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Abstract:
In large-scale Fluids Dynamics systems, the velocity lives in a broad range

of scales. To be able to simulate its large-scale component, the flow can be de-
composed into a finite variation process, which represents a smooth large-scale
velocity component, and a martingale part, associated to the highly oscillating
small-scale velocities. Within this general framework, a stochastic representation
of the Navier-Stokes equations can be derived, based on physical conservation
laws. In this equation, a diffusive sub-grid tensor appears naturally and gener-
alizes classical sub-grid tensors.
Here, a dimensionally reduced large-scale simulation is performed. A Galerkin
projection of our Navier-Stokes equation is done on a Proper Orthogonal De-
composition basis. In our approach of the POD, the resolved temporal modes
are differentiable with respect to time, whereas the unresolved temporal modes
are assumed to be decorrelated in time. The corresponding reduced stochastic
model enables to simulate, at low computational cost, the resolved temporal
modes. It allows taking into account the possibly time-dependent, inhomoge-
neous and anisotropic covariance of the small scale velocity. We proposed two
ways of estimating such contributions in the context of POD-Galerkin.
This method has proved successful to reconstruct energetic Chronos for a wake
flow at Reynolds 3900, even with a large time step, whereas standard POD-
Galerkin diverged systematically. This paper describes the principles of our
stochastic Navier-Stokes equation, together with the estimation approaches,
elaborated for the model reduction strategy.

1. Introduction

Modeling accurately and understanding geophysical fluid dynamics is a main issue
in current researches. Indeed, beyond economic applications linked to weather fore-
casting, the need for accurate climate projections is becoming more and more impor-
tant. Studying such systems using physics is challenging, especially in regard to the
non-linearity of the Navier-Stokes equations. Since these equations make large-scale
velocities interact with small-scale velocity fluctuations, the main velocity tendency
cannot be simulated alone ([1] and [2]). The effects of the unresolved small-scale,
so-called turbulent, fluctuations have to be taken into account.
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A first way of modeling 3D turbulence is to only consider the direct energy cascade,
which means that energy goes from the large scales to smaller scales, until it is
dissipated by molecular viscosity ([3]). This can be done by assuming that the large-
scale velocity follows the Navier-Stokes equation with an additive diffusive term,
parametrized by a so-called eddy viscosity ([4]). Such types of additive terms are
called sub-grid tensors, since they represent the effect of velocity living at smaller
scale than the simulation grid. However, the diffusion matrix or diffusion coefficient
and its temporal and spatial dependence have to be determined. In many cases,
it is done empirically and/or using scaling assumptions. This is the case for LES
(Large Eddies Simulation) where the large-scale flow is defined by a spatially low-
pass-filtered velocity ([5],[6]) and RANS (Reynolds Average Numerical Simulation)
where the large-scale component is defined by a statistical average of the velocity.
The same type of models are used for large-scale modeling of tracers evolution, using
eddy diffusivity instead of eddy viscosity.
Another drawback of this approach is the assumption of a permanent direct en-
ergy cascade. In real systems, there are intermittent back-scattering of energy from
smaller scales toward the larger one. Therefore, some authors proposed to include
terms that artificially bring energy to the system. Sometimes, it is done by a lo-
cally negative eddy viscosity ([7]). Another solution consists in setting up a system
forced by a Gaussian process decorrelated in time ([8]). The spatial covariance of this
forcing is a parameter that has to be determined. A stationary assumption greatly
simplifies the problem and the associated model.
Considering a random velocity is now widely used ([1], [2] and [9]). In addition to
theoretical physics constraints, it enables uncertainty quantification, and the use of
ensemble based methods such as filtering ([10], [11] and [12]). The stochastic model,
described in the previous paragraph, adds a random force to the equation without
deep theoretical justification. This additive noise can be interpreted as an explicit
error of the model. However, within this prospect, why would an additive noise be
more adequate than a multiplicative noise or any other model of noise? According
to [13], in reduced models for geophysical fluid dynamics applications, the coupling
of an additive and a multiplicative noise is a good choice, leading naturally to heavy
tails processes. But as far as we know, no theoretical justifications of this choice
have been provided.
The study [14] and this paper follow another approach, introduced by [15] and [16].
The aim is to bring up naturally a physically based uncertainty quantification and
a sub-grid-tensor model without strong assumptions. The velocity is assumed to be
random and partially decorrelated in time. From the Lagrangian point of view, it de-
fines a general semimartingale flow. Using stochastic calculus and classical fluid dy-
namics principles, one can prove a stochastic representation of the so-called Reynolds
transport theorem. It describes the time-space evolution of a scalar transported by
this semimartingale flow. Using energy and mass conservation, it leads to time-space
evolution of respectively the temperature and the density. Then, the transport theo-
rem applied to momentum and the second Newton Law lead to a stochastic version
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of the Navier-Stokes equations. The corresponding scalar and velocity evolution laws
involve an inhomogeneous time-dependent anisotropic diffusive sub-grid-tensor and
additive and multiplicative noise.
For some industrial applications, the resolution of a system of partial differential
equations may be too time consuming. A solution consists in deriving a model of
reduced dimension, like in the case of the Proper Orthogonal Decomposition (POD)
[17]. Within this model, the velocity at a fixed time, t, is assumed to live in a small
dimensional subspace of functions of space. The basis of this subspace, so-called spa-
tial modes, is determined by a Principal Component Analysis (PCA) on a sequence
of velocity snapshots. The coefficient of the velocity in the reduced basis are called
temporal modes. Then, the partial differential equation of interest is projected on
the function of this basis. It leads to a finite set of coupled ordinary differential
equations which describe the time evolution of the temporal modes. One problem
for non-linear models such as Navier-Stokes equations is that keeping only a small
number of modes destabilizes the system. In order to overcome this, some authors
empirically add a diffusive term, parametrized by an eddy viscosity model to the
reduced model. Several modeling of this eddy viscosity have been proposed. For
instance, [18] proposed a constant coefficient, whereas [19] introduced the modal
model with one eddy viscosity per mode. Recently, [20] and [7] proposed an eddy
viscosity model that depends on the instantaneous energy of the temporal modes.
Other authors ([21]) perform non-linear Galerkin methods, with the same spatial
modes. It leads to another form of the reduced model, that will not be investigated
in this paper.
In our approach, the unresolved temporal modes are assumed to be random and
decorrelated in time whereas the resolved ones are deterministic. Thus, according to
our stochastic Navier-Stokes model, an explicit sub-grid tensor appears both in the
PDE and in the associate reduced model. The parameters of this sub-grid tensor
can then be easily estimated on the residual velocity, through a statistical estimator.
By residual velocity, we mean the part of the velocity snapshots which is not repre-
sented by the PCA. As will be demonstrated here, this sub-grid tensor successfully
stabilizes the reduced system.
The paper is organized as follow. The first section presents the stochastic fluid dy-
namics model, on which we rely. The second section is a reminder of the classical
POD approach. The third one presents our POD based reduced model under uncer-
tainty. The fourth section presents some numerical results and comparisons. Finally,
the last section concludes and provides perspectives.

