct the classes, the more eigenvalues tend to iso-
late from the main eigenvalue bulk of L̂′ and the more information is
contained within the eigenvectors associated with those eigenvalues. This
statement is precisely accounted for by exhibiting conditions for the sepa-
rability of the isolated eigenvalues from the main bulk, by exactly locating
these eigenvalues, and by retrieving the asymptotic values of the class-wise
means and variances of the isolated eigenvectors;

(4) the eigenvectors associated to the isolated eigenvalues are correlated to one
another and we precisely exhibit the asymptotic correlation coefficients.

Aside from these main expected results are some more subtle and somewhat
unexpected outcomes:

(5) the eigenvectors associated with some of the non extreme isolated eigen-
values of L′ may contain information about the classes, and thus clustering
may be performed not only based on extreme eigenvectors;

(6) on the contrary, some of the eigenvectors associated to isolated eigenvalues,
even the largest, may be purely noisy;

(7) in some specific scenarios, the theoretical number of informative isolated
eigenvalues cannot exceed two altogether, while in others as many as k−1
can be found in-between each pair of eigenvalue bulks of L′;

(8) in some other scenarios, two eigenvectors may be essentially the same, so
that some eigenvectors may not always provide much information diversity.

From a practical standpoint, the aforementioned technical results, along with
the observed adequacy between theory and practice, have the following key
entailments:

(A) as opposed to classical kernel spectral clustering insights in small dimen-
sional datasets, high dimensional data tend to be “always far from one
another” to the point that ‖xi−xj‖ for intra-class data xi and xj may sys-
tematically be larger than for inter-class data. This disrupts many aspects
of kernel spectral clustering, starting with the interest for non-decreasing
kernel functions f ;

(B) the interplay between the triplet (f(τ), f ′(τ), f ′′(τ)) and the class-wise
means and covariances opens up a new road for kernel investigations; in
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particular, although counter-intuitive, choosing f non-monotonous may be
beneficial for some datasets. In a work subsequent to the present article
[12], we show that choosing f ′(τ) = 0 allows for very efficient subspace
clustering of zero mean data, where the traditional Gaussian kernel f(x) =
exp(−x/2) completely fails (the motivation for [12] was spurred by the
important Remark 12 below);

(C) more specifically, in problems where clustering ought to group data upon
specific statistical properties (e.g., upon the data covariance, irrespective
of the statistical means), then appropriate choices of kernels f can be
made that purposely discard specific statistical information;

(D) generally speaking, since only the first three derivatives of f at τ play a
significant role in the asymptotic regime, the search for an optimal ker-
nel reduces to a three-dimensional line search. One may, for instance,
perform spectral clustering on a given dataset over a finite mesh of val-
ues of (f(τ), f ′(τ), f ′′(τ)) ∈ R

3 and select as the “winning output” the
one achieving the minimum RatioCut value (as per Equation (1.1)). This
method dramatically reduces the search space of optimal kernels;

(E) the result of the study of the eigenvectors content, along with point (B)
above, allow for a theoretical evaluation of the optimally expectable per-
formance of kernel spectral clustering for large dimensional Gaussian mix-
tures (and then likely for any practical large dimensional dataset). As
such, upon the existence of a parallel set of labelled data, one may pre-
figure the optimum quality of kernel clustering on similar datasets (e.g.,
datasets anticipated to share similar statistical structures).

We now turn to the detailed introduction of our model and to some necessary
preliminary notions of random matrix theory.

3. Preliminaries

Let x1, . . . , xn ∈ R
p be independent vectors belonging to k distribution classes

C1, . . . , Ck, with xn1+...+na−1+1, . . . , xn1+...+na ∈ Ca for each a ∈ {1, . . . , k} (so
that each class Ca has cardinality na), where n0 = 0 and n1 + . . .+ nk = n. We
assume that xi ∈ Ca is given by

xi = μa +
√
pwi (3.1)

for some μa ∈ R
p and wi ∼ N (0, p−1Ca), with Ca ∈ R

p×p nonnegative definite
(the factors

√
p and p−1 will lighten the notations below).

We shall consider the large dimensional regime where both n and p are si-
multaneously large with the following growth rate assumption.

Assumption 1 (Growth Rate). As n → ∞, the following conditions hold.

1. Data scaling: defining c0 � p
n

0 < lim inf
n

c0 ≤ lim sup
n

c0 < ∞
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2. Class scaling: for each a ∈ {1, . . . , k}, defining ca � na

n ,

0 < lim inf
n

ca ≤ lim sup
n

ca < ∞.

We shall denote c � {ca}ka=1.
3. Mean scaling: let

μ◦ �
k∑

i=1

ni

n
μi

and for each a ∈ {1, . . . , k}, μ◦
a � μa − μ◦, then

lim sup
n

max
1≤a≤k

‖μ◦
a‖ < ∞

4. Covariance scaling: let C◦ �
∑k

i=1
ni

n Ci and for each a ∈ {1, . . . , k},
C◦

a � Ca − C◦, then

lim sup
n

max
1≤a≤k

‖Ca‖ < ∞

lim sup
n

max
1≤a≤k

1√
n
trC◦

a < ∞.

As discussed in the introduction, the growth rates above were chosen in such
a way that the achieved clustering performance be non-trivial in the sense that:
(i) the proportion of misclassification remains non-vanishing as n → ∞, and
(ii) there exist smallest values of ‖μ◦

a‖, 1√
p trC

◦
a and 1

p trC
◦
aC

◦
b below which no

isolated eigenvector can be used to perform efficient spectral clustering.
For further use, we now define

τ � 2

p
trC◦.

This quantity is central to our analysis as it is easily shown that, under As-
sumption 1,

max
1≤i,j≤n

i 	=j

{
1

p
‖xi − xj‖2 − τ

}
→ 0 (3.2)

almost surely. The value τ , which depends implicitly on n, is bounded but needs
not converge as p → ∞.

Let f : R+ → R+ be a function satisfying the following assumptions.

Assumption 2 (Kernel function). The function f is three-times continuously
differentiable in a neighborhood of the values taken by τ . Moreover,
lim infn f(τ) > 0.

Define now K to be the kernel matrix

K �
{
f

(
1

p
‖xi − xj‖2

)}n

i,j=1

.
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From (3.2), it appears that, while the diagonal elements of K are all equal to
f(0), the off-diagonal entries jointly converge toward f(τ). This means that, up
to (f(τ)− f(0))In, K is essentially a rank-one matrix.

Remark 1 (On the Structure of K). The observation above has important
consequences to the traditional vision of kernel spectral clustering. Indeed, while
in the low-dimensional regime (small p) it is classically assumed that intra-
class data can be linked through a chain of short distances ‖xi − xj‖, for large
p, all xi tend to be far apart. The statistical differences between data, that
shall then allow for clustering, only appear in the second order terms in the
expansion of Kij which need not be ordered in a decreasing manner as xi and
xj belong to “more distant classes”. This immediately annihilates the need for f
to be a decreasing function, thereby disrupting from elementary considerations
in traditional spectral clustering.

As spectral clustering is based on Laplacian matrices rather than on K itself,
we shall focus here on the Laplacian matrix

L � nD− 1
2KD− 1

2

whereD = D(K1n) is often referred to as the matrix of degrees ofK. Aside from
the arguments laid out in the introduction, the choice of studying the matrix L
also follows from a better stability of clustering algorithms based on L versus
K and D −K that we observed in various simulations.

Under our growth rate assumptions, the matrix L shall be seen to essentially
be a rank-one matrix which is rather simple to deal with since, unlike K, its
dominant eigenvector is known precisely to be D

1
2 1n and it shall be shown that

the projected matrix

L′ � nD− 1
2KD− 1

2 − n
D

1
2 1n1

T
nD

1
2

1TnD1n
(3.3)

has bounded operator norm almost surely as n → ∞. Indeed, note here that
L′ and L have the same eigenvalues and eigenvectors but for the eigenvalue-
eigenvector pair (n,D

1
2 1n) of L turned into (0, D

1
2 1n) for L

′. Under the afore-
mentioned assumptions, the matrix L′ will be subsequently shown to have its
eigenvalues all of order O(1).

Our first intermediary result shows that there exists a matrix L̂′ such that
‖L′ − L̂′‖ → 0 almost surely, where L̂′ follows an analytically tractable random
matrix model. Before going into the result, a few notations need be introduced.
In the remainder of the article, we shall use the following deterministic element
notations3

M � [μ◦
1, . . . , μ

◦
k] ∈ R

p×k

t �
{

1
√
p
trC◦

a

}k

a=1

∈ R
k

3As a mental reminder, capital M stands here for means while t, T account for vector and
matrix of traces, P for a projection matrix (onto the orthogonal of the vector 1n).
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T �
{
1

p
trC◦

aC
◦
b

}k

a,b=1

∈ R
k×k

J � [j1, . . . , jk] ∈ R
n×k

P � In − 1

n
1n1

T
n ∈ R

n×n

where ja ∈ R
n is the canonical vector of class Ca, defined such that (ja)i =

δxi∈Ca , along with the random element notations (recall here that wi is defined
in (3.1))

W � [w1, . . . , wn] ∈ R
p×n

Φ � PWTM ∈ R
n×k

ψ �
{
‖wi‖2 − E[‖wi‖2]

)
}ni=1 ∈ R

n. (3.4)

Theorem 1 (Random Matrix Equivalent). Let Assumptions 1 and 2 hold. Let
L′ be defined as in (3.3). Then, as n → ∞,∥∥∥L′ − L̂′

∥∥∥ → 0

almost surely, where L̂′ is given by

L̂′ � −2
f ′(τ)

f(τ)

(
PWTWP + UBUT

)
+ 2

f ′(τ)

f(τ)
F (τ)In

with F (τ) = f(0)−f(τ)+τf ′(τ)
2f ′(τ) and

U �
[

1
√
p
J,Φ, ψ

]

B �

⎡
⎢⎢⎣

B11 Ik − 1kc
T

(
5f ′(τ)
8f(τ) − f ′′(τ)

2f ′(τ)

)
t

Ik − c1Tk 0k×k 0k×1(
5f ′(τ)
8f(τ) − f ′′(τ)

2f ′(τ)

)
tT 01×k

5f ′(τ)
8f(τ) − f ′′(τ)

2f ′(τ)

⎤
⎥⎥⎦

B11 = MTM +

(
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

)
ttT − f ′′(τ)

f ′(τ)
T +

p

n
F (τ)1k1

T
k

and the case f ′(τ) = 0 is obtained through extension by continuity (f ′(τ)B being
well defined as f ′(τ) → 0).

From Theorem 1 it entails that the eigenvalues of L′ and L̂′ converge to one
another (as we have as an immediate corollary that maxi |λi(L

′)−λi(L̂
′)| a.s.−→ 0;

see e.g., [21, Theorem 4.3.7]), so that the determination of isolated eigenvalues
in the spectrum of L′ (or L) can be studied from the equivalent problem for L̂′.
More importantly, from Theorem 1, it unfolds that, for every isolated eigenvector
u of L′ and its associated û of L̂′, ‖u − û‖ a.s.−→ 0. Thus, the spectral clustering
performance based on the observable L′ (or L) may be asymptotically analyzed
through that of L̂′.
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A few important remarks concerning Theorem 1 are in order before pro-
ceeding. From a mathematical standpoint, observe that, up to a scaled identity
matrix and a constant scale factor, if f ′(τ) �= 0, L̂′ is a random matrix of the
so-called spiked model family [2] in that it equals the sum of a somewhat stan-
dard random matrix model PWTWP and of a small rank (here up to 2k + 1)
matrix UBUT. Nonetheless, it differs from classically studied spiked models in
several aspects: (i) U is not independent of W , which is a technical issue that
can fairly easily be handled, and (ii) PWTWP itself constitutes a spiked model
as P is a low rank perturbation of the identity matrix.4

As such, as n → ∞, the eigenvalues of L̂′ are expected to be asymptotically
the same as those of PWTWP (which mainly gather in bulks) but possibly for
finitely many of them which are allowed to wander away from the main eigen-
value bulks. As per classical spiked model results from random matrix theory,
it is then naturally expected that, if some of the (finitely many) eigenvalues of
UBUT are sufficiently large, those shall induce isolated eigenvalues in the spec-
trum of L̂′, the eigenvectors of which align to some extent to the eigenvectors

of UBUT. If instead f ′(τ) = 0, then L̂′ − f(0)−f(τ)
f(τ) In is of maximum rank k+1

and is fully deterministic, hence has eigenvalue-eigenvector pairs immediately
related to UBUT.

From a spectral clustering aspect, observe that U is importantly constituted
by the vectors ja, 1 ≤ a ≤ k, while B contains the information about the
inter-class mean deviations through M , and about the inter-class covariance
deviations through t and T . As such, some of the aforementioned isolated eigen-
vectors are expected to align to the canonical class basis J and we already intuit
that this will be true all the more that the matrices M , t, T have sufficient “en-
ergy” (i.e., are sufficiently away from zero matrices). Theorem 1 thus already
prefigures the behavior of spectral clustering methods thoroughly detailed in
Section 4.

A more detailed application-oriented analysis now sheds light on the behavior
of the kernel function f . Note that, if f ′(τ) → 0, L′ becomes essentially deter-
ministic as f ′(τ)PWTWP → 0, this having a positive effect of the alignment
between L′ and J . However, when f ′(τ) → 0, M vanishes from the expression
of L̂′, thus not allowing spectral clustering to rely on differences in means. Simi-
larly, if f ′′(τ) → 0, then T vanishes, and thus differences in “shape” between the

covariance matrices cannot be discriminated upon. Finally, if 5f ′(τ)
8f(τ) −

f ′′(τ)
2f ′(τ) → 0,

then differences in covariance traces are seemingly not exploitable.
This observation leads to the following key remark on the optimal choice of

a kernel.

Remark 2 (Optimizing Kernel Spectral Clustering). Since L̂′ only depends
on the triplet (f(τ), f ′(τ), f ′′(τ)) combined to the matrices M , t, and T , it

4Our choice of not breaking PWTWP into WTW plus small rank perturbation integrated
to the perturbation UBUT stands from the fact that the hypothetical isolated eigenvectors
P engenders do not provide any clustering information, unlike UBUT. Besides, by Remark 3
below or by interlacing inequalities, PWTWP does not induce isolated eigenvalues on the
right side of the support, where clustering algorithms look for eigenvalues.
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Fig 4. Eigenvalues of L′ (left) and L̂′ (right), for p = 2048, n = 512, c1 = c2 = 1/4, c3 = 1/2,
[μi]j = 4δij , Ci = (1 + 2(i− 1)/

√
p)Ip, f(x) = exp(−x/2).

is clear that the asymptotic performance of kernel spectral clustering reduces
to a function of these parameters. In practice, as we shall see that τ can be
consistently estimated from the whole dataset, spectral clustering optimization
can be performed by scanning a grid of values of (f(τ), f ′(τ), f ′′(τ)) ∈ R3,
rather than scanning over the set of real functions. Besides, if the objective is
to specifically cluster data upon their means or covariance traces or covariance
shape information, specific choices of f (such as second order polynomials) that
meet the previously discussed conditions to eliminate the effects of M , t, or T
shoud be made.

An illustrative application of Theorem 1 is proposed in Figure 4, where a
three-class example with Gaussian kernel function is considered. Note the ex-
tremely accurate spectrum approximation of L′ by L̂′ in this example. Antic-
ipating slightly our coming results, note here that, aside from the eigenvalue
zero, two isolated (spiked) eigenvalues are observed, which shall presently be
related to the eigenvalues of the small rank matrix UBUT.

Before introducing our technical approach, a few further random matrix no-
tions are needed.

Lemma 1 (Deterministic equivalent). Let Assumptions 1 and 2 hold. Let z ∈ C

be at macroscopic distance from5 the eigenvalues λp
1, . . . , λ

p
p of PWTWP . Let

us define the resolvents Qz � (PWTWP −zIn)
−1 and Q̃z � (WPWT−zIp)

−1.

5Here and in the rest of the article, the phrase “at macroscopic distance” will mean that,
as p → ∞, as per Assumption 1, the distance between the objects under consideration stays
lower bounded by a positive constant.
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Then, as n → ∞,

Qz ↔ Q̄z � c0 D {ga(z)1na}
k
a=1 −

{(
1

z
+ c0

ga(z)gb(z)∑k
i=1 cigi(z)

)
1na1

T
nb

n

}k

a,b=1

Q̃z ↔ ¯̃Qz � −z−1

(
Ip +

k∑
a=1

caga(z)Ca

)−1

where the (g1, . . . , gk) is the unique vector of Stieltjes transforms solutions, for
all such z, to the implicit equations

c0ga(z) = −z−1

(
1 +

1

p
trCa

¯̃Qz

)−1

and the notation An ↔ Bn stands for the fact that, as n → ∞, 1
n trDnAn −

1
n trDnBn

a.s.−→ 0 and dT1,n(An − Bn)d2,n
a.s.−→ 0 for all deterministic Hermitian

matrix Dn and deterministic vectors di,n of bounded norms.

