
HAL Id: hal-01215311
https://hal.science/hal-01215311

Submitted on 13 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High resolution thermal and multispectral UAV imagery
for precision assessment of apple tree response to water

stress
David Gomez-Candon, Sylvain Labbé, Nicolas Virlet, Audrey Jolivot,

Jean-Luc Regnard

To cite this version:
David Gomez-Candon, Sylvain Labbé, Nicolas Virlet, Audrey Jolivot, Jean-Luc Regnard. High reso-
lution thermal and multispectral UAV imagery for precision assessment of apple tree response to water
stress. 2. International Conference on Robotics and associated High-technologies and Equipment for
Agriculture and Forestry RHEA, May 2014, Madrid, Spain. �hal-01215311�

https://hal.science/hal-01215311
https://hal.archives-ouvertes.fr


HIGH RESOLUTION THERMAL AND 
MULTISPECTRAL UAV IMAGERY FOR PRECISION 

ASSESSMENT OF APPLE TREE RESPONSE TO 
WATER STRESS 

David Gómez-Candón1, Sylvain Labbé2, Nicolas Virlet1, Audrey Jolivot3, Jean-Luc 
Regnard1 

 
1Montpellier SupAgro UMR AGAP 1334, CIRAD, TA-A -108/03, Avenue Agropolis, 

Montpellier Cedex 5, F-34398 France 
2IRSTEA UMR TETIS, Maison de la Télédétection, 500 rue Jean-François Breton, 34093 

Montpellier, France 
3CIRAD UMR TETIS, Maison de la Télédétection, 500 rue Jean-François Breton, 34093 

Montpellier, France 

Abstract. This manuscript presents a comprehensive methodology to obtain Thermal, 
Visible and Near Infrared ortho-mosaics, as a previous step for the further image-based 
assessment of response to water stress of an experimental apple tree orchard. Using this 
methodology, multi-temporal ortho-mosaics of the field plot were created and accuracy 
of ortho-rectification and geo-location computed. Unmanned aerial vehicle (UAV) 
flights were performed on an irrigated apple tree orchard located in Southern France. 
The 6400 m² plot was composed of 520 apple trees which were disposed in 10 rows. In 
this field set-up, five well irrigated rows alternated with five rows submitted to 
progressive summer water constraints. For remote image acquisition, on 4th July, 19th 
July, 1st August and 6th September UAV flights with three cameras onboard (thermal, 
visible and near infrared) were performed at solar noon. On 1st August, five successive 
UAV flights were carried out at 8, 10, 12, 14 and 16 h (solar time). By using self-
developed software, frames were automatically extracted from the recorded thermal 
video and turned in the right image format. The temperature of four different targets 
(hot, cold, wet and dry bare soil) was continuously measured by the IR120 thermo-
radiometers during each flight, for radiometric calibration purpose. Based each on thirty 
images, all ortho-mosaics were successfully obtained. As high spatial resolution imagery 
requires high precision geo-location, and the root mean squared error (RMSE) of each 
ortho-mosaic positioning was calculated in order to assess its spatial accuracy. RMSE 
values were less than twice the pixel size in every case, which allowed a precise 
overlapping of the mosaics created. Canopy temperature data extracted from thermal 
images for showed significantly higher temperatures in water stressed trees compared to 
well irrigated, difference being related to severity of water stress. Thanks to the ultra-
high resolution of remote images obtained (<0.1m spatial resolution for thermal infrared 
images), and beyond its capacity to delineate efficiently each individual tree, the 
methodology presented here will also make it possible the analysis of intra-canopy 
variations and the accurate calculation of vegetation and water stress indices. 
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1 Introduction  