2. The proposed stochastic model

In this work, an Eulerian stochastic description of the velocity and tracer evolution
is used, as proposed in [14]. Unlike classical stochastic methods, a random part, en-
coding an uncertainty on the velocity expression, is added to the Lagrangian velocity
before any model derivation. Thanks to this decomposition, a stochastic represen-



4

tation of the so-called Reynolds transport theorem, cornerstone of the deterministic
fluid dynamic theory, can be derived. Thus, assuming a dynamical balance similarly
to the second Newton law, a stochastic Navier-Stokes expression can be derived. It
should be noticed that the equations, described below, are derived from fundamental
physical laws only.
The time differentiation of a trajectory Xt of a particle is noted:

dXt = w(Xt, t)dt+ σ(Xt, t)dBt,(2.1)

where σ(., t) is an Hilbert-Schmidt operator on (L2(Rd))d defined by its kernel

σ̆(., ., t): ∀f ∈ (L2(Rd))d, σ(., t)f
4
=
∫

Ω σ̆(., y, t)f(y)dy and t 7→ B(t) is a cylindrical
Id-Wiener process (see [22] and [23] for more information on infinite dimensional
Wiener process and cylindrical Id-Wiener process). Then, (x, t) 7→ σ(x, t)dBt is a
centered Gaussian process with the following covariance:

∀x, y ∈ Rd,E
(

(σ(x, t)dBt)
(
σ(y, t′)dBt′

)T) 4
= a(x, y)δ(t− t′)dt,

where:

a(x, y)dt =

∫
Ω
σ̆(x, z)σ̆T (y, z)dzdt

4
= σ(x)σ(y)Tdt

= d

〈∫ t

0
σ(x, t′)dBt′ ,

(∫ t

0
σ(y, t′′)dBt′′

)T〉
.