Denoting g◦(z) = c0
∑k

a=1 caga(z) and Pp = 1
p

∑p
i=1 δλp

i
the empirical spec-

tral measure of PWTWP ,

Pp − P̄p
D−→ 0

almost surely, with P̄p the probability measure having Stieltjes transform g◦(z).
Besides, denoting Sp the support of P̄p and Gp = {0} ∪ {x /∈ Sp | g◦(x) = 0},

max
1≤i≤p

dist (λp
i ,Sp ∪ Gp) → 0

almost surely.

Lemma 1 is merely an extension of Propositions 3 and 4 of the compan-
ion paper [3], where more details are given about the functions ga. It is also
an extension of standard random matrix results such as [29, 30, 14] to more in-
volved structures (studied earlier in e.g., [11, 33]). This result mainly states that
the bilinear forms as well as the linear statistics of the resolvent of PWTWP
asymptotically tend to be deterministic in a controlled manner. Note in passing
that, as shown in [3], g1(z), . . . , gk(z) can be evaluated by a provably converging
fixed-point algorithm, for all z ∈ C \ Sp.

Remark 3 (On Sp and Gp). Since g◦(x) is strictly increasing on R \ Sp, in
between each connected component of Sp, g

◦(x) = 0 can only have one solution.
Besides, g◦(x) ↑ 0 as x → ∞ and g◦(x) ↓ 0 as x → −∞, so that, denoting
S−
p and S+

p the leftmost and rightmost edges of Sp, (Gp \ {0}) ∩ (−∞,S−
p ) = ∅

and Gp ∩ (S+
p ,∞) = ∅. In particular, if Sp is constituted of a single connected

component (as shall often be the case in practice when c0 > 1), then Gp = {0}.
Besides, if g1 = . . . = gk = g◦ (a scenario that shall be thoroughly studied

in the course of this article), from [30], it appears that, for all x, y ∈ R \ Sp, if
x > y > 0, then 0 > g◦(x) > g◦(y), and thus Gp = {0}.

With those notations and remarks at hand, we are now ready to introduce
our main results.
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4. Main results

Before delving into the investigation of the eigenvalues and eigenvectors of L,
recall from Theorem 1 that the behavior of L is strikingly different if f ′(τ) is
away from zero or if instead f ′(τ) → 0. We shall then systematically study both
cases independently. In practice, if f ′(τ) only has limit points at zero (so is
neither away nor converges to zero), then the following study will be valid up
to extracting subsequences of p.

4.1. Isolated eigenvalues

Assume first that f ′(τ) is away from zero, i.e., lim infp |f ′(τ)| > 0. In order
to study the isolated eigenvalues and associated eigenvectors of the model, we
follow standard random matrix approaches as developed in e.g., [8, 19]. That is,
to determine the isolated eigenvalues, we shall solve

det
(
PWTWP + UBUT − ρIn

)
= 0

for ρ away from Sp∪Gp defined in Lemma 1. Such ρ ensure the correct behavior
of the resolvent Qρ = (PWTWP − ρIn)

−1. Factoring out PWTWP − ρIn and
using Sylverster’s identity, the above equation is then equivalent to

det
(
BUTQρU + I2k+1

)
= 0.

By Lemma 1 (and some arguments to handle the dependence between U and
Qρ), U

TQρU tends to be deterministic in the large n limit, and thus, using
a perturbation approach along with the argument principle, we find that the
isolated eigenvalues of PWTWP + UBUT tend to be the values of ρ for which
BUTQρU+I2k+1 has a zero eigenvalue, the multiplicity of ρ being asymptotically
the same as that of the aforementioned zero eigenvalue.

All calculus made, we have the following first main results.

Theorem 2 (Isolated eigenvalues, f ′(τ) away from zero). Let Assumptions 1
and 2 hold and define the k × k matrix

Gz = h(τ, z)Ik +Dτ,zΓz

where

Dτ,z � −zh(τ, z)MT ¯̃QzM − h(τ, z)
f ′′(τ)

f ′(τ)
T +

(
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

)
ttT

Γz � D {caga(z)}ka=1 −
{
caga(z)cbgb(z)∑k

i=1 cigi(z)

}k

a,b=1

h(τ, z) � 1 +

(
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

) k∑
a=1

caga(z)
2

p
trC2

a .
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Besides, denoting Hp = {x ∈ R | h(τ, x) = 0}, define S ′
p � Sp ∪ Gp ∪ {F (τ)} ∪

Hp. Let ρ be at macroscopic distance from S ′
p and be such that Gρ has a zero

eigenvalue of multiplicity mρ. Then there exists λp
j ≥ · · · ≥ λp

j+mρ−1 (j may

depend on p) eigenvalues of L such that

max
0≤i≤mρ−1

∣∣∣∣
(
−2

f ′(τ)

f(τ)
ρ+ 2

f ′(τ)

f(τ)
F (τ)

)
− λp

j+i

∣∣∣∣ a.s.−→ 0.

As it shall turn out, the isolated eigenvalues identified in Theorem 2 are the
only ones of practical interest for spectral clustering as they are strongly related
to J . However, some other isolated eigenvalues may be found which we discuss
here for completion (and thoroughly in the proof section).

Remark 4 (Other isolated eigenvalues of L, f ′(τ) away from zero). Under the
conditions of Theorem 2, if there exists a ρ+ in a neighborhood of Hp such that
detHρ+ = 0 with Hz defined in (7.7), then there exist λp

j ≥ . . . ≥ λp
j+mρ+

−1

eigenvalues of L satisfying

max
0≤i≤mρ+

∣∣∣∣
(
−2

f ′(τ)

f(τ)
ρ+ 2

f ′(τ)

f(τ)
F (τ)

)
− λp

j+i

∣∣∣∣ a.s.−→ 0

wheremρ ≥ 1 is the multiplicity of zero as an eigenvalue ofHρ. Note in particular
that, if t = 0 and Hp ∩ Sc

p �= ∅, then such ρ+ exists. Figure 7, commented later,
provides an example where a ρ+ is found amongst the other isolated eigenvalues
of L (emphasized here in blue). Note that ρ+ only depends on a weighted sum
of the trC2

i and may even exist when M = 0, t = 0, and T = 0. Intuitively, this
already suggests that ρ+ is only marginally related to the spectral clustering
problem.

Operating the variable change z �→ −f ′(τ)z/f(τ) in the expression of Gz, we
may form the matrix G−f(τ)z/(2f ′(τ)) the null eigenvalues of which are achieved
for the values −2f ′(τ)ρ/f(τ) where ρ is defined in Theorem 2. While Gz is ill-
defined as f ′(τ) → 0, G−f(τ)z/(2f ′(τ)) has a non trivial limit, which we denote
G0

z and that allows for an extension of Theorem 2 to the case f ′(τ) → 0.
In particular, ga(−f(τ)z/(2f ′(τ))) behaves similar to 2f ′(τ)/(c0f(τ)z) for all
a ∈ {1, . . . , k} and we have the following simpler expression.

Theorem 3 (Isolated eigenvalues, f ′(τ) → 0). Let Assumptions 1–2 hold and
define the k × k matrix6

G0
z � h0(τ, z)Ik +D0

τ,zΓ
0
z

with

Γ0
z � −1

c0z
D(c)

6There, h0(τ, z) = limf ′(τ)→0 h(τ, z), Γ0
z = limf ′(τ)→0 −f(τ)/(2f ′(τ))Γ−f(τ)z/(2f ′(τ)),

and D0
τ,z = limf ′(τ)→0 − 2f ′(τ)

f(τ)
Dτ,−f(τ)z/(2f ′(τ)).
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D0
τ,z � h0(τ, z)

2f ′′(τ)

f(τ)
T +

f ′′(τ)

f(τ)
ttT

h0(τ, z) � 1− 1

z

f ′′(τ)

f(τ)

k∑
i=1

ci
c0

2

p
trC2

i .

Define also H0
p = {x | h0(τ, x) = 0}. Then, for ρ0 at macroscopic distance from

H0
p ∪ {(f(0) − f(τ))/f(τ)} such that G0

ρ0 has a zero eigenvalue of multiplicity

m0
ρ, there exist λp

j ≥ · · · ≥ λp
j+mρ−1 (j may depend on p) eigenvalues of L

satisfying

max
0≤i≤mρ−1

∣∣∣∣
(
ρ0 +

f(0)− f(τ)

f(τ)

)
− λp

j+i

∣∣∣∣ a.s.−→ 0.

Remark 5 (Full spectrum of L, f ′(τ) → 0). Similar to Remark 4, under the
conditions of Theorem 3, if there exists ρ0+ in a small neighborhood of H◦

p

such that detH0
ρ0
+

= 0 with H0
z defined in (7.9), then there exist λp

j ≥ . . . ≥
λj+m

ρ0
+
−1, eigenvalues of L satisfying

max
0≤i≤m

ρ0
+
−1

∣∣∣∣
(
ρ0 +

f(0)− f(τ)

f(τ)

)
− λp

j+i

∣∣∣∣ a.s.−→ 0

with mρ0
+
the multiplicity of the zero eigenvalue of H0

ρ0
+
. Along with the eigen-

value n and the eigenvalues identified in Theorem 3, this enumerates all the
(asymptotic) isolated eigenvalues of L.

The two theorems above exhibit quite involved expressions that do not easily
allow for intuitive interpretations. We shall see in Section 5 that these results
greatly simplify in some specific scenarios of practical interest. We may nonethe-
less already extrapolate some elementary properties.

Remark 6 (Large and small eigenvalues of Dτ,ρ). If an eigenvalue of Dτ,ρ

diverges to infinity as n, p → ∞, by the boundedness property of Stieltjes trans-
forms, we find that h(τ, ρ) and Γρ remain bounded and, thus, the value ρ can-
celling the determinant of Gρ must go to infinity as well. This is the expected
behavior of spiked models. This implies in particular that, if, for some i, j,
‖μ◦

i ‖ → ∞, or ti → ∞, or Tij → ∞, as n, p → ∞ slowly (thus disrupting from
our assumptions), there will exist an asymptotically unbounded eigenvalue in
the spectrum of L (aside from the eigenvalue n). On the opposite, if for all i, j
those quantities vanish as n, p → ∞, then Dτ,z is essentially zero in the limit,
and thus, aside from the ρ’s solution to h(τ, ρ) = 0 (and from the eigenvalue n),
no isolated eigenvalue can be found in the spectrum of L.

Remark 7 (About the Kernel). As a confirmation of the intuition captured in
Remark 2, it now clearly appears from Theorem 3 that, as f ′(τ) = 0, the matrix
M does not contribute to the isolated eigenvectors of L and thus the μi’s can
be anticipated not to play any role in the resulting spectral clustering methods.



Kernel spectral clustering of large dimensional data 1411

Similarly, from Theorem 2, if f ′′(τ) = 0, the cross-variances 1
p trC

◦
i C

◦
j will not

intervene and thus cannot be discriminated over. Finally, letting 5f ′(τ)
8f(τ) = f ′′(τ)

2f ′(τ)

discards the impact of the traces 1√
p trC

◦
i . This has interesting consequences in

practice if one aims at discriminating data upon some specific properties.

4.2. Eigenvectors

Let us now turn to the central aspect of the article: the eigenvectors of L (being
the same as those of L′, up to reordering).

To start with, note that, in both theorems, the eigenvalue n is associated
with the eigenvector D

1
2 1n. Since the eigenvector is completely explicit (which

shall not be the case of the next eigenvectors), it is fairly easy to study inde-
pendently without resorting to any random matrix analysis. Precisely, we have
the following result for it.

Proposition 1 (Eigenvector D
1
2 1n). Let Assumptions 1–2 hold true. Then

D
1
2 1n√

1TnD1n
=

1n√
n

+
1

n
√
c0

f ′(τ)

2f(τ)

[
{ta1na}

k
a=1 +D

{√
2

p
tr(C2

a)1na

}k

a=1

ϕ

]
+ o(n−1)

with ϕ ∼ N (0, In) and o(n−1) is meant entry-wise.

Remark 8 (Precisions on D
1
2 1n). We can make the value of ϕ explicit as

follows. Recalling the definition (3.4) of ψ,

D
1
2 1n√

1TnD1n
=

1n√
n
+

1

n
√
c0

f ′(τ)

2f(τ)

[
{ta1na}

k
a=1 + ψ

]
+ o(n−1)

almost surely.

Note that the eigenvector D
1
2 1n may then be used directly for clustering,

with increased efficiency when the entries ta = 1√
p trC

◦
a of t grow large for fixed

1
p trC

2
a . But the eigenvector (asymptotically) carries no information concerning

M or T and is in particular of no use if all covariances Ci have the same trace.
For the other isolated eigenvectors, the study is much more delicate as we

do not have an explicit expression as in Proposition 1. Instead, by statistical
interchangeability of the class-Ca entries of, say, the i-th isolated eigenvector ûi

of L, we may write

ûi =

k∑
a=1

αi
a

ja√
na

+ σi
aω

i
a (4.1)

where ωi
a ∈ R

n is a random vector, orthogonal to ja, of unit norm, supported
on the indices of Ca, where its entries are identically distributed. The scalars
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αi
a ∈ R and σi

a ≥ 0 are the coefficients of alignment to ja and the standard
deviation of the fluctuations around αi

a
ja√
na

, respectively.

Assuming when needed unit multiplicity for the eigenvalue associated with
ûi, our objective is now twofold:

1. Class-wise Eigenvector Means. We first wish to retrieve the values of the
αi
a’s. For this, note that

αi
a = ûT

i

ja√
na

.

We shall evaluate these quantities by obtaining an estimator for the k ×
k matrix 1

pJ
TûT

i û
T
i J . The diagonal entries of the latter will allow us to

retrieve |αi
a| and the off-diagonal entries will be used to decide on the signs

of αi
1, . . . , α

i
k (up to a convention in the sign of ûi).

2. Class-wise Eigenvector Inner and Cross Fluctuations. Our second objec-
tive is to evaluate the quantities

σi,j
a �

(
ûi − αi

a

ja√
na

)T

D(ja)

(
ûj − αj

a

ja√
na

)
= ûT

i D(ja)ûj − αi
aα

j
a

between the fluctuations of two eigenvectors indexed by i and j on the
subblock indexing Ca. In particular, letting i = j, σi,i

a = (σi
a)

2 from the
previous definition (4.1). For this, it is sufficient to exploit the previous
estimates and to evaluate the quantities ûT

i D(ja)ûj . But, to this end, for
lack of a better approach, we shall resort to estimating the more involved
object 1

pJ
Tûiû

T
i D(ja)ûj û

T
j J , from which ûT

i D(ja)ûj can be extracted by

division of any entry m, l by αi
mαi

l . The specific fluctuations of the eigen-

vector D
1
2 1n as well as the cross-correlations between any eigenvector and

D
1
2 1n will be treated independently.

The two aforementioned steps are successively derived in the next sections,
starting with the evaluation of the coefficients αi

a.

4.2.1. Eigenvector means (αi
a)

Consider the case where f ′(τ) is away from zero. First observe that, for

λp
j , . . . , λ

p
j+mρ−1

a group of the identified isolated eigenvalues of L all converging to the same
limit (as per Theorem 2 or Remark 4), the corresponding eigenspace is (asymp-
totically) the same as the eigenspace associated with the corresponding deter-
ministic eigenvalue ρ in the spectrum of PWTWP + UBUT. Denoting Π̂ρ a
projector on the former eigenspace, we then have, by Cauchy’s formula and our
approximation of Theorem 1,

1

p
jTa Π̂ρjb = − 1

2πi

∮
γρ

1

p
jTa

(
PWTWP + UBUT − zIn

)−1
jbdz + o(1) (4.2)
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for a small (positively oriented) closed path γρ circling around ρ, this being valid
for all large n, almost surely.

Using matrix inversion lemmas, the right-hand side of (4.2) can be worked
out and reduced to an expression involving the matrix Gz of Theorem 2. It then
remains to perform a residue calculus on the final formulation which then leads
to the following result.

Theorem 4 (Eigenvector projections, f ′(τ) away from zero). Let Assump-
tions 1 and 2 hold and assume f ′(τ) away from zero. Let also λp

j , . . . , λ
p
j+mρ−1

be a group of isolated eigenvalues of L and ρ the associated deterministic approx-
imate (of multiplicity mρ) as per Theorem 2, and assume that ρ is uniformly

away from any other eigenvalue retrieved in Theorem 2. Further denote Π̂ρ the
projector on the eigenspace of L associated to these eigenvalues. Then,

1

p
JTΠ̂ρJ = −h(τ, ρ)ΓρΞρ + o(1)

where

Ξρ �
mρ∑
i=1

(Vr,ρ)i(Vl,ρ)
T
i

(Vl,ρ)Ti G
′
ρ(Vr,ρ)i

with Vr,ρ ∈ C
k×mρ and Vl,ρ ∈ C

k×mρ respectively sets of right and left eigen-
vectors of Gρ associated with the eigenvalue zero, and G′

ρ the derivative of Gz

along z evaluated at z = ρ.