In the context of climate change, statistical trend toward a general temperature 
increase, and more frequent and intense extreme weather events are expected (IPCC, 
2007). Longer periods of drought are susceptible to occur in the future during spring 
and summer periods, notably in the Mediterranean region (Giorgi and Lionello, 2008), 
and this will likely threaten the temperate fruit production, in particular where 
irrigation is limited by water resources. Adapting fruit trees to abiotic stresses such as 
water stress is thus a new challenging issue for fruit crops, whose water use needs to 
be deeply re-considered. 
Precision agriculture methods can contribute to drought assessment and irrigation 
scheduling. For the estimation of crop water status at tree scale, Unmanned Aerial 
Vehicle (UAV) imagery offers both global vision of the whole crop and the needed 
high spatial resolution. Furthermore, the UAV potential for assessing drought stress or 
estimating the latent heat flux (evapotranspiration flux density) of agricultural fields 
has already been shown in numerous studies (e.g. Sullivan et al., 2007; Berni et al., 
2009a,b; González-Dugo et al., 2012; Zarco-Tejada et al., 2012). Technical progress 
in thermal imagery made it possible to widen its possibilities of application in plant 
sciences, with affordable devices that are suitable for airborne high resolution image 
acquisition. Monitoring stomatal conductance on the base of thermal imagery can be a 
better indicator of plant response to drying soil than monitoring the leaf water 
potential, because stomatal closure can occur even before any change in plant water 
status (Jones 2004). Stoll and Jones (2007) explored the possibility of using thermal 
imaging as a tool for monitoring plant stress, showing that the canopy temperature 
difference between plants submitted to different water regimes can be very helpful to 
detect water stress. Sela et al. (2007) combined thermal and visible images to estimate 
leaf water potential status of cotton crops. Galleguillos et al. (2011) compared various 
temperature differencing methods to estimate daily grapevine evapotranspiration by 
using ASTER satellite data. More recently, Cohen et al. (2012) developed a 
methodology based on aerial thermal imagery and watershed image segmentation 
analysis, to estimate water status of palm trees from aerial thermal images. 
Thermal imagery is particularly suitable for monitoring areas of small to medium size 
(up to some hundreds of hectares). In this context, using UAVs provides the 
possibility of frequent flights, allowing water stress assessment and irrigation 
scheduling among other applications. This kind of imagery has been successfully 
employed in multi-temporal studies over fruit tree orchards (González-Dugo et al., 
2013). In low-altitude remote sensing, a large number of images, taken within a short 
time span, must be mosaicked. Software is available that creates a mosaicked and geo-
referenced image relatively automatically, often using the GPS location of the UAV or 
airplane (e.g. Berni et al., 2009b). Some studies have been focused on the 
georeferencing improvement of mosaics from UAV-sensed images by determining the 
optimum number of Ground Control Points (GCPs) and the flying altitude (Gómez-
Candón et al., 2011; Gómez-Candón et al., 2014). Wang et al. (2008) developed a 
practical method for mosaicking video frames from thermal infrared cameras based on 
Scale Invariant Feature Transform algorithm. In spite of this, thermal image 
processing still remains a time-consuming step that requires expert knowledge in both 
software and thermography. This must be largely automated before infrared 



thermography can be applied as a common tool in agricultural practice (Maes & 
Steppe, 2012). 
Stress indices are a powerful tool for assessing the effects of drought on crop plants. 
One of the most commonly used is the Crop Water Stress Index (CWSI) developed by 
Idso et al. (1981). One extension of the CWSI is the Water Deficit Index (WDI), 
which has been proposed by Moran et al. (1994) for non-fully covering crops. This 
index, based on a combination of thermal imagery with other vegetation indices, 
enables the interpretation of canopy surface temperature. It beforehand determines, by 
inverting surface energy balance, the evaporative extremes that are used for the 
temperature differencing, which involves ancillary information about aerodynamic 
and micrometeorological conditions. Virlet et al. (2014) computed WDI through 
plotting the vegetation index value (using Normalized Difference Vegetation Index, 
NDVI) versus the difference between vegetation surface (Ts) and air (Ta) 
temperatures and demonstrated relevancy of WDI for assessing the variability of tree 
evapotranspiration in response to soil drought in a field phenotyping trial. 
As part of a long term research to investigate the possibilities and limitations of UAV 
imagery in accurately mapping water stress in field crops, it is crucial to explore the 
potential of generating accurate ortho-mosaicked imagery from multiple overlapped 
frames for proper discrimination of illuminated leaves from shaded leaves and soil. 
This is particularly important when heterogeneous plant cover, like orchards or 
vineyards are considered. Such an approach should demonstrate the accuracy of the 
ortho-images obtained and the further possibility of generating accurate water stress 
indices. This can be helpful to assess the variability of raw temperatures and stress 
indices within individual tree canopies, as shown by González-Dugo et al. (2012). 
In this paper we report a study of the geometric accuracy of the ortho-imagery 
obtained from multiple overlapped images taken in apple tree orchards using UAV-
sensed imagery. The aim of this research is to present a comprehensive methodology 
to obtain thermal and multispectral ortho-mosaics over an apple tree field experiment. 
As the assessment of crop water status and its temporal development is focused, multi-
temporal ortho-mosaics were created and their ortho-rectification accuracy compared. 
Furthermore, canopy temperature data were retrieved for well irrigated and water 
stressed trees in order to assess thermal difference between both treatments. 