The notation < f, g > is the quadratic cross-variation of f and g, used in stochastic
calculus, and its expression is recall in Appendix A. The term

∫ t
0 wdt

′ represents the

large-scale part of the flow whereas
∫ t

0 σdBt′ represents the small-scale part. The
real physical small-scale flows are differentiable w.r.t. (with respect to) time. But,
the time sampling used for large-scale modeling or observation is often larger than
the smaller physical time scale of the real velocity. Thus, at this large scale time
sampling, the smallest scales of the flow are non differentiable almost everywhere
w.r.t. time.
The semimartingale Lagrangian formulation (2.1) together with stochastic calculus
theory allows us differentiating and integrating random physical quantities. Some
basic notions of stochastic calculus, concerning finite variation processes, martingales
and semimartingales, are provided in Appendix A.

2.1. Stochastic representation of the Reynolds-transport theorem

Thanks to the previous decomposition, it is possible to derive a stochastic represen-
tation of the so-called Reynolds transport theorem. Unlike [14], we will not assume
that, for each x,y and t, the matrix σ̆(x, y, t) is symmetric. Furthermore, the time dif-
ferentiable part of the flow, w(x, .), will not be assumed to be deterministic anymore,
but rather, to be a continuous semimartingale. Nevertheless, if we exactly follow the
same procedure, the very same stochastic transport theorem can be derived.
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Theorem 2.1. Stochastic Reynolds transport theorem

Noting φ the stochastic flow defined by:

∀x ∈ Ω, t ∈ R+, φ(x, t) = x+

∫ t

0
w(φ(x, t′), t′)dt′ +

∫ t

0
σ(φ(x, t′), t′)dBt′ ,

and denoting V (t) = φ(V (0), t) a material volume transported by the stochastic flow,
we have:
(2.2)

d

∫
V (t)

q(x, t)dx =

∫
V (t)

(
dtq +∇ ·

(
qdXt + qσ(∇ · σ)Tdt− 1

2
∇ · (aq)Tdt

))
dx.

The mathematical equivalence between formulation (2.2) and the stochastic Reynolds
transport theorem of [14] is proven in Appendix B. If q is a passive tracer, trans-
ported by the stochastic flow, d

∫
V (t) q(x, t)dx = 0, and:

(2.3)

q(x, t)− q(x, 0) = −
∫ t

0
∇ ·
(
qw + qσ(∇ · σ)T − 1

2
∇ · (aq)T

)
dt′ −

∫ t

0
∇ · (qσ) dBt′ .

This equation is the unique decomposition of the continuous semimartingale q, into a
finite variation process (the integral in dt) and a local martingale (the integral in dBt)
[24]. Physically, the finite variation process varies slowly and is responsible of the
large time-scale variation of q, whereas ∇· (qσ) dBt′ is decorrelated in time and null
in average. From this point of view, the two components live in two different spaces,
and hence the semimartingale decomposition is unique. If we make the hypothesis
of a constant density ρ, the last equation applied to q = ρ and the uniqueness of the
decomposition leads to:

0 = ∇ · σ,(2.4)

0 = ∇ ·
(
w + σ(∇ · σ)T − 1

2
(∇ · a)T

)
= ∇ ·

(
w − 1

2
(∇ · a)T

)
.(2.5)

Usually, the evolution of an intensive property, q, can be computed from equation
(2.3), through the knowledge of the small-scale velocity characteristic, σ, and of
the large-scale drift, w. Indeed, the evolution of all intensive property statistical
moments can be formalized through equation (2.3). For instance, the equation of the

conditional expectation of the scalar, given the velocity w for all time, q̄
4
= E(q|w),

is:

(2.6)
∂q̄

∂t
+∇ · (q̄w∗) = ∇ ·

(
1

2
a∇q̄

)
where w∗ = w + σ(∇ · σ)T − 1

2
(∇ · a)T .