Similarly, when f ′(τ) → 0, we obtain, with the same limiting approach as for
Theorem 3, the following estimate.

Theorem 5 (Eigenvector projections, f ′(τ) → 0). Let Assumptions 1 and 2
hold and assume f ′(τ) → 0. Let λp

j , . . . , λ
p
j+mρ−1 be a group of isolated eigen-

values of L and ρ0 the corresponding approximate (of multiplicity mρ0) defined
in Theorem 3, and assume that ρ0 is uniformly away from any other eigenvalue
retrieved in Theorem 3. Further denote Π̂ρ0 the projector on the eigenspace as-
sociated to these eigenvalues. Then,

1

p
JTΠ̂ρ0J = −h0(τ, ρ)Γ0

ρΞ
0
ρ0 + o(1)

almost surely, where7

Ξ0
ρ �

mρ∑
i=1

(V 0
r,ρ)i(V

0
l,ρ)

T
i

(V 0
l,ρ)

T
i G

0′
ρ (V

0
r,ρ)i

with V 0
r,ρ ∈ C

k×mρ and V 0
l,ρ ∈ C

k×mρ sets of right and left eigenvectors of

G0
ρ associated with the eigenvalue zero, and G0′

ρ the derivative of G0
z along z

evaluated at z = ρ.

7There, Ξ◦
ρ = limf ′(τ)→0 − 2f ′(τ)

f(τ)
Ξ−f(τ)ρ/(2f ′(τ)).
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Correspondingly to Remarks 4 and 5, we have the following complementary
result for the isolated eigenvalues satisfying h(τ, ρ) → 0.

Remark 9 (Irrelevance of the eigenvectors with h(τ, ρ) → 0). In addition to
Theorem 4, it can be shown (see the proof section) that, if ρ+ is an isolated
eigenvalue as per Remark 4 having multiplicity one, then with similar notations
as above

1

p
JTΠ̂ρ+J = o(1)

almost surely. The same holds for ρ0+ from Remark 5. As such, as far as spectral
clustering is concerned, the eigenvectors forming the (dimension one) eigenspace
Π̂ρ+ cannot be used for unsupervised classification.

From this remark, we shall from now on adopt the following convention. The
finitely many isolated eigenvalue-eigenvector pairs (ρi, ûi) of L, excluding those
for which (at least on a subsequence) h(τ, ρ) → 0, will be denoted in the order
ρ1 ≥ ρ2 ≥ . . ., with possibly equal values of ρi’s to account for multiplicity.

In particular, û1 = D
1
2 1n√

1TnD1n
. The eigenvalue-eigenvector pairs (ρ, û) for which

h(τ, ρ) → 0 will no longer be listed.

A few further remarks are in order.

Remark 10 (Evaluation of αi
a). Let us consider the case where ρ is an isolated

eigenvalue of unit multiplicity with associated eigenvector ûi (thus Π̂ρ = ûiû
T
i ).

According to (4.1), we may now obtain the expression of αi
1, . . . , α

i
k as follows:

1.
√

1
n1

[JTûiûT
i J ]11 = |αi

1| allows the retrieval of αi
1 up to a sign shift. We

may conventionally call this nonnegative value αi
1 (if this turns out to be

zero, we may proceed similarly with entry (2, 2) instead).

2. for all 1 < a ≤ k,
√

1
na

[JTûiûT
i J ]aa× sign([JTûiû

T
i J ]1a) provides α

i
a up to

a sign shift which is consistent with the aforementioned convention, and

thus we may redefine αi
a =

√
1
na

[JTûiûT
i J ]aa × sign([JTûiû

T
i J ]1a).

Remark 11 (Eigenspace alignment). An alignment metric between the span
of Π̂ρ and the sought-for subspace span(j1, . . . , jk) may be given by

0 ≤ tr

(
D(c−1)

1

n
JTΠ̂ρJ

)
≤ mρ

with (c−1)i = 1/ci and corresponds in practice to the extent to which the eigen-
vectors of L are close to linear combinations of the base vectors j1√

n1
, . . . , jk√

nk
.

Remark 11 may be straightforwardly applied to observe a peculiar (and of
fundamental application reach) phenomenon, when M = 0, t = 0 and the kernel
is such that f ′(τ) → 0.
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Remark 12 (Only T case and f ′(τ) → 0). If M = 0, t = 0, and f ′(τ) → 0, note

that G0
x = h0(τ, x)Ik+D0

τ,xΓ
0
x satisfies G0′

x = h0(τ,x)′

h0(τ,x) G
0
xΓ

0
x− 1

x (h
0(τ, x)Ik−G0

x)

(the rightmost term arising from D0
τ,xΓx = G0

x−h0(τ, x)Ik), so that, for x = ρ0,

since (V 0
l,ρ0)TG0′

ρ0 = 0, we find that

tr

(
D(c−1)

1

n
JTΠ̂ρ0J

)
= mρ0 + o(1)

almost surely. It shall also be seen through an example in Section 5 that this
is no longer true in general if f ′(τ) is away from zero. As such, there is an
asymptotic perfect alignment in the regime under consideration if only T is non
vanishing, provided one takes f ′(τ) → 0. In this case, it is theoretically possible,
as n, p → ∞, to correctly cluster all but a vanishing proportion of the xi.

Remark 12 is somewhat unsettling at first look as it suggests the possibility
to obtain trivial clustering by setting f ′(τ) = 0, under some specific statistical
conditions. This is in stark contradiction with Assumption 1 which was precisely
laid out so to avoid trivial behaviors. As a matter of fact, a thorough investiga-
tion of the conditions of Remark 12 was recently performed in our follow-up work
[12], where it is shown that clustering becomes non-trivial if now 1

p trC
◦
aC

◦
b is of

order O(p−
1
4 ) rather than O(1). This conclusion, supported by conclusive simu-

lations, explicitly says that classical clustering methods (based on the Gaussian

kernel for instance) necessarily fail in the regime where ‖T‖ = O(p−
1
4 ) while by

taking f ′(τ) = 0 non-trivial clustering is achievable. This observation is used to
provide a novel subspace clustering algorithm with applications in particular to
wireless communications. See [12] for more details.

4.2.2. Eigenvector fluctuations (σi
a)

2 and cross fluctuations σij
a

Let us now turn to the evaluation of the fluctuations and cross-fluctuations of
the isolated eigenvectors of L around their projections onto span(j1, . . . , jk). As
far as inner fluctuations are concerned, first remark that, from Proposition 1,
we already know the class-wise fluctuations of the eigenvector D

1
2 1n (these are

proportional to 1
p trC

2
a for class Ca), and thus we may simply work on the

remaining eigenvectors. We are then left to evaluating (i) the inner and cross
fluctuations involving eigenvectors ûi, ûj , for i, j > 1 (i may equal j), and (ii)

the cross fluctuations between û1 (that is (1TnDn)
− 1

2D
1
2 1n) and eigenvectors ûi,

i > 1.
For readability, from now on, we shall use the shortcut notation Da � D(ja).

For case (i), to estimate

σi,j
a = ûT

i Daûj − αi
aα

j
a

we need to evaluate ûT
i Daûj . However, û

T
i Daûj may not be directly estimated

using a mere Cauchy integral approach as previously (unless i = j for which



1416 R. Couillet and F. Benaych-Georges

alternative approaches exist). To work this around, we propose instead to esti-
mate

1

p
JTûiû

T
i Daûj û

T
j J =

(
ûT
i Daûj

) 1

p
JTûiû

T
j J. (4.3)

Indeed, if ûi has a non-trivial projection onto span(j1, . . . , jk) (in the other
case, ûi is of no interest to clustering), then there exists at least one index
a ∈ {1, . . . , k} for which 1

pj
T
a ûi =

ca
c0
αi
a is non zero. The same holds for ûj , and

thus ûT
i Daûj can be retrieved by dividing a specific entry (m, l) of (4.3) by the

appropriate αi
m and αj

l .
Our approach to evaluate (4.3) is to operate a double-contour integration

(two applications of Cauchy’s formula) by which, for ρ, ρ̃ two distinct isolated
eigenvalues,

1

p
JTΠ̂ρDaΠ̂ρ̃J = − 1

4π

∮
γρ

∮
γρ̃

1

p
JTQzDaQz̃J dzdz̃ + o(1)

with obvious notations and with Qz =
(
PWTWP + UBUT − zIn

)−1
.

For case (ii), note from Proposition 1 that, in the first order, û1 is essentially

the vector 1n√
n
of norm 1 plus fluctuations of norm O(n− 1

2 ). If one were to eval-

uate ûT
1Daûi, i > 1, as previously done, this would thus provide an inaccurate

estimate to capture the cross-fluctuations. However, since the fluctuating part
of û1 is well understood by Remark 8, and is in particular directly related to ψ,
defined in (3.4), we shall here estimate instead ψTDaûi, which can be obtained
from ψTDaûiû

T
i

J√
p , the latter being in turn obtained, in case of unit multiplicity,

from

ψTDaΠ̂ρi

J
√
p
=

1

2πi

∮
γρi

ψTDa

(
PWTWP + UBUT − zIn

)−1 J
√
p
dz.

Before presenting our results, we need an additional technical result, mostly
borrowed from our companion article [3].

Lemma 2 (Further Deterministic Equivalents). Under the conditions and no-
tations of Lemma 1, for z1, z2 (sequences of) complex numbers at macroscopic
distance from the eigenvalues of PWTWP , as n → ∞,

Qz1DaQz2 ↔ Q̄z1DaQ̄z2 +

k∑
b=1

Rz1z2
ab Q̄z1PDbPQ̄z2

Q̃z1CaQ̃z2 ↔ ¯̃Qz1Ca
¯̃Qz2 +

k∑
b=1

Rz1z2
ba

¯̃Qz1Cb
¯̃Qz2

1

p
Q̃z1WDaW

TQ̃z2 ↔ z1z2c0caga(z1)ga(z2)
¯̃Qz1Ca

¯̃Qz2

where Rz1z2 ∈ R
k×k is defined as Rz1z2 = (Ik − Ωz1z2)−1Ωz1z2 , with

Ωz1z2
a,b � z1z2c0caga(z1)ga(z2)

1

p
trCa

¯̃Qz1Cb
¯̃Qz2 .
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In particular, as a consequence of Lemma 2, we have the following identities

1

p
JTQz1DaQz2J = EJ

a;z1z2 + o(1)

MTWQz1DaQz2W
TM = EM

a;z1z2 + o(1)

ψTQz1DaQz2ψ = Eψ
a;z1z2 + o(1)

almost surely, where we defined

EJ
a;z1z2 � 1

p
JTQ̄z1

[
Da +

k∑
b=1

Rz1z2
ab PDbP

]
Q̄z2J

EM
a;z1z2 � MT ¯̃Qz1

[
k∑

b=1

(Rz1z2 + Ik)baCb

]
¯̃Qz2M

Eψ
a;z1z2 � c0

k∑
b=1

cbgb(z1)gb(z2)
2

p
trC2

b (R
z1z2 + Ik)ab (4.4)

Remark 13 (About Rz1z2). The matrix Rz1z2 is strongly related to the deriva-
tive of the ga(z)’s. In particular, we have that

D(c) {g′a(z)}
k
a=1 = c0 (R

zz + Ik)D(c)
{
g2a(z)

}k

a=1

= c0(Ik − Ωzz)−1D(c)
{
g2a(z)

}k

a=1
.

With this lemma at hand, we are in position to introduce the following class-
wise fluctuation results.

Theorem 6 (Eigenvector fluctuations, f ′(τ) away from zero). Under the setting
and notations of Theorem 4, as n → ∞,

ψTDaΠ̂ρ
J
√
p
= caga(ρ)

2

p
trC2

a

(
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

)
tTΓρΞρ + o(1)

1

p
JTΠ̂ρDaΠ̂ρ̃J = h(τ, ρ)h(τ, ρ̃)ΞT

ρEa;ρρ̃Ξρ̃ + o(1)

almost surely, where

Ea;ρρ̃ � EJ
a;ρρ̃ + ΓρE

M
a;ρρ̃Γρ̃ +

(
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

)2

Eψ
a;ρρ̃Γρtt

TΓρ̃.

Theorem 7 (Eigenvector fluctuations, f ′(τ) → 0). Under the setting and no-
tations of Theorem 5, as n → ∞,

ψTDaΠ̂
0
ρ

J
√
p
=

ca
c0ρ

2

p
trC2

a

f ′′(τ)

f(τ)
tTΓ0

ρΞ
0
ρ + o(1)

1

p
JTΠ̂0

ρDaΠ̂
0
ρ̃J = h0(τ, ρ)h0(τ, ρ̃)(Ξ0

ρ)
TE0

a;ρρ̃Ξ
0
ρ̃ + o(1)
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almost surely, where

E0
a;ρρ̃ � E0;J

a;ρρ̃ +

(
f ′′(τ)

f(τ)

)2

E0;ψ
a;ρρ̃Γ

0
ρtt

TΓ0
ρ̃

with [E0;J
a;z1z2 ]ij �

ca
c0

1
z1z2

δiaδja and E0;ψ
a;z1z2 � ca

c0
2
p trC

2
a

1
z1z2

.

These results are much more involved than those previously obtained and do
not lead themselves to much insight. Nonetheless, we shall see in Section 5 that
this greatly simplifies when considering special application cases.

Remark 14 (Relation to (σi
a)

2 and σi,j
a ). For i, j > 1, from the convention on

the signs of ûi and ûj given by Remark 10, we get immediately that

σi,j
a =

1√
nb
jTb ûiû

T
i Daûj û

T
j

1√
nd

jd

αi
bα

j
d

− αi
aα

j
a

for any index b, d ∈ {1, . . . , k} for which αi
b, α

j
d �= 0, with in particular (σi

a)
2 =

σii
a . As for the case i = 1, j > 1, corresponding to û1 = (1TnD1n)

− 1
2D

1
2 1n, we

may similarly impose the convention that 1Tnû1 > 0 (for all large n), which is
easily ensured as û1 = 1n√

n
+ o(1) almost surely. Then we find that

σ1,j
a =

1

n

[
1√
c0

f ′(τ)

2f(τ)

ψTûj û
T
j

1√
nd

jd

αj
d

+ o(1)

]

again for all d ∈ {1, . . . , k} for which αj
d �= 0.

An illustration of the application of the results of Sections 4.2.1 and 4.2.2
to determine the class-wise means, fluctuations, and cross-fluctuations of the
eigenvectors, as discussed in the early stage of Section 4.2, is depicted in Figure 5.
There, under the same setting as in Figure 4 (that is, three classes with various
means and covariances under Gaussian kernel), we display in class-wise colored
crosses the n couples ([ûi]a, [ûj ]a), a = 1, . . . , n, for the i-th and j-th dominant
eigenvectors ûi and ûj of L. The left figure is for (û1, û2) and the right figure for
(û2, û3). On top of these values are drawn the ellipses corresponding to the one-
and two-dimensional standard deviations of the fluctuations, obtained from the

covariance matrix
[

(σi)
2
a (σij)a

(σij)a (σj)
2
a

]
.

In order to get a precise understanding of the behavior of the spectral cluster-
ing based on L, we shall successively constrain the conditions of Assumption 1
so to obtain meaningful results.

5. Special cases

The results obtained in Section 4 above are particularly difficult to analyze
for lack of tractability of the functions g1(z), . . . , gk(z) (even though from a
numerical point of view, these can be accurately estimated as the output of
a provably converging fixed point algorithm; see [3]). In this section, we shall
consider three scenarios for which all ga(z) assume a constant value:
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Fig 5. Two dimensional representation of the eigenvectors one and two (left) and two and
three (right) of L in the setting of Figure 4.

1. We first assume C1 = · · · = Ck. In this setting, only M can be discrim-
inated over for spectral clustering. We shall show that, in this case, up
to k − 1 isolated eigenvalues can be found in-between each pair of con-
nected components in the limiting support of the empirical spectrum of
PWTWP , in addition to the isolated eigenvalue n. But more importantly,
we shall show that, as long as f ′(τ) is away from zero, the kernel choice
is asymptotically irrelevant (so one may take f(x) = x with the same
asymptotic performance for instance).

2. Next, we shall consider μ1 = · · · = μk and take Ca = (1 + p−1/2γa)C for
some fixed γ1, . . . , γk. This ensures that T vanishes and thus only t can
be used for clustering. There we shall surprisingly observe that a maxi-
mum of two isolated eigenvalues altogether can be found in the limiting
spectrum and that û1 (associated with eigenvalue n) and the hypothetical
û2 are extremely correlated. This indicates here that clustering can be
asymptotically performed based solely on û1.

3. Finally, to underline the effect of T alone, we shall enforce a model in
which μ1 = · · · = μk, n1 = · · · = nk = n/k, and Ca is of the form
D(D1, . . . , D1, D2, D1, . . . , D1) with D2 in the a-th position. There we
shall observe that the hypothetical eigenvalues have multiplicity k − 1,
thus precluding a detailed eigenvector analysis.