2 Material and methods 

The proposed method is applicable for computation of water stress indices. It 
comprises the following main steps (Figure 1): image acquisition; image calibration; 
ortho-rectification and georeferencing; mosaicking; and image band combination to 
compute the final values of the stress index. UAV remotely-sensed thermal video files 
have to be pre-processed as following: first, image extraction from thermal video files; 
second, correction in geometry and radiometry; and third, ortho-mosaicking. This 
process requires the use of specific software and a system for concomitant ground 
temperature acquisition. UAV imagery and measurements in planta have been both 
developed during this research. 
 
 



 
Fig. 1. Flowchart for Water Deficit Index (WDI) calculation. 

2.1 Locations and data acquisition 

Studies were conducted in an apple tree orchard located at INRA Melgueil station 
(Diaphen experimental platform), near Montpellier, France (N43º36, E03º58, Figure 
2). 520 adult apple trees, planted at 5m * 2m distance, were disposed into ten rows. 
In one row out of two, irrigation was restricted two weeks before the first flight, in 
order to induce progressive water deficit. Combination of a large genetic panel and 
contrasting water regimes was settled for spatial and temporal comparison purposes. 
Ortho-images were taken during summer 2013 by using a MikroKopter UAV (Figure 
3a) equipped with a low weight Thermoteknix Miricle 307K thermal camera 
(640x480 detector resolution) and two Sigma DP1x digital cameras (2640 x 1760 
pixels; Figure 3b), one of them being modified according to Lebourgeois et al. (2008) 
to acquire near infrared images. UAV flights and image acquisition were carried out 
under fully sun conditions, on 4th July, 19th July, 1st August and 6th September, and 
performed at solar noon. On 1st August, five UAV flights also took place at 8, 10, 12, 
14 and 16 h (solar time) in order to yield intra-day dynamics of plant temperature. 
UAV images were acquired at 40m altitude and flight length was 4-6 minutes 
approximately, depending on wind conditions. The image along-track overlap was 
80% and cross-track overlap was 60%. A series of 30 UAV navigation waypoints 
were fixed within each flight, to ensure stable conditions each 9 meters and prevent 
blurred RGB and NIR images. A total of 30 images per flight were needed to cover 
the whole field (one image each 8 seconds approximately). Over the plot, a total of 
15 GCPs were placed and geo-referenced using a Leica RTK GPS (Leica 
Geosystems®) with an accuracy of 1cm. For radiometric correction purposes, IR120 
thermo-radiometers (Campbell® Scientific Inc.) were installed to continuously 
measure the brightness temperature of four contrasted targets: cold (white 
polystyrene), hot (black-painted), and also dry and wet bare soil. 



 
Fig. 2. Thermal ortho-mosaic of the study plot (August, 8th). (a) Apple tree orchard. (b) Hot 
and cold ground targets. (c) Georeferencing ground control points. 

2.2 Thermal imagery pre-processing 

Data were pre-processed in two main steps: image extraction from video files and 
geometric and radiometric calibration. Self-developed specific software was 
developed for automatically performing the process. The software is based on Python 
programming language (Python Software Foundation, 9450 SW Gemini Dr., ECM# 
90772, Beaverton, OR 97008, USA) and the avconv command line program for 
transcoding multimedia files (Libav Open source audio and video processing tools, 
www.libav.org). 
 
 
 
 
 
 
 
 
 

  
Fig. 3. a. Mikrokopter UAV. b. Detail of the camera mount with the thermal and the DP1 
camera installed. The pico-computer controlling the thermal camera is also shown. 