This is a classical advection-diffusion equation. Indeed, since a is symmetric positive-
semidefinite, ∇ ·

(
1
2a∇q̄

)
leads only to diffusion. The expectation, q̄, is advected by
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an effective drift, w∗, and undergoes a diffusion through the tensor 1
2a. In the case

of a constant density, w∗ is naturally divergence-free (see equation (2.5)). For large-
scale tracers, this advection-diffusion equation, derived from physical laws, has the
same form as the widely used empirical advection-diffusion equation setup through
an eddy diffusivity assumption ([3]). However, unlike most of these classical models,
the sub-grid diffusion we got is time-dependent, anisotropic and inhomogeneous.

2.2. Stochastic Navier-Stokes model

Similarly to the Newton second law, a dynamical balance between the temporal dif-
ferentiation of the stochastic momentum, ρdXt, and general stochastic forces action
is assumed. This leads, applying (2.2) to ρdXt and ρ, to the following stochastic
Navier-Stokes representation.

Theorem 2.2. Stochastic Navier-Stokes representation
If w is a finite variation process and f the integral of the pressure p along time can
be decomposed as a general continuous semimartingale

∫ t
0 (p′dt+ dp̂), then

ρ

(
∂w

∂t
+ (w · ∇)w + f × w

)
= τ(w) + ρg −∇p′ + fV (w),(2.7)

ρ ((σdBt · ∇)w + f × σdBt) = −∇dp̂+ fV (σ)dBt,(2.8)

where{
fV (h) = µ

(
∇2h+ 1

3∇ (∇ · h)
)
,

∀k, τk(w) = 1
2

(
∇ · (∇ · (ρawk))T −∇ · (∇ · (ρa))T wk − 2 ∗ ρ ((∇ · σ)σT∇)wk

)
.

As a consequence, if the large-scale component, w, is a finite variation process
(i.e. if it is time differentiable) and if the density ρ is deterministic, then w is deter-
ministic, knowing the initial conditions. It can be noted again that the kernel σ̆ is
not assumed pointwise symmetric. The equivalence between formulation (2.7) and
the stochastic Navier-Stokes model of [14] is proven in Appendix B.
Expression (2.7) can be seen as a generalization of several classical turbulence mod-
els. For instance, if the small-scale infinitesimal displacement σdBt is isotropic and
divergence free, and if the density is constant, the sub-grid tensor simplifies to
τ(w) = ρa24w. We retrieve the simplest expression of the Boussinesq assumption,
with a constant eddy viscosity given by a

2 . Generally speaking, we may wonder
whether the sub-grid tensor, τ , is dissipative, like in a theoretical 3D direct energy
cascade ([3], [8]). If ρ is assumed to be constant, and if a or w and their derivatives
are assumed to be null on the border of Ω, then τ is dissipative. The proof is pro-
vided in Appendix C.
The knowledge of small-scale physical flow realizations allows estimating σ and a:

adt = E((σdBt)(σdBt)
T ) and (∇ · σ)σTdt = E((∇ · σdBt)(σdBt)T ).(2.9)
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Thus, the value of a(x, t) can be used in a large-scale simulation ruled by equation
(2.7). The tensor a and functions of σ can also be estimated from a single realization
thanks to stochastic calculus, as explained later, or by assuming local time or space
ergodicity as in [25]. Another interesting way of using (2.9) is through Monte-Carlo
small-scale simulations, such as particle filtering, where particles correspond to sev-
eral probable values of the small-scale velocity. A third alternative to estimate a and
σ, without using (2.9), consists in relying directly on known statistical properties of
small-scale measurements. Some works on this subject are currently ongoing. In all
these methods, the estimation of the tensor a corresponds to a solution of a closure
problem. Knowing the value of a should lead to a simulation of the drift, through
(2.7), or of a tracer transport, through the stochastic transport theorem ([14]), in
which the small-scale actions are taken into account in a statistical way.
It is also possible to follow a dual strategy with a downscaling approach, like, for
instance, mixing diagnostics, which is, at the moment, an important issue in Mete-
orology and Oceanography ([26] and [27]). The evolution equation of both the av-
eraged stochastic transport theorem (2.6) and the average stochastic Navier-Stokes
model (2.7), applied to observed large-scale geophysical data can give information
on the tensors a and σ. Indeed, analysing how a tracer is advected and diffused may
help computing these two tensors. Related information, such as the local small-scale
energy, the anisotropy created by the matrix a(x, x, t), or the local divergence, which
is linked to ∇·σ, can be inferred. These information could teach us, for instance, the
likelihood of locally strong velocity or tracer gradient and the principal directions
of mixing created by the main variance directions.
Theorems 2.1 and 2.2 provide the foundations of a physically relevant stochastic
Fluid Dynamics framework. In this paper, we will rely on them for a reduced model
application.