5.1. Case Ca = C for all a.

Assume that for all a, Ca = C (which we may further relax by merely requiring
that t → 0 and T → 0 in the large p limit). For simplicity of exposition, we shall
require in that case the following.
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Assumption 3 (Spectral convergence of C). As p → ∞, the empirical spectral
measure 1

p

∑p
i=1 δλi(C) converges weakly to ν. Besides,

max
1≤i≤p

dist (λi(C), supp(ν))
a.s.−→ 0.

This assumption ensures, along with the results from [30] and [1], that the
sequences g1(z), . . . , gk(z) all converge towards a unique g(z), solution to the
implicit equation

g(z) =
1

c0

(
−z +

∫
uν(du)

1 + g(z)u

)−1

. (5.1)

This is the Stieltjes transform of a probability measure P̄ having continuous den-
sity and support S. Besides, as n, p → ∞, none of the eigenvalues of PWTWP
are found away from S ∪ {0}.

In this setting, only the matrix M can be discriminated upon to perform clus-
tering and thus we need to take here f ′(τ) away from zero to obtain meaningful
results which, since τ → 2

∫
uν(du), merely requires that f ′(2

∫
uν(du)) �= 0.

Starting then from Theorem 2 and using the fact that Mc = 0, we get

Gz = h(τ, z)g(z)
(
Ik +MT (Ip + g(z)C)

−1
M D(c)

)
+ o(1)

with8

h(τ, z) = 1 +

(
5f ′(τ)

4f(τ)
− f ′′(τ)

f ′(τ)

)
g(z)

∫
u2ν(du).

The values of ρ ∈ S ′ = S ∪ {ρ;h(τ, ρ) = 0} for which Gρ (asymptotically)

has zero eigenvalues are such that Ik + MT [Ip + g(ρ)C]
−1

M D(c) is singular.
By Sylverster’s identity, this is equivalent to looking for such ρ satisfying

0 = det

(
1

g(ρ)
Ip + C +M D(c)MT

)
.

Hence, these ρ’s are such that −g(ρ)−1 coincides with one of the eigenvalues of
C+M D(c)MT. But from [24, 30], the image of the restriction of −1/g to R+ is
defined on a subset of R excluding the support of ν. More precisely, the image
of g : R \ S → R, x �→ g(x), is the set of values g such that x′(g) > 0, where
x : R \ supp(ν) → R, g �→ x(g), is defined by

x(g) � − 1

c0

1

g
+

∫
u

1 + gu
ν(du).

A visual representation of x(g) is provided in Figure 6. Now, since Mc = 0,
M has maximum rank k − 1 and thus, by Weyl’s interlacing inequalities and

8The o(1) term accounts for g(z) being here a limiting quantity rather than a finite p
deterministic equivalent.
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Fig 6. Representation of x(g) for g ∈ R \ supp(ν), ν = 1
3
(δ1 + δ3 + δ5), c0 = 10. The

support Sp can be read on the right vertical axis and corresponds to the complementary to
{x(g) | x′(g) > 0}.

Assumption 3, there asymptotically exist up to k − 1 isolated eigenvalues in-
between each connected component of supp(ν).

Additionally, since t = 0, as per Remark 4, if there exists ρ+ away from S such

that h(τ, ρ+) = 0, that is for which −g(ρ+)
−1 =

(
5f ′(τ)
4f(τ) − f ′′(τ)

f ′(τ)

) ∫
u2ν(du),

then an additional isolated eigenvalue of L may be found.
Gathering the above, we thus have the following corollary of Theorem 2.

Corollary 1 (Eigenvalues for Ca = C). Let Assumptions 1–3 hold with

f ′(2

∫
uν(du)) �= 0.

Denote
⋃s

i=1[l
ν
i , r

ν
i ] the support of ν and take the convention rν0 = −∞, lνr+1 =

∞. For each i ∈ {0, . . . , s+ 1}, denote �i1, . . . , �
i
ki

the ki ≤ k − 1 eigenvalues of

C+M D(c)MT in (ri, li+1) having non-vanishing distance from the ri and li+1.
For each j ∈ {1, . . . , ki}, if

1 > c0

∫
t2ν(dt)

(t− �ij)
2

(5.2)

then there exists an isolated eigenvalue of L, which is asymptotically well ap-

proximated by −2f ′(τ)
f(τ) ρij +

f(0)−f(τ)+τf ′(τ)
f(τ) , where

ρij = �ij

(
1

c0
−

∫
uν(du)

u− �ij

)
.
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Fig 7. Eigenvalues of L′ and dominant four eigenvectors of L for C1 = . . . = Ck = Ip,
f(x) = 4(x−τ)2− (x−τ)+4 (τ = 2, f(0) = 22, f(τ) = 4, f ′(τ) = −1, f ′′(τ) = 8), p = 2048,
n = 512, three classes with n1 = n2 = 128, n3 = 384, [μi]j = 5δij . Emphasis made on the
“non-informative” eigenvalue-eigenvector pair, solution to h(τ, ρ) = 0.

Besides, let �+ =
(

5f ′(τ)
4f(τ) − f ′′(τ)

f ′(τ)

) ∫
u2ν(du). Then, if

1 > c0

∫
u2ν(du)

(u− �+)2

there is an additional corresponding isolated eigenvalue in the spectrum of L

given by −2f ′(τ)
f(τ) ρ+ + f(0)−f(τ)+τf ′(τ)

f(τ) with

ρ+ = �+

(
1

c0
−

∫
uν(du)

u− �+

)
.

These and n characterize all the isolated eigenvalues of L.

As a further corollary, for C = βIp, we obtain

ρij =
�ij
c0

+ β
�ij

�ij − β

under the condition that

|�ij − β| > β
√
c0 (5.3)

which is a classical separability condition in standard spiked models [22, 2, 27].
Before interpreting this result, let us next characterize the eigenvectors as-

sociated to these eigenvalues. The eigenvector attached to the eigenvalue n is
D

1
2 1n and has already been analyzed and carries no information since t = 0.
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We also know that the hypothetical eigenvalue ρ+ does not carry any relevant
clustering information. We are then left to study the eigenvalues ρij . For those
(assuming they remain distant from one another),

1

p
JTΠ̂ρJ = −h(τ, ρ)g(ρ)

(
D(c)− ccT

) mρ∑
q=1

(Vr,ρ)q(Vl,ρ)
T
q

(Vl,ρ)TqG
′
ρ(Vr,ρ)q

+ o(1)

almost surely, where ρ = ρij is understood to be any of the ρij eigenvalues from

Corollary 1. It is easier here to use the fact that Ḡρ � Gρ D(c−1) is symmetric

with Vρ � D(c−1)Vr,ρ = Vl,ρ as eigenvectors for its mρ zero eigenvalues. Thus

1

p
JTΠ̂ρJ = −h(τ, ρ)g(ρ)

(
Ik − c1Tk

) mρ∑
q=1

(Vρ)q(Vρ)
T
q

(Vρ)Tq Ḡ
′
ρ(Vρ)q

+ o(1).

Using ḠρVρ = 0, we get (Vρ)
T
q Ḡ

′
ρ(Vρ)q = −h(τ, ρ)MT(Ik + g(ρ)C)−2Mg′(ρ).

Besides, Vρ can be expressed as Vρ = D(c)MTΥρ with Υρ ∈ R
p×mρ the column-

concatenated mρ eigenvectors associated with the eigenvalue � = �ij = −1/g(ρij)

of C+M D(c)MT. Since 1Tk D(c)MT = 0 and (C−�Ip)
−1M D(c)MTΥρ = −Υρ,

we thus finally obtain

1

p
JTΠ̂ρJ =

1

�

(
1

c0
−

∫
u2ν(du)

(u− �)2

)
D(c)MTΥρΥ

T
ρM D(c) + o(1).

Regarding fluctuations, note that the leftmost inverse matrix (Ik −Ωz1z2)−1

in the definition of Rz1z2 (Lemma 2) is merely a rank-one perturbation of the
identity matrix, so that, after basic algebraic manipulations, we obtain

Rz1z2 =
c0

1
p trC

2
(
C + g(z1)

−1Ip
)−2

1− c0
1
p trC

2 (C + g(z2)−1Ip)
−2 c1

T
k .

A careful (but straightforward) development of all the terms in Theorem 6,
using the already made remarks, then allows one to obtain the following spectral
clustering analysis for the setting under present concern.

Corollary 2 (Spectral Clustering for Ca = C). For i ∈ {0, . . . , s + 1}, j ∈
{1, . . . , ki}, let ρij and �ij be as defined in Corollary 1, assumed of unit mul-

tiplicity, with associated eigenvector ûi
j in L. Under the model (4.1), denoted

here

ûi
j =

k∑
a=1

(αi
j)a

ja√
na

+ (σi
j)a(ω

i
j)a

with (ωi
j)a ∈ R

n supported by Ca of unit norm and orthogonal to ja, we find that

(αj
i )

2
a = ca

1

�ij
ΥT

ρi
j
μ◦
a (μ

◦
a)

T
Υρi

j

(
1− c0

∫
u2ν(du)

(u− �ij)
2

)
+ o(1)
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(σi
j)

2
a = ca

[
1− 1

�ij
ΥT

ρi
j
MD(c)MTΥρi

j

(
1− c0

∫
u2ν(du)

(u− �ij)
2

)]
+ o(1)

with Υρi
j
∈ Rp the eigenvector of C +MD(c)MT associated with the eigenvalue

�ij. Besides, letting (σĩi
jj̃
)a � (σi

j)a(σ
ĩ
j̃
)a(ω

i
j)

T
a (ω

ĩ
j̃
)a, we have, for (i, j) �= (̃i, j̃),

(σĩi
jj̃
)2a =

c2a

�ij�
ĩ
j̃

(
1− c0

∫
u2ν(du)

(u− �ij)
2

)⎛
⎝1− c0

∫
u2ν(du)

(u− �ĩ
j̃
)2

⎞
⎠(

ΥT
ρi
j
CΥ

ρĩ
j̃

)2

+ o(1).

It is interesting to note, from Corollary 1 and Corollary 2, that all expressions
of the relevant quantities in this setting are here completely explicit. This allows
for easy interpretations of the results. Quite a few remarks can in particular be
made.

Remark 15 (Asymptotic kernel irrelevance). From the results of Corollaries 1
and 2, it appears that, aside from the hypothetical isolated eigenvalue ρ+ (the
eigenvector of which carries in any case no information), when Ca = C for
all a ∈ {1, . . . , k}, the choice of the kernel function f is asymptotically of no
avail, so long that f ′(τ) �→ 0. This can be interpreted in practice by the fact
that, since the data xi are linearly separable and that no difference aside location
metrics can be exploited to discriminate them, the so-called “kernel trick”, which
projects the data on a high dimensional space to improve separability, does not
provide any additional gain for clustering.

Remark 16 (On the possibility to cluster). Even though ν would have un-
bounded support, (5.2) allows isolated eigenvalue-eigenvector pairs to emerge
in-between successive clusters of eigenvalues and carry relevant clustering infor-
mation, however necessarily with imperfect alignment to j1, . . . , jk. This disrupts
from the standard assumption that only extreme eigenvectors may be exploited
for spectral clustering.

Remark 17 (On the interplay between C and M). All quantities obtained in
Corollary 2 rely on Υρi

j
which is an “isolated” eigenvector of C + MD(c)MT.

When C = βIp, Υρi
j
is merely an eigenvector of MD(c)MT with eigenvalue

�ij − β, so that (σi
j)

2
a simplifies as

(σi
j)

2
a = ca

[
1−

�ij − β

�ij

(
1− c0β

2

(β − �ij)
2

)]
+ o(1).

Also, and possibly more importantly, since ΥT
ρi
j
Υ

ρĩ
j̃

= 0 for distinct i, j and ĩ, j̃,

we find that (σĩi
jj̃
)a = o(1) for each a = 1, . . . , k. Therefore, the fluctuating parts

of the isolated eigenvectors of L are asymptotically uncorrelated when C = βIp.
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Remark 18 (On the existence of useless eigenvectors). Corollary 1 predicts the
possibility that h(τ, ρ) = 0 for some ρ, the associated eigenvector of which does
no align to j1, . . . , jk. In Figure 7, we present such a scenario in a k-class setting
for which k+1 (and not only k) isolated eigenvalues of L are found. We depict in

parallel the corresponding eigenvectors. As expected, the eigenvector D
1
2 1n does

not visually align to j1, . . . , jk. For the other three, note that eigenvectors 2 and
4 do align to j1, . . . , jk and are thus the sought-for (at most) k− 1 eigenvectors
in this connected component of R \ S ′. As for eigenvector 3, it shows no strong
alignment to j1, . . . , jk, and must therefore arise from the solution h(τ, ρ+) = 0.

5.2. Case μa = μ and Ca = (1 + p−1/2γa)C for all a.

Consider now the somewhat opposite scenario where μ1 = · · · = μk and Ca =
(1 + p−1/2γa)C, a ∈ {1, . . . , k}, for some γ1, . . . , γk ∈ R fixed. We shall further
denote γ = (γ1, . . . , γk)

T and γ2 = (γ2
1 , . . . , γ

2
k)

T.
Similar to previously, we shall place ourselves for simplicity under Assump-

tion 3. Although not necessary, it shall also be simpler to assume C◦ = C (which
is always possible up to modifying C, γ1, . . . , γk).

9 In this case, both scenarios
f ′(τ) away or converging to zero are of interest. Let us focus first on the former.
There Gz reduces to

Gz = Ik + g(z)

(
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

)(
2

∫
u2ν(du)Ik + ttT D(c)

)
+ o(1)

with g(z) given by the implicit equation (5.1). Letting z = ρ ∈ R \ S, the roots
of the right-hand matrix are the solutions (if any) to

− 1

g(ρ)
=

(
5f ′(τ)

4f(τ)
− f ′′(τ)

f ′(τ)

)∫
u2ν(du)

or to

− 1

g(ρ)
=

(
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

)(
2

∫
u2ν(du) +

(∫
uν(du)

)2

cTγ2

)
.

It is easily checked that the former value, corresponding to h(τ, ρ) = 0, does
not bring a zero eigenvalue in Hρ and thus, as per Remark 4, does not map an
isolated eigenvalue of L.

Assuming now f ′(τ) → 0, a similar derivation leads to either

ρ0 =
2f ′′(τ)

f(τ)

∫
u2ν(du),

which corresponds to h0(τ, ρ0) = 0, hence not a solution, or to

ρ0 =
f ′′(τ)

f(τ)c0

(
2

∫
u2ν(du) +

(∫
uν(du)

)2

cTγ2

)
.

9And again, we may here relax these assumptions further by merely requiring that M → 0
and T → 0.
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These results can then be gathered as follows.

Corollary 3 (Eigenvalues for Ca = (1+p−1/2γa)C). Let Assumptions 1–3 hold,
with Ca = (1 + γa√

p )C and μa = μ for all a. If f ′(τ) �→ 0, denote

� =

(
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

)[
2

∫
u2ν(du) +

(∫
uν(du)

)2

cTγ2

]
. (5.4)

Then, if

1 > c0

∫
u2ν(du)

(u− �)2

there exists an isolated eigenvalue in the spectrum of L with value −2 f ′(τ)
f(τ) ρ +

f(0)+f(τ)−τf ′(τ)
f(τ) where

ρ = �

(
1

c0
−

∫
uν(du)

u− �

)
. (5.5)

This value, along with n are all the isolated eigenvalues of L. Otherwise, if
f ′(τ) → 0, then the non-zero spectrum of L is composed of the eigenvalue n and

the eigenvalue ρ0 + f(0)+f(τ)
f(τ) with

ρ0 =
f ′′(τ)

f(τ)c0

[
2

∫
u2ν(du) +

(∫
uν(du)

)2

cTγ2

]
. (5.6)

As for the eigenvector projections, assuming first f ′(τ) �→ 0, note that as
Gρ is a rank-one perturbation of a scaled identity matrix, the left and right
eigenvectors Vl,ρ, Vr,ρ ∈ R

k are respectively proportional to t and D(c)t, so that

Vr,ρV
T
l,ρ

V T
l,ρG

′
ρVr,ρ

= −γγT D(c)

cTγ2

g(ρ)2

g′(ρ)
.

We thus finally obtain,

1

p
JTΠ̂ρJ =

1

c0

1− c0
∫ u2ν(du)

(u−�)2

2
∫
u2ν(du)

(
∫
uν(du))2

+ cTγ2
D(c)γγT D(c) + o(1)

and, similarly, for f ′(τ) → 0,

1

p
JTΠ̂ρ0J =

1

c0

1

2
∫
u2ν(du)

(
∫
uν(du))2

+ cTγ2
D(c)γγT D(c) + o(1).

The result of Corollary 3 is quite surprising when compared to Corollary 1.
Indeed, while the latter allowed for up to k− 1 isolated eigenvalues to be found
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outside S ′, here a maximum of one eigenvalue is available, irrespective of C.
This state of fact is obviously linked to ttT being of unit rank while MMT

can be of rank up to k − 1. For practical purposes, there being no information
diversity, the clustering task is increasingly difficult to achieve as k increases.
But this becomes even worse when considering the cross-correlations between
D

1
2 1n and (the hypothetical) eigenvector û associated with ρ. Precisely, after

some calculus, we obtain the counter-part of Corollary 2 as follows.