Video frames extraction and image format transformation 
To avoid data errors due to overheating, the uncooled thermal camera itself had a 
system for continuous self-calibration, which was set to occur every 4 seconds. To 

a b 



minimize acquisition errors, only the first frame after every self-calibration was 
extracted. After extraction, each raw frame was automatically transformed into the 
desired image format. 
Geometric correction and ground data-based radiometric calibration 
Resulting thermal images had some errors due to some lens distortion effects. 
Geometric correction was based on lens geometric coefficients, which were provided 
by camera manufacturer. 
Each flight was divided into two tracks, flying over the ground targets at the 
beginning and the end of each track. Radiometric calibration coefficients were 
calculated by linear interpolation, using the ground temperature data (from hot, cold, 
and soil targets). Afterwards, coefficients were applied to TIR images for radiometric 
calibration. 

2.3 Ortho-mosaicking process 

The exterior position and orientation parameters of the UAV were provided by the 
UAV inertial system. These parameters and GCPs coordinates were used as input data 
for the Leica Photogrammetric Suite 2010 (LPS, Leica Geosystems®, 2006) software, 
for ortho-rectification by aero-triangulation and mosaicking. For the near infrared and 
visible images (NIR and RGB), calibration parameters were calculated by comparing 
overlapping zones of consecutive images during the aero-triangulation process. 
Radiometric correction for RGB and NIR images was based on invariant field targets 
in each spectral band, with Date 1 as a reference, so that the acquisitions would be 
comparable from one date to the others. For the thermal images, calibration was 
performed as explained in the previous section. Afterwards, the images were 
combined into a seamless ortho-mosaicked image of the entire field. 

2.4 Accuracy assessment 

Accuracy assessment consisted of estimating the error associated with ortho-
rectification of the UAV imagery. This error is commonly expressed by the root mean 
squared error (RMSE) of the ortho-mosaicked image. The RMSE is a global indicator 
of the quality of the mosaic, and is based on the residuals of the image co-ordinates 
and the ground co-ordinates. The geometric accuracy of the ortho-rectified mosaic 
was assessed using the co-ordinates of seven out of 15 GCPs collected at ground level 
using the differential GPS. Then, the RMSEs were calculated as follows: once the 
mosaic was generated, co-ordinates of the seven GCPs measured in the field were 
compared to the co-ordinates of these seven GCPs in the mosaicked image using 
ENVI software (Research System Inc., Boulder, CO, USA). Finally, the differences 
between DGPS co-ordinates and co-ordinates from the mosaicked image were used 
for calculating the RMSE. The RMSE for an image with n validation points is 
assessed as follows (ERDAS, 1999): 
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where Xs and Ys are the geospatial co-ordinates of the point of the source image, and 
Xr and Yr are the co-ordinates of the same point DGPS measured at field level. 



Table 1. Overall georeferencing errors at INRA Melgueil plot. UAV images were taken at 4 
different dates. Images from three different cameras: Visible RGB (Red, Green, Blue), Near 
Infrared (NIR) and Thermal Infrared (TIR). 

  Kind of image (spatial resolution) 
 

    

Date  RGB (0.02m) NIR (0.02m) TIR (0.10m) 
 
4th July 2013 RMSE ±s.d. 0.028±0.023 0.025±0.018 0.182±0.095 
19th July 2013 RMSE ±s.d. 0.024±0.015 0.026±0.016 0.194±0.100 
1st August 2013 RMSE ±s.d. 0.027±0.010 0.025±0.009 0.150±0.070 

6th Sept.2013 RMSE ±s.d. 0.026±0.009 0.025±0.007 0.153±0.090 
     

Mean RMSE±s.d. 0.026±0.002 0.026±0.001 0.170±0.021 

RMSE (root mean squared error) ± standard deviation of validation points of each image (in 
meters). 

2.5 Measurement of temperature difference 

To assess performance of ortho-mosaics obtained, three dates were selected according 
to the increasing severity of water stress, 4th July (no stress), 1st August (medium 
stress) and 6th September (high stress). For each date, differences between apple tree 
canopy temperature (Tc) and air temperature (Ta) were calculated for the well watered 
(WW) and the water stressed (WS) trees separately. Finally analysis of variance was 
performed. 

3 Results and discussion. 

Table 2. Overall georeferencing errors at Melgueil plot. UAV images were taken on 1st August 
2013 at 5 different moments of the day. Images from three different cameras: Visible RGB 
(Red, Green, Blue), Near Infrared (NIR) and Thermal Infrared (TIR). 