3. Classical model reduction using POD

Dimensional reduction techniques are methods allowing simplification of Partial Dif-
ferential Equations (PDE), using dedicated basis specified from observed data. The
Proper Orthogonal Decomposition (POD) is one of these methods, and below are
recalled its main principles.
Here, we consider an observed multivariate field such as a velocity u(x, t) depending
on space x ∈ Ω and time t ∈ [0, T ]. The goal consists in looking for a subspace
of reduced dimension where u(., t) is likely to live for all t. We thus seek a finite
orthonormal set of function of space, which spans this subspace. These functions
(φi(x))16i6N are called spatial modes or Topos and are computed from a Karunen
Loeve decomposition on a series of available velocity snapshots. In other words, a
spectral analysis is done on the space (or time) autocorrelation tensor of observed
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data:

ū(x)
4
=

1

T

∫ T

0
u(x, t)dt,(3.1)

cov(x1, x2)
4
=

1

T

∫ T

0
(u(x1, t)− ū(x1))(u(x2, t)− ū(x2))Tdt,(3.2)∫

Ω
cov(x1, x2)φi(x1)dx1 = λiφi(x2) with

∫
Ω
φi(x)φj(x)dx = δi,j .(3.3)

The Topos are sorted such that λ1 > ... > λN , where N is the number of observed
snapshots (if the number of points of the spatial grid is larger than N). It leads to
the decomposition:

∀(x, t) ∈ Rd × R, u(x, t) ≈ ū(x) +
N∑
i=1

bi(t)φi(x).(3.4)

The values (bi(t))16i6N are called temporal modes or Chronos and satisfy:

∀i, j, 1

T

∫ T

0
bi(t)bj(t)dt = λiδi,j .(3.5)

In the following, ū will be denoted φ0 and b0
4
= 1. Then, since only the first tempo-

ral modes concentrate the most significant part of the energy, a second truncation
approximation is usually performed:

∀(x, t) ∈ Rd × R, u(x, t) ≈
n∑
i=0

bi(t)φi(x) with n� N.(3.6)

A Galerkin projection enables us to look for an approximate solution of a PDE. The
approximate solution at time t, u(., t), defined in (3.6), is assumed to live in a finite-
dimensional sub-space, spanned by (φ0, ..., φn), instead of an infinite-dimensional
one. The time-space evolution equation of u (a PDE) is then expressed as the time
evolution equations (a finite set of coupled ODEs) of Chronos. In fluid dynamics,
PDE system describing the velocity evolution, such as the Navier-Stokes equations,
have the general following abstract form:

∂u

∂t
= I + L(u) + C(u, u),(3.7)

where L and C are respectively linear and bilinear differential operators. The first
term, I, includes pressure and gravity. The second one, L, involves molecular vis-
cosity and possibly Coriolis force. The last one, C, encodes the non-linear advection
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term. Projecting this PDE on each Topos leads to:

∀i 6 n,
dbi
dt

=

(∫
Ω
φi · I

)
︸ ︷︷ ︸

4
=ii

+

n∑
p=0

(∫
Ω
φi · L(φp)

)
︸ ︷︷ ︸

4
=lp,i

bp

+
n∑

p,q=0

(∫
Ω
φi · C(φp, φq)

)
︸ ︷︷ ︸

4
=cp,q,i

bpbq.

Because of the non-linearity, the temporal modes strongly interact with each oth-
ers. In particular, even though the original model (with n = N) is computationally
stable for moderate Reynolds number, the reduced one is generally not so. This
particularity of the Navier-Stokes equation is not restricted to the POD framework.
Simulating a large-scale flow, considering only the largest Fourier modes, leads also
to strong instabilities and numerical explosions. A rough truncation cannot be con-
sidered without introducing a dissipative term whose role is to drain the energy
brought by the larger modes beyond the truncation and thus to avoid an energy
accumulation. Eddy viscosity models, which consist in enforcing the fluid viscosity,
are often used for that purpose. This principle, which dates back to Boussinesq ([4]),
is often used in large-scale simulation as well as in the context of POD ([18], [19],
[20], [7]). In practice, these methods introduce empirically an additional damping
term to the Navier-Stokes equation. This leads to a modified linear term in (3.7).
Unfortunately, since this term is built from an empirical thermodynamical analogy,
its precise form is difficult to justify and its parametrization has to be tuned for each
simulation to get optimal results. The method proposed in the next section allows
us to tackle these drawbacks.