Corollary 4 (Spectral Clustering for constant μa and Ca = (1 + p−1/2γa)C).

Following the model (4.1), write here, for û1 = (1TnD1n)
− 1

2D
1
2 1n, and for û2 the

(hypothetical) isolated eigenvector of L associated with the limiting eigenvalue ρ
defined in Corollary 3,

ûi =

k∑
a=1

αi
a

ja√
na

+ σi
aω

i
a

with ωi
a ∈ R

n supported by Ca of unit norm and orthogonal to ja. Then, we find
that, for f ′(τ) �→ 0,

(α1
a)

2 = ca

(
1 +

1
√
p

f ′(τ)

2f(τ)
γa + o(p−

1
2 )

)2

(σ1
a)

2 = ca

(
f ′(τ)

2f ′(τ)

)2
2

p

∫
u2ν(du) + o(p−1)

(α2
a)

2 = ca

(∫
uν(du)

)2
γ2
a

2
∫
u2ν(du) +

(∫
uν(du)

)2
cTγ2

(
1− c0

∫
u2ν(du)

(u− �)2

)
+ o(1)

(σ2
a)

2 = ca

[
1−

(∫
uν(du)

)2
cTγ2

2
∫
u2ν(du) +

(∫
uν(du)

)2
cTγ2

(
1− c0

∫
u2ν(du)

(u− �)2

)]
+ o(1)

with � also defined in Corollary 3. Besides, for σ12
a � σ1

aσ
2
a(ω

1
a)

Tω2
a, we have

(σ12
a )2 = c2a

1

p

(
f ′(τ)
2f ′(τ)

)2 (
2
∫
u2ν(du)

)2
2
∫
u2ν(du) +

(∫
ν(du)

)2
cTγ2

(
1− c0

∫
u2ν(du)

(u− �)2

)
+ o(p−1).

If f ′(τ) → 0, the results are unchanged but for the terms c0
∫ u2ν(du)

(u−�)2 which

vanish.

This leads us to the following important remark.

Remark 19 (Irrelevance of û2). From the expression of � in Corollary 3, cTγ2 is
directly proportional to �. Thus, for sufficiently large values of cTγ2, using a first
order development in �, we get that (σ12

a )2(σ1
a)

−2(σ2
a)

−2 � 1. Since this is the
equality case of the Cauchy–Schwarz inequality, we deduce that the eigenvectors
û1 and û2 tend to have similar fluctuations. Besides, the useful part of (α1)a
and (α2)a are directly proportional to caγa, thus making û1 and û2 eventually
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quite similar. Very little information is thus expected to be further extracted
from û2 beyond clustering based on û1. This remark is even more valid when
considering f ′(τ) → 0, for which the discussion holds true even for small cTγ2.

Figure 8 provides an interpretation of Remark 19, by visually comparing
the results of Section 5.3 and Section 5.2. Precisely here, we see, for the same
choice of a kernel (tailored so that both cases exhibit the required number of
informative eigenvectors), the distribution of the eigenvectors in the present
scenario is quite concentrated along a one-dimensional direction, whereas the
former scenario of different μa’s exhibits a well scattered distribution for the
data on the two-dimensional plane.10

5.3. Case μa = μ, trCa constant

We now study the effect of the matrix T alone (so imposing μ1 = · · · = μk

and trC1 = · · · = trCk). Although it is possible to analyze completely such a
scenario (to the least for k = 2), it shall be simpler here to enforce g1 = · · · = gk.
To this end, we shall assume the symmetric model Ca = D([1a−1⊗D1, D2, 1k−a⊗
D1]), for a = 1, . . . , k, and for some nonnegative definite D1, D2 ∈ R

p/k×p/k.
We also suppose that n1 = · · · = nk. A formulation of Assumption 3 adapted
to the present setting comes in also handy.

Assumption 4 (Spectral convergence of (k − 1)D1 + D2). As p → ∞, the
empirical spectral measure 1

p

∑p
i=1 δλi((k−1)D1+D2) converges weakly to ν.

This setting ensures that all gi’s are identical and are asymptotically equiv-
alent, under Assumption 4, to the implicitly defined

g(z) =
1

c0

[
−z +

1

k

∫
uν(du)

1 + g(z)
k u

]−1

to which we may associate the inverse

x(g) = − 1

c0

1

g
+

1

k

∫
uν(du)

1 + g
ku

. (5.7)

In this scenario, M = 0 and t = 0, so that only T can be used to perform data
clustering. Precisely, we have

T =
1

p
tr

(
(D1 −D2)

2
) [

Ik − 1

k
1k1

T
k

]
.

Letting first f ′(τ) �→ 0, it is rather immediate to apply Theorem 2 in which

Gz = h(τ, z)

(
Ik − g(z)

k

f ′′(τ)

f ′(τ)

1

p
tr

(
(D1 −D2)

2
) [

Ik − 1

k
1k1

T
k

])
+ o(1).

The case f ′(τ) → 0 is handled similarly.

10Note that we voluntarily considered a quite noisy scenario by setting Ca = (1+
2(a−1)

p
)Ip,

hence γ2
a = 4(a−1)2; using larger values for γ2

a rapidly leads γ2
a to be close to

√
p for p = 2048,

hence providing undesired approximation errors.
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Fig 8. Comparison of two dimensional representation of (top): eigenvectors two and three of
L, [μa]j = 5δaj , C1 = . . . = Ck = Ip, (bottom): eigenvectors one and two of L, μ1 = . . . = μk,

Ca = (1 +
2(a−1)√

p
)Ip. In both cases, k = 3, n1 = n2 = 192, n3 = 384, f(x) = 1.5(x − τ)2 −

1(x− τ) + 5. In blue, theoretical means and standard deviations of fluctuations.

We then have the following result.

Corollary 5 (Eigenvalues, constant mean and trace). Let Assumptions 1–2
hold, with μa = μ and Ca = D([1a−1 ⊗D1, D2, 1k−a ⊗D1]), D1, D2 ∈ R

p/k×p/k

satisfying Assumption 4, for each a ∈ {1, . . . , k}. Let also x(g) be defined as in
(5.7). If f ′(τ) �→ 0, denote

� = −1

k

f ′′(τ)

f ′(τ)

1

p
tr

(
(D1 −D2)

2
)
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�+ =

(
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

)
2

p
tr

(
(k − 1)D2

1 +D2
2

)
.

Then, if x′(−1/�) > 0 (resp., x′(−1/�+) > 0), −2 f ′(τ)
f(τ) ρ+

f(0)+f(τ)−τf ′(τ)
f(τ) (resp.,

−2 f ′(τ)
f(τ) ρ++ f(0)+f(τ)−τf ′(τ)

f(τ) ) is asymptotically an isolated eigenvalue of L, with

ρ = x(−1/�) (resp., ρ+ = x(−1/�+)) of multiplicity k− 1 (resp., 1). These and
n form the whole asymptotic isolated spectrum of L.

If instead f ′(τ) = 0, denote

ρ0 = 2
f ′′(τ)

f(τ)

n

pk

1

p
tr

(
(D1 −D2)

2
)

ρ0+ = 2
f ′′(τ)

f(τ)

n

p

1

p
tr

(
(k − 1)D2

1 +D2
2

)
.

Then n, ρ0 + f(0)−f(τ)
f(τ) (with multiplicity k − 1) and ρ0+ + f(0)−f(τ)

f(τ) form the

asymptotic isolated spectrum of L.

In terms of eigenvectors, the result is also quite immediate from the form of
Gz and we have the following result.

Corollary 6 (Eigenspace projections, constant mean and trace). Under the
assumptions and notations of Corollary 5, if f ′(τ) �→ 0, 1

pJ
TΠ̂ρ+J = o(1) while

1

p
JTΠ̂ρJ =

1

kc0

(
1− c0

1

k2

∫
u2ν(du)

(u− �)2

)[
Ik − 1

k
1k1

T
k

]
+ o(1).

If instead f ′(τ) → 0, 1
pJ

TΠ̂ρ0
+
J = o(1) and

1

p
JTΠ̂ρ0J =

1

kc0

[
Ik − 1

k
1k1

T
k

]
+ o(1).

From Corollary 6, we then now have, for f ′(τ) �= 0

trD(c−1)
1

n
JTΠ̂ρJ = (k − 1)

(
1− c0

1

k2

∫
u2ν(du)

(u− �)2

)
+ o(1)

which is all the closer to k − 1 that f ′′(τ)
f ′(τ) is small or that 1

p tr
(
(D1 −D2)

2
)

is large (for a given tr((k − 1)D1 + D2)). Thus, here the Frobenius norm of
D1 − D2 is the discriminative attribute. For f ′(τ) → 0, we obtain simply
trD(c−1) 1nJ

TΠ̂ρJ = (k − 1) + o(1), hence a perfect alignment to j1, . . . , jk,
consistently with Remark 12.

6. Concluding remarks

6.1. Practical considerations

Echoing Remarks 2 and 7, one important practical outcome of our study lies
in the observation that clustering can be performed selectively on either M , t,
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or T by properly setting the kernel function f . That is, assume the following
hierarchical scenario in which a superclass Ci is identified via a constant mean
μi but different subclasses of covariances Ci,j , j = 1, . . . , ik for some ik. If
the objective is to discriminate only the superclasses and not each individual

class, then one may design f in such a way that both 5f ′(τ)
8f(τ) − f ′′(τ)

2f ′(τ) and f ′′(τ)
f ′(τ)

are sufficiently small. Alternatively, if differences in mean appear due to an
improper centering of the data, and that the relevant information is carried in
the covariance structure, then it is useful to take f ′(τ) = 0. This may be useful
in image classification for images with different lightness and contrast.

These considerations however assume the possibility to tailor the function f
according to the value taken by its successive derivatives at τ . To ensure this is
possible, note that, under Assumption 1,

τ̂ =
2

np

n∑
i=1

∥∥∥∥∥∥xi −
1

n

n∑
j=1

xj

∥∥∥∥∥∥
2

a.s.−→ τ

and it is thus possible to consistently estimate τ and, hence, to design f to one’s
purposes.

If such an explicit design of f is not clear on the onset (from the data them-
selves or the sought for objective), one may alternatively run several instances
of kernel spectral clustering for various values of (f(τ̂), f ′(τ̂), f ′′(τ̂)) spanning
R

3. Explicit comparisons can be made between the obtained classes by com-
puting a score (such as the RatioCut score obtained from (1.1)) and selecting
the ultimate clustering as the one reaching the highest (or smallest) score. This
provides a disruptive approach to kernel setting in spectral clustering, as it in
particular allows for non-decreasing kernel functions.

A further practical consideration arises when it comes to selecting a ker-
nel function that may engender negative or large positive values (such as with
polynomial kernels). While theoretically valid on Gaussian inputs, for robust-
ness reasons in practical scenarios, it seems appropriate to rather consider
more stable families of kernels such as generalized Gaussian kernels of the type
f(t) = a exp(−b(t−c)2) (which can be tuned to meet the derivative constraints).

6.2. Extension to non-Gaussian settings

The present work strongly relies (mostly for mathematical tractability) on the
Gaussian assumption on the data xi. Nonetheless, as is often the case in random
matrix theory, the results can be generalized to some extent beyond the Gaussian
assumption. In particular, assume now that, for xi in class Ca, we take xi =

μa+C
1
2
a zi, where zi is a random vector with independent zero mean unit variance

entries zij having at least finite kurtosis κ � E[z4ij ] − 3. Then our results may
be generalized by noticing that

|ψi|2 =
2

p
trC2

a + κ
1

p
tr

(
diag(Ca)

2
)
+ o(1)
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almost surely, for xi in class Ca, with diag(C) the operator which sets to zero all
off-diagonal elements of C. Since κ ≥ −2, the right-hand term can take any non-
negative value, which shall impact (positively or negatively) the detectability.
In particular, this will impact the performances of both scenarios where M = 0
studied in Section 5.

Moving to more general statistical models requires to completely rework the
proof of all theorems. An interesting choice for the law of xi, modelling heavy
tailed distributions, are elliptical laws with different location and scatter ma-
trices according to classes. These have been widely studied in the recent ran-
dom matrix literature [16, 15]. In this case, xi can be written under the form

xi =
√
tiC

1/2
a zi with zi uniformly distributed on the p-dimensional sphere and

ti > 0 a scalar independent of zi. By a similar concentration of measure argu-
ment, it is expected that ‖xi − xj‖2 shall now converge to (ti + tj)τ instead of
τ . This implies that the kernel function f will be exploited beyond its value at
τ , opening a wide scope of theoretical and applied investigation. Such consider-
ations are left to future work.

6.3. On the growth rate

To better understand our data setting, it is interesting to recall the intuition of
Ng–Jordan–Weiss spelled out earlier in Section 1. In a perfectly discriminable
setting and for an appropriate choice of f , L would have k eigenvalues equal to
n with associated eigenspace the span of {j1, . . . , jk} while all other eigenvalues
would typically remain of order O(1). When the data become less discriminable,
k− 1 of these eigenvalues will become smaller with associated eigenvectors only
partially aligning to {j1, . . . , jk}. This remains valid until the k − 1 eigenvalues
become so small that they merge with the remaining spectrum. This therefore
places our study at the cluster detectability limit beyond which clustering be-
comes (asymptotically) theoretically infeasible. Theorem 2 thus provides here
the necessary and sufficient conditions for asymptotic detectability of classes in
the Gaussian data setting, which are made explicit in Section 5 in several simple
scenarios.

However, the above discussion on detectability assumes f fixed from the be-
ginning. As it turns out from our results, it is often beneficial to take f ′(τ)/f(τ)
and f ′′(τ)/f ′(τ) as small as possible (see how taking f ′(0) = 0 benefits to align-
ment to j1, . . . , jk for instance). Taking f to be the classically used Gaussian
kernel f(x) = exp(− x

2σ2 ), this implies that σ2 should be taken small. In turn,
this suggests that a more appropriate growth regime is when σ2 is not fixed
but vanishes with n and thus that f should adapt to n. Another remark fol-
lowing the same suggestion is that the Taylor expansion of Kij performed to
obtain Theorem 1 naturally discards all the subsequent derivatives of f along
with all the next order properties of the data (i.e., only M , t, and T can be
discriminated upon). Allowing f to adapt to n would allow for a more flexible
analysis. In particular, since ‖xi − xj‖2 has O(

√
p) fluctuations around τp, we

may expect that, taking f(x) = f̃((x − τ)
√
p) for some fixed f̃ function would
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provide a wider dynamics range to the kernel function. This setting, which is
quite challenging to study as it does not lead itself to classical random matrix
analysis, remains open.

7. Proofs

7.1. Preliminary definitions and remarks

As we will regularly deal with uniform convergences of the entries of vectors of
growing size, we shall call the union bound on many instances. To this end, we
need the following definitions, borrowed from e.g. [6, Def. 2.5]. For x ≡ xn a
random variable and un ≥ 0, we write x = O(un) if for any η > 0 and D > 0,
nD

P(x ≥ nηun) → 0 as n → ∞. Unless specified, when x depends, besides
the implicit parameter n, on other parameters (if x = xij for example), the
convergences will always be supposed to be uniform in the other parameters. As
a consequence of this convention, this O( · ) notation, besides being compatible
with sums and products, has the property that the maximum of a collection of
at most nC random variables of order O(un) is still O(un), for any constant C.

As far as multidimensional objects are concerned, let us make the notation
O( · ) a bit more precise.

a) When v is a vector or a diagonal matrix, v = O(un) means that the
maximal entry of v in absolute value is O(un).

b) When M is a square matrix, M = O(un) means that the operator norm
of M is O(un).

c) When M is a square matrix, we shall write M = O1n(un) when the opera-
tor norm of M is O(un) and the vector M1n is O(un) in the sense defined
above.

d) At last, for x a vector or a matrix, x = o(un) means that there is α > 0
such that x = O(n−αun).

Note that definition c) below is quite surprising, as ‖1n‖ =
√
n, but is in fact

perfectly adapted to our context, where we have some matrix error terms which,
thanks to some classical probabilistic phenomena, are of smaller order when
observed through the vector 1n than through their maximal eigenvector.

Note also that for M = [mij ]
n
i,j=1 a random matrix, as ‖M‖2 ≤ trMM∗, we

have
mij = O(un) =⇒ M = O1n(nun). (7.1)

In the remainder of the proof, to make our expressions shorter and more read-
able, we shall regularly use the following conventions. Matrices will be indexed
by blocks according to the partition C1, . . . , Ck, with (a, b) being used for block
a in rows and b in columns. In particular

{Ab}kb=1 = [A1, . . . , Ak]

{Aa}ka=1 = [AT
1 , . . . , A

T
k ]

T

{Aa,b}ka,b=1 = {[Aa,1, . . . , Aa,k]}ka=1.
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7.2. Proof of Theorem 1

7.2.1. Asymptotic equivalent of the matrix K

The main idea of the proof is to exploit the fact that, due to p going to in-
finity, all off-diagonal entries of K converge to the same limit in the regime
of Assumption 1, which we shall demonstrate in the course of the proof to be
the only non-trivial one. This will allow us to Taylor-expand each entry of K
to two non-vanishing orders, whereby “non-vanishing” means that the full ma-
trix contribution (and not only its individual entries) in this order expansion
has non-vanishing operator norm. It shall in particular appear that, while on
the onset one may assume that higher Taylor orders ought to contribute less
than smaller orders, the structure of the full matrix expansions underlies a more
subtle reasoning.