  Kind of image (spatial resolution) 
 

    

Solar time  RGB (0.02m) NIR (0.02m) TIR (0.10m) 
 

8:00 RMSE ±s.d. 0.027±0.011 0.026±0.012 0.196±0.094 
10:00 RMSE ±s.d. 0.027±0.010 0.025±0.009 0.150±0.070 
12:00 RMSE ±s.d. 0.029±0.015 0.027±0.006 0.191±0.086 

14:00 RMSE ±s.d. 0.027±0.011 0.029±0.013 0.194±0.105 

16:00 RMSE ±s.d. 0.028±0.009 0.026±0.011 0.192±0.060 
     

Mean RMSE±s.d. 0.028±0.001 0.026±0.001 0.185±0.019 

RMSE (root mean squared error)±standard deviation of validation points of each image (m). 

For both situations, inter-day and intra-day flights, the UAV image series were 
successfully taken and ortho-rectified. Besides, as a result of the development of 
specific software, the image extraction and calibration was more automatic and faster 
than using the conventional methods. 
Tables 1 and 2 show the measured RMSE of the ortho-mosaics taken at 4 different 
summer dates, along with the drought progression in field trial, and on 1st August for 



five different moments of the day. The ortho-mosaics generated had a spatial 
resolution of 0.02m for near infrared (NIR) and visible (RGB) bands and 0.10m in 
thermal infrared (TIR). Those spatial resolutions are appropriate for the water stress 
assessment at individual tree level, since canopies diameter were 1 to 3m. 
The overall RMSEs were very similar between ortho-mosaics regardless of the 
moment of the flight or the kind of image acquired (TIR, NIR or RGB). Thus, the 
results did not show large differences in accuracy between ortho-mosaics which were 
similar whatever the date. One of the relevant results of the study is that the moment 
of acquisition did not affect the georeferencing accuracy of the mosaicked image. 
Furthermore, the final RMSE value was less than twice the image pixel size, which is 
accurate enough according to Laliberte et al (2010). Furthermore, ortho-mosaics were 
accurate enough to be applied on multi-temporal studies, according to the 
methodology proposed by Virlet et al. (2014), since they were radiometrically 
corrected too. The low RMSEs for RGB and NIR (about 1 pixel) permit the precise 
computation of vegetation indices. The fairly low RMSE for TIR image 
georeferencing (lower than 0.20m) will allow a satisfactory extraction of thermal data 
within the tree canopies, upon consideration of a representative central zone. On the 
basis of the image series obtained, analysis of intra-crown variations will also be 
possible. However, other factors must be taken into account while acquiring this kind 
of high resolution imagery at low flying height, like directional effects (Hakala et al., 
2013). 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Distribution of differences between canopy temperature and air temperature (Tc-Ta) for 

the well watered (WW) and the water stressed (WS) trees (122 genotypes). Three dates: 4th 
July (no stress), 1st August (medium stress) and 6th September (high stress). Each box plot 
shows the median value, the 1st and 3rd quartiles, and the 1st and 9th deciles. Significant p-
values are represented as follows: *** for p≤ 0.001; NS: not significant. 

Comparison between canopy temperature in WW and WS trees (all genotypes 
confounded) is represented in figure 4, while the environmental data during image 
acquisition are shown in table 3. There was no statistical difference in Tc-Ta before 
water stress establishment (July 4th). In contrast, highly significant differences were 
found on the second and third dates. This result was consistent with the stem water 
potential data acquired (table 3). Nevertheless, thermal data yielded in WW and WS 
trees at 3rd date showed lower Tc-Ta differences, due to lower irradiance conditions 
compared to 2nd date. 



4 Conclusions 

The proposed methodology is suitable for obtaining thermal and multispectral ortho-
mosaics, reducing the pre-processing time needed for image extraction and 
calibration. Due to the automation of the process, its cost efficiency is increased. This 
kind of remotely-sensed imagery is presently contributing to a tree phenotyping 
program at field, whose aim is to analyze the genotypic variability of apple tree 
response to increasing water constraints. The spatial resolution obtained allows 
carrying out the water stress assessment at individual tree level. As UAV-borne image 
series can be acquired with short revisit time, temporal series can be developed at 
seasonal and daily scales. The accuracy obtained is enough to perform comparisons in 
these temporal series. 
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