4. Stochastic POD

To overcome the difficulties developed previously, we suggest to use our stochastic
Navier-Stokes model instead of the classical Navier-Stokes equations. Let us outline
that both systems address the same physics. They both rely on mass and momentum
conservation and differ only in how they are taking into account small-scale missing
information.

4.1. Model

The reduced dynamic system we propose is based on the stochastic Navier-Stokes
model developed in (2.2), assuming that the density ρ is constant and the smooth
part of the flow, w, is of bounded variations. To tackle the problem of modes interac-
tions, [14] proposed to decompose u as follow : udt = wdt+σdBt with w =

∑n
i=0 biφi
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(projection on the truncated subspace) and
∑N

i=n+1 biφidt a realization of σdBt
(projection on the complementary ”small-scale” subspace). Since ∇ · u = 0, for all
i, ∇ · φi = 0 and, then, ∇ · w = 0. The drift, w, follows the finite variation part of
the stochastic Navier-Stokes equation (2.7) in the incompressible case. Projecting
on the divergence-free functions space, we have:

∂w

∂t
+ P ((w · ∇)w) = P

(
1

ρ
τ(w)

)
+ g + ν4w,(4.1)

where

1

ρ
τk(w) =

1

2

(
∇ · (∇ · (awk))T −∇ · (∇ · a)T wk

)
,(4.2)

P 4
= Id −4−1∇∇T .(4.3)

In Fourier space, the projector on divergence-free functions space reads P̂ = Id− kkT

‖k‖22
.

Equation (4.1) can be rewritten as:

∂w

∂t
= I + L(w) + C(w,w) + F (a,w),(4.4)

where F is a bilinear differential operator. Projecting this equation along φi for each

i ∈ J1, nK, gives the evolution equation of b
4
= (bi)16i6n.

∀i ∈ J1, nK,
dbi
dt

= ii +
(
l.i + f̆(a).i

)T
b+ btc..ib,(4.5)

with f̆(a)j,i
4
=

∫
Ω
φi · F (a, φj),(4.6)

where the coefficients (ii)16i6n, (f̆(a)j,i)16i,j6n, (lj,i)16i,j6n and (ck,j,i)16i,j,k6n are
computed through the integration over the whole space of the terms of (4.1). Those
dynamical coefficients depend on both the resolved Topos and the unresolved veloc-
ity variance tensor, a. This system includes a natural small-scale dissipation mech-
anism, through the tensor τ . To fully specify this system, we need to estimate the
quadratic variance tensor a. This important issue is developed in subsection 4.3. But
first we will elaborate further on the choice of a characteristic time step related to
the truncation operated.

4.2. Choice of the time step

For several applications, the simulation of the most energetic large-scale component
of the solution is sufficient. However, this simulation needs to be fast, implying a low
complexity evolution model and a large time step. The structure of our stochastic
model enables to reach both goals.
Indeed, as long as the resolved modes, which represent w, are differentiable w.r.t.
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time, our stochastic reduced model is valid. Thus, the time step can be chosen as
large as desired, as long as these modes remain smooth. The Shannon-Nyquist sam-
pling theorem provides a natural upper bound to fix this time step. This theorem
states that a function can be sampled, without loss of information, if the sampling
frequency is twice as large as the largest frequency of the original function. Other-
wise, the sampled function undergoes an aliasing artifact characterized by a back
folding of the Fourier spectrum. If the resolved POD modes and their evolution equa-
tions are not affected by aliasing phenomena, the required smoothness is assumed
to be reached. Since the evolution equations are quadratic, a sufficient condition for
the necessary smoothness is:

(4.7)
1

∆t
> 4 maxi6n (fmax (bi)) ,

where fmax (bi) is the maximum frequency of the i-th temporal mode.
Of course, aliasing will occur in the unresolved temporal modes, associated to smaller
time scales. However, our stochastic model is derived from a decorrelation assump-
tion of the small-scale unresolved part of the velocity. A strong subsampling of these
components strengthens the decorrelation property of these modes.