To start, we shall operate a seemingly irrelevant centering operation on the
xi’s which shall considerably help simplifying the proof. Precisely, it will turn
out convenient in the following to systematically recenter the vectors xi and wi

around their empirical mean. As such, we shall define, for i = 1, . . . , n,

w◦
i � wi −

1

n

n∑
j=1

wj

and W ◦ � [w◦
1 , . . . , w

◦
n] = WP .

This centering procedure leads naturally one to introduce τ◦ = n+1
n

2
p trC

◦ =

τ + O(n−1), i.e., the expected value of ‖w◦
i ‖2, as well as ψ◦ defined by ψ◦

i =
‖w◦

i ‖2 − E[‖w◦
i ‖2] = ψi + o(n−1).

Using the fact that wj − wi = w◦
j − w◦

i , we have, for xi ∈ Ca and xj ∈ Cb,

1

p
‖xj − xi‖2 = ‖wj − wi‖2 +

1

p
‖μb − μa‖2 +

2
√
p
(μb − μa)

T(wj − wi)

= τ◦ +
1

p
trC◦

a︸ ︷︷ ︸
�A

+
1

p
trC◦

b︸ ︷︷ ︸
�B

+ ψ◦
j︸︷︷︸

�C

+ ψ◦
i︸︷︷︸

�D

− 2(w◦
i )

Tw◦
j︸ ︷︷ ︸

�E

+
‖μ◦

b − μ◦
a‖2

p︸ ︷︷ ︸
�F

+
2
√
p
(μ◦

b − μ◦
a)

T(w◦
j − w◦

i )︸ ︷︷ ︸
�G

It is easy to see, using for example Lemmas 3 and 4, that

ψ◦
i = O(n−1/2), (w◦

i )
Tw◦

j = O(n− 1
2 ),

1
√
p
(μ◦

b − μ◦
a)

T(w◦
j − w◦

i ) = O(n−1).

(7.2)
Let us then Taylor-expand f( 1p‖xj − xi‖2) around τ◦ and control, in operator
norm, the order of each resulting matrix term in

K =
[
f
(

1
p‖xj − xi‖2

)]n
i,j=1

.
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First, by (7.2), (7.1) allows one to claim that the error term of the entry-wise
Taylor expansion will give rise to an error term, in K, with operator norm
O(n−1/2). Following this argument, let us precisely identify the non-vanishing
terms in the Taylor expansion of K. By (7.1), the terms associated with the
entries F 2, G2, (A + B + C +D + E)(F + G) and (A + B + C +D)E will all
give rise to a O1n(n

−1/2) error term. Besides, similar to (7.2), we get

(
(w◦

i )
Tw◦

j

)2 − 1

p2
trCaCb = O(n−3/2)

so that the term corresponding to entry E2 can be freely replaced by 4
p2 trCaCb

without affecting the resulting error operator norm in the large n limit. Consid-
ering also the (trivial) diagonal terms and using the notation introduced above,
we finally get, with (WP )a ∈ R

p×na the submatrix of WP constituted by the
columns corresponding to class Ca,

K = f(τ◦)1n1
T
n + f ′(τ◦)

[
ψ◦1Tn + 1n(ψ

◦)T +

{
‖μ◦

a − μ◦
b‖2

1na1
T
nb

p

}k

a,b=1

+

{
ta
1na√
p

}k

a=1

1Tn + 1n

{
tb
1Tnb√
p

}k

b=1

+ 2

{
1
√
p
(WP )Ta (μ

◦
b − μ◦

a)1
T
nb

}k

a,b=1

− 2

{
1
√
p
1na(μ

◦
b − μ◦

a)
T(WP )b

}k

a,b=1

− 2PWTWP

]

+
f ′′(τ◦)

2

[
(ψ◦)21Tn + 1n[(ψ

◦)2]T +

{
t2a
1na

p

}k

a=1

1Tn + 1n

{
t2b
1Tnb

p

}k

b=1

+ 2

{
tatb

1na1
T
nb

p

}k

a,b=1

+ 2D {taIna}
k
a=1 ψ

◦ 1Tn√
p
+ 2ψ◦

{
tb
1Tnb√
p

}k

b=1

+ 2
1n√
p
(ψ◦)T D {ta1na}

k
a=1 + 2

{
ta
1na√
p

}k

a=1

(ψ◦)T

+ 4

{
tr(CaCb)

1na1
T
nb

p2

}k

a,b=1

+ 2ψ◦(ψ◦)T
]

+ (f(0)− f(τ◦) + τf ′(τ◦)) In +O1n(n
− 1

2 )

where we denoted Wa � [wn1+···+na−1+1, . . . , wn1+···+na ] the restriction of W to

class Ca elements, (ψ◦)2 � [(ψ◦)21, . . . , (ψ
◦)2n]

T, and we recall that

t = { 1
√
p
trC◦

a}ka=1.

We shall now differentiate the study of the cases f ′(τ◦) away from zero and
f ′(τ◦) → 0.
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7.2.2. Case f ′(τ◦) away from zero

As a consequence of the above, under the assumption that f ′(τ◦) �= 0, we may
write

K = −2f ′ (τ◦)
(
PWTWP + V AV T

)
+ (f(0)− f(τ◦) + τf ′(τ◦))In +O1n(n

− 1
2 )

(7.3)

where V is the n× (2k + 4) matrix defined by

V �
[
J
√
p
, v1, . . . , vk, ṽ, ψ

◦,
√
p(ψ◦)2,

√
pψ̃◦

]
va � PWTμ◦

a = O(n− 1
2 )

ṽ �
{
(WP )Taμ

◦
a

}k

a=1
= O(n− 1

2 )

ψ̃◦ � D
({

ta
1na√
p

}k

a=1

)
ψ◦ = O(n−1)

and A � An +A√
n +A1, with An, A√

n and A1 are the symmetric matrices

An � − f(τ◦)

2f ′(τ◦)
p

[
1k1

′
k 0k×k+4

∗ 0k+4×k+4

]

A√
n � −1

2

√
p

⎡
⎢⎢⎢⎢⎢⎢⎣

{ta + tb}ka,b=1 0k×k 0k×1 1k 0k×1 0k×1

∗ 0k×k 0k×1 0k×1 0k×1 0k×1

∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

⎤
⎥⎥⎥⎥⎥⎥⎦

A1 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A1,11 Ik −1k − f ′′(τ◦)
2f ′(τ◦) t − f ′′(τ)

4f ′(τ)1k − f ′′(τ)
2f ′(τ)1k

∗ 0k×k 0k×1 0k×1 0k×1 0k×1

∗ ∗ 0 0 0 0

∗ ∗ ∗ − f ′′(τ)
2f ′(τ) 0 0

∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

A1,11 =

{
−1

2
‖μ◦

b − μ◦
a‖2 −

f ′′(τ)

4f ′(τ)
(ta + tb)

2 − f ′′(τ)

f ′(τ)

1

p
trCaCb

}k

a,b=1

.

The division of A into An, A√
n, and A1 is obviously related here to the fact

that An has operator norm O(n), A√
n has operator norm O(

√
n), while A1

is of order O(1). It is already interesting to note that, from the result above,
K is asymptotically equivalent to a type of spiked models in the sense that
V AV T is of finite rank and is summed up to PWTWP which, under reasonable
conditions, does not exhibit spikes by itself.
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Taylor expansion of
√
nD− 1

2 We next address the expansion of n−1D =
n−1 D(K1n). For this, using Equation (7.3) and the convention for O1n( · ), we
write

n−1D = − 2

n
f ′(τ◦)D

(
PWTWP1n + V AnV

T1n + V A√
nV

T1n + V A1V
T1n

)
+O(n− 3

2 ). (7.4)

We shall importantly use in what follows the fact that P1n = 0 which shall help
discard quite a few terms (and which is the main motivation for centering xi

and wi in the first place).
Let us first provide estimates for the quantities involving A and V that we

shall develop. In particular, with the estimate

V T1n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{
na√
p

}k

a=1{
(μ◦

a)
TWP1n

}k

a=1∑k
a=1(μ

◦
a)

T(WP )a1n

(ψ◦)T1n√
p[(ψ◦)2]T1n√
p(ψ̃◦)T1n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

O(n
1
2 )

0
O(1)
O(1)

O(n
1
2 )

O(1)

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

we deduce

V AnV
T1n = − f(τ◦)

2f ′(τ◦)
n1n = O(n)

V A√
nV

T1n = −n

2

k∑
a=1

ta
ja√
p︸ ︷︷ ︸

O(n
1
2 )

− 1

2
nψ◦︸ ︷︷ ︸

O(n
1
2 )

− 1

2
(1Tnψ

◦)1n︸ ︷︷ ︸
O(1)

V A1V
T1n =

1

p

k∑
a,b=1

(A1,11)abnbja

︸ ︷︷ ︸
O(1)

+
1
√
p

k∑
a=1

nava︸ ︷︷ ︸
O(1)

− n
√
p
ṽ︸ ︷︷ ︸

O(1)

−n
f ′′(τ◦)

4f ′(τ◦)
(ψ◦)2︸ ︷︷ ︸

O(1)

− n
f ′′(τ◦)

2f ′(τ◦)
ψ̃◦

︸ ︷︷ ︸
O(1)

− f ′′(τ◦)

2f ′(τ◦)

k∑
a=1

na√
p
taψ

◦

︸ ︷︷ ︸
O(1)

− f ′′(τ◦)

4f ′(τ◦)
(1Tn(ψ

◦)2)1n︸ ︷︷ ︸
O(1)

+O(n− 1
2 ).

Besides, applying 1Tn to the above estimates gives

1TnV A√
nV

T1n = O(n)

1TnV AT
1V 1n =

1

p

k∑
a,b=1

nanb(A1,11)a,b − n
f ′′(τ◦)

2f ′(τ◦)
1Tn(ψ

◦)2 +O(n
1
2 )
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= −1

p

n∑
a,b=1

nanb

[
f ′′(τ◦)

4f ′(τ◦)

{
(ta + tb)

2
+

2

p2
tr(Ca + Cb)

2

}

+
1

2
‖μ◦

b − μ◦
a‖2

]
+O(n

1
2 ).

Finally, recalling that WWT = 1
p

∑k
a=1 C

1
2
a ZaZ

T
aC

1
2
a , with ‖Ca‖ bounded and

Za standard Gaussian independent across k, we get from [1] that

‖WWT‖ ≤
k∑

a=1

‖C
1
2
a ZaZ

T
aC

1
2
a ‖ = O(1).

Getting back to n−1D, with the above estimates, identifying

D(V AnV
T1n) = − f(τ◦)

2f ′(τ◦)
In

as the leading order term, we have

n−1D = f(τ◦)

[
In − 2f ′(τ◦)

nf(τ◦)
D

(
V A√

nV
T1n + V A1V

T1n
)]

+O(n− 3
2 )

so that, by a further Taylor expansion,

√
nD− 1

2 =
1√
f(τ◦)

[
In +

f ′(τ◦)

f(τ◦)n
D

(
V A√

nV
T1n + V A1V

T1n
)

+
3

2

(
f ′(τ◦)

f(τ◦)n

)2

D2
(
V A√

nV
T1n

)
− f(0)− f(τ◦) + τf ′(τ◦)

2f(τ◦)n
In

]
+O(n− 3

2 ) (7.5)

where D2 stands for the squared diagonal matrix.

Taylor expansion of L With the Taylor expansions of K and D− 1
2 in hand,

we may now obtain the Taylor expansion of their left- and right-products, so
to retrieve that of L. Using the sub-multiplicativity of the operator norm, we
precisely find from (7.3) and (7.5)

√
nD− 1

2K

=
1√
f(τ◦)

[
− 2f ′(τ◦)V AnV

T − 2f ′(τ◦)V A√
nV

T

− 2
f ′(τ◦)2

nf(τ◦)
D(V A√

nV
T1n)V AnV

T − 2f ′(τ◦)V A1V
T

+ (f(0) + f(τ◦) + τ◦f ′(τ◦))In − 2
f ′(τ◦)2

nf(τ◦)
D(V A√

nV
T1n)V A√

nV
T
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− 2f ′(τ◦)2

nf(τ◦)
D(V A1V

T1n)V AnV
T +

f ′(τ◦)

nf(τ◦)
(f(0)− f(τ◦) + τ◦f ′(τ◦))V AnV

T

− 2f ′(τ◦)PWTWP − 3
f ′(τ◦)3

n2f(τ◦)2
D2(V A√

nV
T1n)V AnV

T

]
+O(n− 1

2 ).

With the same strategy, we then have finally

nD− 1
2KD− 1

2

=
1

f(τ◦)

[
− 2f ′(τ◦)V AnV

T − 2f ′(τ◦)V A√
nV

T

− 2f ′(τ◦)2

nf(τ◦)
D(V A√

nV
T1n)V AnV

T − 2f ′(τ◦)2

nf(τ◦)
V AnV

T D(V A√
nV

T1n)

− 2f ′(τ◦)V A1V
T + (f(0)− f(τ◦) + τ◦f ′(τ◦))In

− 2
f ′(τ◦)2

nf(τ◦)
D(V A√

nV
T1n)V A√

nV
T − 2

f ′(τ◦)2

nf(τ◦)
V A√

nV
T D(V A√

nV
T1n)

− 2
f ′(τ◦)2

nf(τ◦)
D(V A1V

T1n)V AnV
T − 2

f ′(τ◦)2

nf(τ◦)
V AnV

T D(V A1V
T1n)

− 3
f ′(τ◦)3

n2f(τ◦)2
D2(V A√

nV
T1n)V AnV

T − 3
f ′(τ◦)3

n2f(τ◦)2
V AnV

T D2(V A√
nV

T1n)

+ 2
f ′(τ◦)

nf(τ◦)
(f(0)− f(τ◦) + τ◦f ′(τ◦))V AnV

T − 2f ′(τ◦)PWTWP

]
+O(n− 1

2 ).

Taylor expansion of L′ At this point, it is worth mentioning that, although
absolutely not fathomable from the expression above, computer simulations sug-
gest that the spectrum of L = nD− 1

2KD− 1
2 is composed of an isolated eigen-

value of magnitude O(n) and importantly of n − 1 eigenvalues of order O(1).
Nonetheless, surprisingly at first, the above approximation of L still contains
terms of order O(

√
n); this is explained by the fact that those terms result from

the Taylor expansion of the leading eigenspace of dimension one. Fortunately,
we precisely know the leading eigenvector of L to be D

1
2 1n, and thus we may

project L orthogonally to it without affecting the eigenvalue-eigenvector pairs,
but for this single isolated eigenvector. This will allow us to retrieve a matrix,
L′, the eigenvalues of which are expected to be all of order O(1).

Let us start by evaluating the vector D
1
2 1n (which is simply the diagonal

matrix D
1
2 turned to a vector). We have

D
1
2 1n =

√
nf(τ◦)

[
1n − f ′(τ◦)

nf(τ◦)

(
V A√

nV
T1n + V A1V

T1n
)

− 1

2

(
f ′(τ◦)

nf(τ◦)

)2

D
(
V A√

nV
T1n

)
V A√

nV
T1n

+
f(0)− f(τ◦) + τ◦f ′(τ◦)

2nf(τ◦)
1n +O(n− 3

2 )

]
.
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Then, applying 1Tn and 1n on each side of D (or alternatively, taking the squared
norm of the above), we get

1TnD1n = n2f(τ)

[
1− 2f ′(τ)

n2f(τ)

(
1TnV A√

nV
T1n + 1TnV A1V

T1n
)

+
f(0)− f(τ) + τf ′(τ)

nf(τ)
+O(n− 3

2 )

]
so that in particular

1

1′nD1n
=

1

n2f(τ)

[
1 +

2f ′(τ)

n2f(τ)

(
1′nV A√

nV
′1n + 1′nV A1V

′1n
)

− f(0)− f(τ) + τf ′(τ)

nf(τ)
+

4f ′(τ)2

n4f(τ)2
(
1′nV A√

nV
′1n

)2 ]
+O(n− 7

2 )

and

n
D

1
2 1n1nD

1
2

1TnD1n

= 1n1
T
n − f ′(τ◦)

nf(τ◦)

(
V A√

nV
T1n1

T
n + 1n1

T
nV A√

nV
T
)

+
2f ′(τ◦)

n2f(τ◦)
1TnV A√

nV
T1n · 1n1Tn

− f ′(τ◦)

nf(τ◦)

(
V A1V

T1n1
T
n + 1n1

T
nV A1V

T
)
+

f ′(τ◦)2

n2f(τ◦)2
V A√

nV
T1n1

T
nV A√

nV
T

− 1

2

f ′(τ◦)2

n2f(τ◦)2
(
D(V A√

nV
T1n)V A√

nV
T1n1

T
n + 1n1

T
nV A√

nV
T D(V A√

nV
T1n)

)
− 2f ′(τ◦)2

n3f(τ◦)2
(
V A√

nV
T1n1

T
n + 1n1

T
nV A√

nV
T
)
1TnV A√

nV
T1n

+ 2
f ′(τ◦)

n2f(τ◦)
(1TnV A1V

T1n)1n1
T
n + 4

f ′(τ◦)2

n4f(τ◦)2
(1TnV A√

nV
T1n)

21n1
T
n +O(n− 1

2 ).