4.3. Estimation of the uncertainty variance tensor

After having estimated the Topos and fixed the time step, we need to estimate the
uncertainty variance tensor a. This estimation will enable us to get a full expression
of the dynamical coefficients of the Chronos evolution equations (4.5). To that end,
additional modeling assumptions must be imposed. The first natural hypothesis
consists in assuming an uncertainty field that is stationnary in time – and spatially
non homogenous. In this stationary case, the uncertainty variance tensor is constant
in time.

4.3.1. The uncertainty variance tensor is constant in time

This case corresponds to the assumption used in [14]. To understand the consequence
of this hypothesis, we recall that a

∆t is the variance of the residual velocity u−w. The
process is decorrelated in time and Gaussian. The snapshots are hence independent.
Therefore, the (u− w)(u− w)T (ti) are independent and identically distributed. So,
the expectation, a

∆t , can be computed by averaging the snapshots (u−w)(u−w)T (ti).
In other words, the process is ergodic.

a(x)

∆t
= lim

N→+∞

1

N

N∑
i=1

(u− w)(x, ti)((u− w)(x, ti))
T ,(4.8)

where N is the number of snapshots after time sub-sampling. The convergence is
almost sure by the strong law of large numbers but, here, only the convergence in
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probability is used. One can notice that this relation is straightforward when using
stochastic calculus, as explained hereafter.
Thanks to the expression above, one can see several advantages of such an assump-
tion. First of all, the construction of a is straightforward and easy to compute.
Secondly, σdBt itself is a a-Wiener process, since a(x, y) is a trace class operator
constant in time (see [23] and [22] for more details on Q-Wiener processes). The
spectrum of this operator, which is central in the model reduction process, enables
us to use a diagonalized version of σ and a as in ([14]):

a(x, y) =

∞∑
k=n+1

λk∆t φk(x)φk(y)T ≈
N∑

k=n+1

λk∆t φk(x)φk(y)T ,(4.9)

σ(x)dBt =

∞∑
k=n+1

√
λk∆t φk(x)dβ

(k)
t ≈

N∑
k=n+1

√
λk∆t φk(x)dβ

(k)
t ,(4.10)

where the (β(k))k>n are independent standard one-dimensional Brownian motions.
As a result, it is very easy in this context to generate realizations of the small-scale
uncorrelated component. The knowledge of the leading eigenfunctions of the POD
complementary space allows us to access directly to the spectral representation of
the diffusion tensor.

4.3.2. The uncertainty variance tensor is time varying

Assuming a constant value for a(x, x) means that the turbulence is not intermittent.
In the context of POD, it would mean that all the unresolved modes have a constant
variance. It is a good first approximation. But, one may wonder whether it is possible
to do better.
If a does depend on time, the estimation is more involved. Since only one realization
of the small-scale velocity is available, some time-ergodicity hypothesis would be
necessary, at least locally, to use (2.9) as in ([25]). Otherwise, parametric and non
parametric estimation of a(Xt, t)dt = d < X,X >t are studied in the literature ([28],
[29], [30], [31], [32] and [33]). Parametric ones use for instance maximum likelihood
estimation. Indeed, denoting θ the parameters, the Girsanov theorem ([34]) leads,
as explained in [28], to the following log-likelihood:

l(Xt −X0|θ) =

∫ t

0
w(t′, Xt′)

T
(
aop(t′, Xt′ |θ)

)−1
dXt′

−1

2

∫ t

0
w(t′, Xt′)

T
(
aop(t′, Xt′ |θ)

)−1
w(t′, Xt′)dt

′,

where:

aop(t, x|θ)(f)
4
=

∫
Ω
a(t, x, y|θ)f(y)dy.
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It is a very powerful tool because it can be used on Lagrangian data. However, the
knowledge of the inverse of the infinite dimensional operator aop is required. More-
over, here, we look rather for a non-parametric technique. These methods assume
that σ is either constant in time or in space ([29], [30], [31], [32] and [33]). But,
contrary to the main application domain of the literature applications (finance), we
have here access to an Eulerian realization of the stochastic flow. For all x ∈ Rd, it is

then possible to build a spatially homogeneous local martingale X̃x
t
4
=
∫ t

0 σ(x, t)dBt.