From the above and the previously derived expression of L = nD− 1
2KD− 1

2 ,

we finally retrieve the expression for L′ = nD− 1
2KD− 1

2 − nD
1
2 1n1nD

1
2

1′nD1n
. Before

proceeding to the full calculus, let us focus on the terms of operator norm of
order n and

√
n.

The only term of order n arises from −2f ′(τ)V AnV
′ = f(τ)1n1

′
n, which is

present in both L and nD
1
2 1n1nD

1
2

1′nD1n
and thus vanishes in L′. More interesting are

the terms of order n
1
2 . These sum in L′ as

2f ′(τ◦)

f(τ◦)

[
− V A√

nV
T +

1

n
V A√

nV
T1n1

T
n

+
1

n
1n1

T
nV A√

nV
T − 1

n2
1TnV A√

nV
T1n · 1n1Tn

]
.
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Note here that −2
√
pV A√

nV
T is the sum of the matrix

√
p{(ta+tb)1na1

T
nb
}ka,b=1

with the matrix {ψ◦
i + ψ◦

j }ni,j=1. But, as can be checked by direct computation,
for y ∈ Rn a vector and Y a matrix defined by Y = {yi + yj}ni,j=1, we have

Y − Y
1n1

T
n

n − 1n1
T
n

n Y + 1
n1

T
nY 1n

1n1
T
n

n = 0. Hence, it follows that the terms of
order

√
n in L′ vanish.

We thus obtain a first conclusion, which corroborate the aforementioned sim-
ulations results, about the spectrum of L′ being almost surely of operator norm
O(1). And thus, the spectrum of L is composed of an isolated eigenvalue equal
to n and of n− 1 remaining eigenvalues of order O(1).

Let us now clarify the resulting expression for L′. Although the terms to be
considered are apparently numerous, similar to K, they all contribute to a small
rank matrix but for PWTWP , and thus we shall write

nD− 1
2KD− 1

2 − n
D

1
2 1n1nD

1
2

1TnD1n
= −2

f ′(τ◦)

f(τ◦)

[
PWTWP + UBUT

]
+O(n− 1

2 )

for a small rank perturbation matrix UBUT, B symmetric, with importantly
O(1) operator norm. As such, note already that, since τ◦ = τ + o(1) and ψ◦

i =
ψi+ o(n−1), we may freely replace τ◦ by τ and ψ◦

i by ψi in what follows, to the
expanse of o(1) in operator norm. We shall use this simpler notation from now
on.

With this remark in mind, let us establish minimal descriptions for U and B.
After development of the remaining subparts of L, excluding the term propor-
tional to PWTWP , we obtain

− 2f ′(τ)

f(τ)
V A1V

T + 2
f ′(τ)

nf(τ)

(
V A1V

T1n1
T
n + 1n1

T
nV A1V

T
)

− 2
f ′(τ)

n2f(τ)
1TnV A1V

T1n · 1n1Tn

= −2
f ′(τ)

f(τ)

k∑
a,b=1

jaj
T
b

p

[
[MTM ]ab +

f ′′(τ)

2f ′(τ)
tatb −

f ′′(τ)

f ′(τ)
Tab

]

− 2
f ′(τ)

f(τ)

k∑
a,b=1

(
δab −

na

n

)
va

jTb√
p
− 2

f ′(τ)

f(τ)

k∑
a,b=1

(
δab −

nb

n

)
ja√
p
vTb

+
f ′′(τ)

f(τ)

k∑
a=1

ta
ja√
p
ψT +

f ′′(τ)

f(τ)

k∑
a=1

taψ
jTa√
p
+

f ′′(τ)

f(τ)
ψψT +O(n− 1

2 )

and for the remaining subparts of n
D

1
2 1n1

T
nD

1
2

1TnD1n
,

2f ′(τ)

n2f(τ)2

[
D(V A√

nV
T1n)V A√

nV
T1n1

T
n + 1n1

T
nV A√

nV
T D(V A√

nV
T1n)

− 1

2
V A√

nV
T1n1

T
nV A√

nV
T 1

n

(
V A√

nV
T1n1

T
n + 1n1

T
nV A√

nV
T
)
1TnV A√

nV
T1n
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− 2

n2
(1TnV A√

nV
T1n)

21n1
T
n

− n
(
D(V A√

nV
T1n)V A√

nV
T + V A√

nV
T D(V A√

nV
T1n)

) ]

= −
k∑

a,b=1

5f ′(τ)2

4f(τ)2
Tab

jaj
T
b

p
−

k∑
a=1

5f ′(τ)2

4f(τ)2
ta

(
ja√
p
ψT + ψ

jTa√
p

)
− 5f ′(τ)2

4f(τ)2
ψψT

+O(n− 1
2 ).

Altogether, recalling the notations ca = na

n , c = {ca}ka=1, and c0 = p
n , this is

finally

L′ = −2
f ′(τ)

f(τ)

[
PWTWP + UBUT

]
+

f(0)− f(τ) + τf ′(τ)

f(τ)
In +O(n− 1

2 )

where

U =

[
j1√
p
, . . . ,

jk√
p
, v1, . . . , vk, ψ

]
and

B =

⎡
⎢⎢⎣

B11 Ik − 1kc
T

(
5f ′(τ)
8f(τ) − f ′′(τ)

2f ′(τ)

)
t

Ik − c1Tk 0k×k 0k×1(
5f ′(τ)
8f(τ) − f ′′(τ)

2f ′(τ)

)
tT 01×k

5f ′(τ)
8f(τ) − f ′′(τ)

2f ′(τ)

⎤
⎥⎥⎦

where

B11 =MTM +

(
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

)
ttT − f ′′(τ)

f ′(τ)
T + c0

f(0)− f(τ) + τf ′(τ)

2f ′(τ)
1k1

T
k .

This concludes the proof for the case where f ′(τ◦) is away from zero.

7.2.3. Case f ′(τ◦) → 0

Reproducing similar step as above (without factoring f ′(τ◦) in both An and
A√

n), when f ′(τ◦) → 0, we have the simpler following expression (which hap-
pens to correspond to the f ′(τ) → 0 limit of the previous formula).

L = U0B0U
T
0 +

f(0)− f(τ)

f(τ)
In +O(n− 1

2 )

where

U0 =
[

j1√
p , . . . ,

jk√
p , ψ

]
B0 =

[
B0;11

f ′′(τ)
f(τ) t

f ′′(τ)
f(τ) t

T f ′′(τ)
f(τ)

]

B0;11 =
f ′′(τ)

f(τ)
ttT +

2f ′′(τ)

f(τ)
T − c0

f(0)− f(τ)

f(τ)
1k1

T
k .
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7.3. Proof of Proposition 1

Recall from our previous computations that

D
1
2 1n =

√
nf(τ◦)

[
1n − f ′(τ◦)

nf(τ◦)

(
V A√

nV
T1n + V A1V

T1n
)

− 1

2

(
f ′(τ◦)

nf(τ◦)

)2

D
(
V A√

nV
T1n

)
V A√

nV
T1n

+
f(0)− f(τ◦) + τ◦f ′(τ◦)

2nf(τ◦)
1n +O(n− 3

2 )

]
and that

1√
1TnD1n

=
1

n
√

f(τ◦)

[
1 +

f ′(τ◦)

n2f(τ◦)

(
1TnV A√

nV
T1n + 1TnV A1V

T1n
)

− f(0)− f(τ◦) + τ◦f ′(τ◦)

2nf(τ◦)
+

3

2

f ′(τ◦)2

n4f(τ◦)2
(
1TnV A√

nV
T1n

)2 ]
+O(n− 5

2 ).

Taking the product, we therefore find

√
np

(
D

1
2 1n√

1TnD1n
− 1√

n
1n

)
=

f ′(τ◦)

2f(τ◦)

[
{ta1na}

k
a=1 +

√
pψ

]
+O(n− 1

2 )

where the RHS dominant term is a random vector of independent entries with
mean

f ′(τ◦)

2f(τ◦)
{ta1na}

k
a=1

and covariance matrix(
f ′(τ◦)

2f(τ◦)

)2

D
{
2

p
tr(C2

a)Ina

}k

a=1

+ o(n−1).

Besides, each entry is asymptotically Gaussian (possibly with null variance) by
the central limit theorem under Lindberg’s condition. Here again, since τ◦ =
τ + o(1), the result still holds if we replace τ◦ by τ , and we obtain the sought
for statement of Proposition 1.

As a next step for the understanding of the inner structure of L, we need to
explore the behavior of PWTWP , which is provided by Lemma 1 and further
by Lemma 2, which are proved next.

7.4. Proofs of Lemma 1 and Lemma 2

The derivation of the fundamental equations for z ∈ C
+ in both Lemma 1

and Lemma 2 follows from standard Gaussian calculus, introduced in [26]. In
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the companion paper [3], we provide in full the derivations for the matrix model
WTW . The adaption to PWTWP follows the same lines and is thus not detailed
any further here.

It remains to show the second part of Lemma 1. In [3], it is shown that
the eigenvalues of WTW asymptotically do not escape the support Sp of the
measure P̄p. As PWTWP is merely a rank-two perturbation of WTW , the
spectrum analysis of the former then boils down to a standard (multiplicative)
spiked model analysis, as carried out in e.g., [8]. It is there easily seen that, for
λ at macroscopic distance from Sp, the equation 0 = det(−λIp + PWTWP ) is
equivalent for all large n, almost surely, to 0 = λ 1

n1
T
n(W

TW −λIn)
−11n (see the

proof of Theorem 2 for similar derivations). As the right-hand side expression is
asymptotically equal to λg◦(λ), by the results of [3], the eigenvalues of PWTWP
are therefore for all large n either in a close neighborhood of Sp or close to λ
such that λg◦(λ) = 0. This proves Lemma 1.

7.5. Proof of Theorem 2

Suppose here that f ′(τ) is away from zero. According to Lemma 1, for all p large,
almost surely, there exists no eigenvalue of PWTWP at macroscopic distance
from Sp ∪ Gp. Let z ∈ C be away from Sp ∪ Gp. We wish to solve the equation
in z

0 = det
(
PWTWP + UBUT − zIn

)
which, up to multiplication by −2f ′(τ)

f(τ) and addition of 2f ′(τ)
f(τ) F (τ), provides the

isolated eigenvalues of L̂′. Factoring out PWTWP − zIn (of smallest absolute
eigenvalue away from zero) and using Sylverster’s identity, this is equivalent to
solving for all large n, almost surely

0 = det
(
I2k+1 +BUTQzU

)
(with the notations from Lemma 1). We now need to retrieve a deterministic
equivalent for I2k+1+BUTQzU . We shall proceed by first approximating deter-
ministically every subblock of UTQzU . From Lemma 1, 1

pJ
TQzJ is readily ob-

tained as 1
pJ

TQ̄zJ+o(1), with 1
pJ

TQ̄zJ = Γz− 1
zc0

ccT. As for (μ◦
i )

TWQzW
Tμ◦

j ,

note, with our previous estimators, that this is (μ◦
i )

TWPQzPWTμ◦
j + o(1) (as

1√
n
1TnW

Tμ◦
j = o(1)). Hence, usingWPQzPWT = Q̃zWPWT = Ip+zQ̃z, we get

(μ◦
i )

TWQzW
Tμ◦

j = (μ◦
i )

Tμ◦
j +z(μ◦

i )
TQ̃zμ

◦
j +o(1), which then is easily estimated

from Lemma 1.
The main technical difficulty arises for ψ which depends clearly on W , but

which in fact behaves, as far as our estimators are concerned, as if it were inde-

pendent. From Proposition 1 and Remark 8, denoting D = D(
√

1
p trC

2
a1na)

k
a=1,

ψTQzψ = ϕTDQzDϕ + o(1) for some ϕ having i.i.d. zero mean, 1/p-variance
entries. Although ϕ is not independent of W , we can show that ϕTDQzDϕ =
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ϕTDQ̄zDϕ + o(1), which, by the independence of the entries of ϕ, all of
variance 1/p, leads to ϕTDQzDϕ = 1

p trDQ̄zD + o(1), which is simply∑k
i=1

ci
c0
gi(z)

1
p trC

2
i + o(1). To obtain this fact rigorously, we may, as in the

proof of Lemmas 1 and 2 (see details in [3]), exploit the Gaussian integration-
by-parts and Nash–Poincaré inequality method [26]; precisely, we obtain that
E[ψTQzψ] =

1
p trDQ̄zD + O(p−1) and E[(ψTQzψ − E[ψTQzψ])

m] = O(p−
m
2 ),

from which the result unfolds. The calculus is however painstaking and is not
further detailed.

Finally we show that all (block) cross-terms of UTQzU vanish. To this end,

with W = p−
1
2 [C

1
2
1 Z1, . . . , C

1
2

k Zk], one may use the polar decomposition Za =
Or,aΔaO

T
l,a with Or,a, Δa, Ol,a independent and Ol,a, Or,a Haar-distributed on

the orthogonal group. With this notation, it is easily shown by conditioning
over the Δa and OT

l,a that uTQzW
Tv can be written as the inner product of

a bounded norm deterministic vector and a unitarily invariant random vector,
as long as u, v are independent of Or,a, with ‖u‖ = O(1), ‖v‖ = O(1). This
implies by standard results that uTQzW

Tv = o(1). This readily implies that
1√
pJ

TQzW
TM = o(1). Similarly, with the same extra care as above to account

for the dependence between ψ and W , we get ψTQzW
TM = o(1), as well as

1√
pψ

TQzJ = o(1).

Summarizing, this is

UTQzU =

⎡
⎢⎣Γz − ccT

zc0
0k×k 0k×1

0k×k MTM + zMT ¯̃QzM 0k×1

01×k 01×k

∑k
i=1

ci
c0
gi(z)

1
p trC

2
i

⎤
⎥⎦+ o(1).

(7.6)

Proceeding to the complete calculus of the deterministic approximation for
I2k+1 +BUTQzU , we obtain I2k+1 +BUTQzU = Hz + o(1), where

Hz �

⎡
⎢⎣ H11 MT(Ip + zQ̄z)M (h(τ, z)− 1)t

Γz Ik 0k×1(
5f ′(τ)
8f(τ) − f ′′(τ)

2f ′(τ)

)
tTΓz 01×k h(τ, z)

⎤
⎥⎦ (7.7)

H11 = Ik +

[
MTM +

(
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

)
ttT − f ′′(τ)

f ′(τ)
T

]
Γz − F (τ)1kc

T.

Our objective is now to find the solutions to detHz = 0 to then prove that
the eigenvalues of PWTWP+UBUT are asymptotically those real z’s cancelling
the determinant of Hz.

At this point, two cases must be differentiated, according to whether h(τ, z) →
0 or not. Let us start with the more interesting h(τ, z) away from zero case.
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7.5.1. h(τ, z) away from zero

In this scenario, using the Schur complement formula, with obvious block-wise
notations following the structure of (7.7), we have

detHz = H33 det

(
H11 −

[
H12 H13

] [ Ik 0k×1

01×k H−1
33

] [
H21

H31

])
= H1−k

33 det (H11H33 −H12H21H33 −H13H31) .

The k × k matrix Gz � H11H33 −H12H21H33 −H13H31 is explicitly given by

Gz = h(τ, z)Ik +Dτ,zΓz − h(τ, z)
1

z
F (τ)1kc

T (7.8)

= Gz − h(τ, z)
1

z
F (τ)1kc

T

in the notations of Theorem 2. Note now that Gz has right eigenvector 1k and
left eigenvector cT both associated with the eigenvalue h(τ, z)(1 − z−1F (τ)).
Thus, provided such a z is away from Sp, detHz = 0 when z = F (τ), that

is, when −2f ′(τ)
f(τ) z + 2f ′(τ)

f(τ) F (τ) = 0. Therefore, we recover here precisely the

(possibly isolated) zero eigenvalue of L′ (as we should).
Now, note that, for all z’s distant from F (τ), Gz1k = h(τ, z)(1− z−1F (τ))1k

is away from zero, so that 1k is always a right eigenvector associated with a
non-zero eigenvalue. Similarly, since cTDτ,z = 0, cTGz = h(τ, z)(1−z−1F (τ))cT

and cT is always a left eigenvector with the same eigenvalue. Thus, since all
other left-eigenvectors must be orthogonal to 1k and all other right-eigenvectors
orthogonal to cT, the zero eigenvalues of Gz must be the same as those of
(Ik−1kc

T)Gz which is preciselyGz, except for the eigenvalue having eigenvectors
cT and 1k. But Gz1k = h(τ, z)1k and cTGz = h(τ, z)cT, which is away from
zero. To conclude, the sought-for isolated eigenvalues of L′ (distinct from zero)
correspond to those z’s away from Sp, distant from F (τ) and such that h(τ, z)
is away from zero, which are such that Gz has zero eigenvalues.

7.5.2. h(τ, z) → 0

In this scenario, as H1−k
33 diverges without bound, the study performed in the

previous paragraph will no longer be valid in the final arguments of the proof
(see next paragraph). As such, we are left with studying det(Hz) from (7.7)
directly. Although not easy to fully investigate, a few results already come.
For instance, in the case where t = 0, note that if Hp is not empty and thus
contains at least a ρ+, det(Hρ+) = 0 with multiplicity one unless the same ρ+
coincidentally induces the upper-left 2k × 2k submatrix of Hρ+ to be singular.

7.5.3. Completion of the proof

Using the fact that all our estimators above are analytical functions of z away
from Sp ∪ Gp and are uniform along z belonging to a bounded set away from
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Sp ∪ Gp (taking for instance a union bound on finitely many points of the set
and using the fact that ‖Qz −Qz̃‖ ≤ |z − z̃|(dist(z,Sp ∪ Gp) dist(z̃,Sp ∪ Gp))

−1

to control differences), by the argument principle, we find that, for any contour
γ ⊂ C \ Sp enclosing some eigenvalues of PWTWP + UBUT kept at positive
distance from the boundaries,

1

2πi

∮
γ

∂z det
(
PWTWP + UBUT − zIn

)
det (PWTWP + UBUT − zIn)

− 1

2πi

∮
γ

∂z det (Hz)

det (Hz)
→ 0

almost surely. As both sides are integers and correspond to the number of zeros
of the respective denominators (which have no pole away from Sp ∪Gp), we find
that the multiplicity of an eigenvalue λ of PWTWP + UBUT is the same as
that of its deterministic limit ρ leading to a root of Hz. Such ρ, if satisfying
h(τ, ρ) �→ 0, must then have the same multiplicity as a root of Gρ. If instead
h(τ, ρ) → 0, then the multiplicity of ρ is the multiplicity of zero as an eigenvalue
of Hρ (which in general will be one).

Assuming now f ′(τ) → 0, Theorem 1 gives

L̂′ = U0B0U
T
0

where

U0 =
[

j1√
p · · · jk√

pjk ψ
]

B0 =

[
f ′′(τ)
f(τ) T + 2f ′′(τ)

f(τ) ttT − c0
f(0−f(τ))

f(τ)
f ′′(τ)
f(τ) t

f ′′(τ)
f(τ) t

T f ′′(τ)
f(τ)

]
.

Up to a shift by the constant f(0)−f(τ)
f(τ) , we are then to solve

0 = det

(
L′ − f(0)− f(τ)

f(τ)
In − zIn

)

which, again by Sylverster’s identity, is equivalent to solving, for z away from
zero,

0 = det
(
B0U

T
0 U0 − zIk+1

)
.

If h0(τ, z) is at macroscopic distance from zero, this is asymptotically the same
as finding z for which H0

z has a zero eigenvalue, where

H0
z =

f ′′(τ)

f(τ)h0(τ, z)c0
ttT D(c) +

2f ′′(τ)

f(τ)c0
T D(c)− zIk. (7.9)

7.6. Proof of Theorem 4

Let I ⊂ R be a segment away from Sp ∪ Gp and such that the eigenvalues ρ
and ρ+ identified in Theorem 2 and Remark 4 are uniformly away from the
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boundaries of I (either inside or outside). Let then γI be a positively oriented
contour of C circling around and passing through the boundaries of I. Then,
from the results of Theorems 1 and 2, along with Cauchy’s integration theorem,
letting Π̂I be the projector on the subspace associated with the eigenvalues of

− f(τ)
2f ′(τ)L+F (τ)In in I (this subspace being the same as that of L for the scaled

eigenvalues),

1

p
JTΠ̂IJ = − 1

2πi

∮
γI

1

p
JT

(
PWTWP + UBUT − zIn

)−1
Jdz + o(1).

By Woodbury’s identity, this further reads

1

p
JTΠ̂IJ = − 1

2πi

∮
γI

1

p
JTQzJdz

+
1

2πi

∮
γI

1

p
JTQzU

(
I2k+1 +BUTQzU

)−1
BUTQzJdz + o(1).

(7.10)

As I is away from Sp ∪ Gp, which asymptotically contains all the spectrum of
PWTWP , the left right-hand side term is asymptotically zero, almost surely. We
are then left with studying the rightmost term. This term comprises 1√

pJ
TQzU

which is a submatrix of UTQzU evaluated in (7.6) in the previous section, and
(I2k+1 + BUTQzU)−1B which we know also from the previous section to be
H−1

z B + o(1) (with Hz defined in (7.7)). We shall next evaluate H−1
z B.

As for �[z] > 0 (resp., �[z] < 0), �[ga(z)] > 0 (resp., �[ga(z)] < 0) and that
γI intersects R away from the zeroes of h(τ, z), h(τ, z) is away from zero (for
all large n) on γI . Thus, remembering that H33 = h(τ, z), we can freely use a
block inversion formula for Hz (pivoting around H11) to obtain

H−1
z =

⎡
⎣ H33G

−1
z −H33G

−1
z H12 −G−1

z H13

−H33H21G
−1
z Ik +H33H21G

−1
z H12 H21G

−1
z H13

−H31G
−1
z H31G

−1
z H12 H−1

33 +H−1
33 H31G

−1
z H13

⎤
⎦ .

with Gz defined in (7.8) as Gz = H11H33−H12H21H33−H13H31. Making these
terms explicit and post multiplying by B then gives, in block definition

[H−1
z B]11 = G−1

z Dτ,z

[H−1
z B]12 = h(τ, z)G−1

z

(
Ik − 1kc

T
)

[H−1
z B]13 =

(
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

)
G−1

z t

[H−1
z B]21 = −ΓzG

−1
z Dτ,z + Ik − c1Tk

[H−1
z B]22 = −h(τ, z)ΓzG

−1
z

(
Ik − 1kc

T
)

[H−1
z B]23 = −

(
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

)
ΓzG

−1
z
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[H−1
z B]31 =

(
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

)
(h(τ, z))−1tT

[
Ik − ΓzG

−1
z Dτ,z

]
[H−1

z B]32 = −
(
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

)
tTΓzG

−1
z

(
Ik − 1kc

T
)

[H−1
z B]33 =

(
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

)
(h(τ, z))−1

[
1−

(
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

)
tTΓzG

−1
z t

]
(7.11)

where, for Dτ,z given in the statement of Theorem 4, we defined Dτ,z = Dτ,z +

h(τ, z)c0F (τ)1k1
T
k .

With B (in the statement of Theorem 2), (7.6), and (7.11) at hand (at this
point, since 1

pJ
TQzU vanishes outside the first block, we only need the blocks

11, 12, and 13 of H−1
z B), we then explicitly evaluate 1

pJ
TQzUH−1

z BUTQJ as

1

p
JTQzUH−1

z BUTQzJ =

(
Γz −

1

zc0
ccT

)(
Ik − h(τ, z)G−1

z

)
+ o(1).

As this is the integrand of the term of interest in (7.10), one must evaluate
the associated residue and thus we are interested here in the values of z lying
within γI such that (h(τ, z))−1Gz is singular. Let us first consider those z’s for
which h(τ, z) remains away from zero. As seen in the proof of Theorem 2, the
poles of interest here are either z = F (τ), which is directly associated with the
eigenvalue n of L and thus not of interest here, or the z’s such that Gz has
a zero eigenvalue with left-eigenvector orthogonal to 1k (and right-eigenvector
orthogonal to cT). Such left- and right-eigenvectors associated with the zero
eigenvalues of Gz are also those of Gz associated with the same eigenvalues. We
therefore conclude that

1

p
JTΠ̂IJ = −

∑
ρ∈I

Res

(
h(τ, z)

(
Γz −

1

zc0
ccT

)
G−1

z

)
+ o(1)

= −
∑
ρ∈I

Res
(
h(τ, z)ΓzG

−1
z

)
+ o(1)

almost surely, where in the second equality we used the fact that the residue of
G−1

z must have right-eigenvectors orthogonal to cT, i.e., writing Gz = VrΛV
T
l +

h(τ, z)1kc
T in eigenvalue decomposition, cTVr = 0 and thus, since h(τ, z) is not

close to zero, cTRes(G−1
z ) = 0. Our result is then concluded by noticing that,

for ρ such that Gρ has a zero eigenvalue with multiplicity mρ, and with the
previous notation (recalling also that [Vr 1k] = [Vl c]

−1)

lim
z→ρ

(z − ρ)G−1
z = lim

z→ρ
(z − ρ)VrΛ

−1V T
l

= lim
z→ρ

(z − ρ)Vr,zΛ
−1
0 V T

l,z

= lim
z→ρ

(z − ρ)

mρ∑
i=1

(Vr,z)i(Vl,z)
T
i

(Vl,z)Ti Gz(Vr,z)i
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with Λ0 ∈ C
mρ×mρ the diagonal of mρ eigenvalues of Gz tending to zero as z →

ρ, and Vr,z = [(Vr,z)1, . . . , (Vr,z)mρ ], Vl,z = [(Vl,z)1, . . . , (Vl,z)mρ ] their associated
right- and left- eigenvectors. From L’Hospital’s rule, this further simplifies as

lim
z→ρ

(z − ρ)G−1
z = lim

z→ρ

mρ∑
i=1

(Vr,z)l(Vl,z)
T
i[

∂z(Vl,z)Ti Gz(Vr,z)i
]
z=ρ

.

The derivative in the denominator above is

(∂z(Vl,z)
T
i )Gz(Vr,z)i + (Vl,z)

T
i Gz(∂z(Vr,z)i) + (Vl,z)

T
i )(∂zGz)(Vr,z)i.

But Gρ(Vr,ρ)i = 0 and (Vl,ρ)
T
i Gρ = 0, so that finally

lim
z→ρ

(z − ρ)G−1
z =

mρ∑
i=1

(Vr,ρ)l(Vl,ρ)
T
i

(Vl,ρ)Ti G
′
ρ(Vr,ρ)i

with G′
ρ = [∂zGz]z=ρ. This concludes the proof in the case where no z satisfying

h(τ, z) = 0 is found close to I.
Let us now consider the residue associated to the hypothetical (real) ρ’s for

which h(τ, ρ) = 0. Then, if ‖t‖ is away from zero, as z → ρ, Gz tends to a rank-
one matrix proportional to ttTΓρ. Thus, with the same reasoning as previously,

lim
z→ρ

(z − ρ)h(τ, z)G−1
z = lim

z→ρ

k−1∑
i=1

(h(τ, z) + (z − ρ)h′(τ, z))(Pr,z)i(Pl,z)
T
i

(Pl,z)Ti G
′
z(Pr,z)i

with (Pr,z)i and (Pl,z)i the eigenvectors of Gz associated to its vanishing eigen-
values. In the limit, the denominator is well defined, unless ρ coincides (or gets
asymptotically close) to another of the ρ’s identified in Theorem 2. Discarding
this situation, and realizing that the denominator must tend to zero, we thus
find that the residue associated to ρ is zero. If instead ‖t‖ → 0, h(τ, z)G−1

z is
well defined by extension by continuity in z = ρ, and there is again no residue.

This completes the proof of Theorem 4 since, as ρ in the statement of the
theorem is isolated from the other eigenvalues, one can set I to be a segment
containing solely ρ, all other eigenvalues being kept away.

The proof of Theorem 5 follows straightforwardly from the previous proof
and is thus not commented any further.

7.7. Proof of Theorem 6

The first part of the proof follows the arguments for the proof of Theorem 4.
Precisely, we have here, for I a contour neither enclosing ρ such that h(τ, ρ) = 0
nor enclosing the eigenvalue n of L,

ψTDaΠ̂I
J
√
p
=

1

2πi

∮
γI

ψTDaQzUH−1
z BUTQz

J
√
p
dz + o(1)
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where we only need to evaluate the new term ψTDaQzU since both H−1
z B and

UTQz
J√
p (as a submatrix of UTQzU) are known. For the former, as in previous

derivations, we can show that ψ behaves as if it were independent of W when
it comes to evaluating such bilinear forms. Since ψ has independent zero mean
entries and Daψ is supported on the indices of class Ca and there has i.i.d. entries
of variance 2 trC2

a/p
2, applying Lemma 1 along with a quadratic-form-close-to-

the-trace argument, we obtain

ψTDaQzU =
[
0k×k 0k×k caga(z)

2
p trC

2
a

]
+ o(1).

Together with the previous results on H−1
z B and UTQz

J√
p , this finally gives

ψTDaΠ̂I
J
√
p

= Res

(
−caga(z)

2

p
trC2

a

(
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

)
tTΓzG

−1
z D(τ, z)

(
Γz −

ccT

zc0

))
+ o(1).

Since I does not contain the eigenvalue n of L, we may once more replace G−1
z

by G−1
z and D(τ, z) by D(τ, z), to obtain

ψTDaΠ̂I
J
√
p

= Res

(
−caga(z)

2

p
trC2

a

(
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

)
tTΓzG

−1
z D(τ, z)Γz

)
+ o(1)

which, by the relation G−1
z D(τ, z)Γz = −h(τ, z)G−1

z + Ik (the latter leading to
no residue), gives the result.

The second part of the proof follows similarly but now for two segments I1
and I2 of R \S ′

p (either disjoint or equal depending on whether we consider two
distinct eigenvectors or the same),

1

p
JTΠ̂I1DaΠ̂I2J =

(
1

2πi

)2 ∮
γI1

∮
γI2

1

p
JTQz1DaQz2J + o(1)

where Qz =
(
PWTWP + UBUT − zIn

)−1
. This is further written as

1

p
JTΠ̂I1DaΠ̂I2J

=

(
1

2πi

)2 ∮
γI1

∮
γI2

1

p
JTQz1UH−1

z1 BUTQz1DaQz2UH−1
z2 BUTQz2Jdz1dz2

+ o(1).

The integrand is essentially composed of the term UTQz1DaQz2U which is ob-
tained from Lemma 2 as

UTQz1DaQz2U =

⎡
⎣EJ

a;z1z2 0k×k 0k×1

0k×k EM
a;z1z2 0k×1

01×k 01×k Eψ
a;z1z2

⎤
⎦+ o(1) (7.12)
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(where EJ
a;z1z2 , E

M
a;z1z2 , and Eψ

a;z1z2 are defined in (4.4)), and of the terms H−1
z1 B

and H−1
z2 B, obtained from (7.11). After a straightforward calculus and addition-

ally using the fact that ΓzG
−1
z = (G−1

z )TΓz or G−1
z Dτ,z = Dτ,z(G

−1
z )T, as well

as G−1
z D(τ, z)Γz + h(τ, z)G−1

z = Ik, we find

Res

(
1

p
JTQz1UH−1

z1 BUTQz1DaQz2UH−1
z2 BUTQz2J

)
= Res

(
h(τ, z1)h(τ, z2)(G

−1
z )TEJ

a;z1z2G
−1
z2

+ h(τ, z1)h(τ, z2)Γz1G
−1
z1 EM

a;z1z2(G
−1
z2 )T

)
+Res

((
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

)2

Eψ
a;z1z2Γz1G

−1
z1 ttT(G−1

z2 )TΓz2

)
+ o(1).

Taking the residues Res
(
G−1

z1

)
and Res

(
G−1

z2

)
over γI1 and γI2 successively, we

retrieve the sought-for result. The same derivations can be performed for the
case where f ′(τ) → 0.

Appendix: Concentration lemmas

The following lemma is extracted from [18, Lemma 2.12].

Lemma 3. Let us fix α,C > 0 and consider y1, . . . , yp some independent com-
plex centered random variables with variance 1 such that for each i, for all x ≥ 0,

P(|yi| ≥ xα) ≤ Ce−x.

Then for any deterministic a1, . . . , ap ∈ C, we have

P

(
|a1y1 + · · ·+ apyp| ≥ (log p)α+

3
2

√
|a1|2 + · · ·+ |ap|2

)
≤ C ′p− log log p

where C ′ is a constant depending only on α and C.

The following lemma can be found in [28] (see also [20]). It states roughly

that XTAX − trA has order at most max{
√
trAAT, ‖A‖} =

√
trAAT.

Lemma 4 (Hanson-Wright inequality). Let X be a standard Gaussian vector
in R

d and let A be an n×n real matrix. Then E[XTAX] = trA, Var(XTAX) =
2 trAAT, and there is a constant c independent of d and of A such that for any
t > 0,

P(|XTAX − trA| > t) ≤ 2 exp

(
−cmin

{
t2

trAAT
,

t

‖A‖

})
.
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