Its realization,
∫ t

0 (u(x, t)−w(x, t))dt, after time sub-sampling, enables to estimate,
for all functions hk,∫

hk(t)a(x, t)dt =

∫
hk(t)d

〈
X̃x,

(
X̃x
)T〉

t
,

= P− lim
∆t→0

T∑
ti=0

hk(ti)(X̃
x
ti+1
− X̃x

ti)(X̃
x
ti+1
− X̃x

ti)
T ,

≈ (∆t)2
T∑

ti=0

hk(ti)(u− w)(x, ti)((u− w)(x, ti))
T ,

where P−lim∆t→0 stands for the limit in probability as the time step, ∆t, approaches
0. The functions hk can be a orthonormal basis of L2([0, T ]) such as wavelets ([29]).
In [29], it is shown that such estimators have good statistical properties: local asymp-
totic normality of the integrated square errors, together with the rate of convergence
of its bias and variance. Therefore, the influence of the sub-grid tensor on d

dtbi will
be represented by time-dependent, linear coefficients as shown in (4.5).

4.3.3. The uncertainty variance tensor is in the span of the Chronos

The Chronos reduced basis (bi/‖bi‖L2([0,T ]))16i6n provides a much better solution
than a wavelet basis. As a matter of fact, this choice has three main advantages.
First of all, since we are studying the time evolution of (bi)16i6n, the slow time
variations of a, which are consistent with the time variations of (bi)06i6n, are the
information most needed. The number of wavelets needed to represent these time
variations would be a priori much larger than n + 1. Secondly, we do not need to

reconstruct a. Indeed, noting zi(x) = bi(.)a(x,.)
λi

and using the fact that a → f(a)
(defined by (4.6)) is linear,

f̆(a) = f̆

(
n∑
k=0

bkzk

)
=

n∑
k=0

bkf̆ (zk) .(4.11)

Thus, (4.5) becomes:

∀i ∈ J1, nK,
dbi
dt

= ii + l.Ti b+ bT (c..i + f..i) b,(4.12)

with fpqi
4
= f̆qi (zp) .(4.13)
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If one chooses the basis (bi)06i6n, only (zi)06i6n is needed to compute f and,
hence, to simulate the influence of a in the evolution of bi. The calculation is thus
more direct. One may notice that equations (4.12) define again a quadratic evolution
system of Chronos. Thus, the criterion for time step choice, developed in 4.2, remains
the same. The third advantage of this basis is that f does not depend on time, unlike
the term f̆(a) in equation (4.5). It is thus faster to compute than f̆(a(t)) at all time
t, and requires a lower memory capacity to store it. But, above all and unlike any
other basis, although the variance tensor is time dependent, the evolution system of
(bi)16i6n remains autonomous. This is an unavoidable requirement for a forecasting
task ([7]).
To simplify the equation and to be more precise in what follows, we will remove the
constant balance in (4.12). In permanent regime, since the system is stable, one can

assume that dbi
dt = 0. Thus, noting b1:n = (bi)16i6n, we get:

(4.14) ∀i ∈ J1, nK,
dbi
dt

= −
n∑
k=1

λk (c+ f)k,k,i + bT1:n (c+ f)1:n,1:n,i b1:n

+
(
l1:n,i + (c+ f)T0,1:n,i + (c+ f)1:n,0,i

)T
b1:n.

This model leads, as you will see later on, to an improved accuracy and stability of
the system. We however lose the direct sampling capability of the previous simple
ergodic assumption.

5. Numerical results

The different variations of the proposed approach have been assessed and compared
numerically on numerical data of a wake behind a cylinder at Reynolds 300 and
3900 ([5]).

5.1. Characteristics of the data

The fluid is incompressible: ∇ · u = 0. At x = 0, there is a constant velocity U = 1
directed along x > 0. At (x, y) = (5, 0), there is a motionless cylinder with an axis
along the z axis. In permanent regime, it creates a Von Kármán vortex street behind
the cylinder. A clockwise vortex is created at the bottom right of the cylinder, it
breaks away from it and moves downstream. Then, a counter-clockwise vortex is
created at the top right of the cylinder, breaks away from the first one and moves
downstream, and so on. This periodic physical process makes the two first Chronos
almost sinusoidal.
Figures 1 and 2 show the z component of the vorticity ∇× u on horizontal section
of the fluid. In Figure 1, the cylinder is cropped. The vorticity is a measurement of
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Figure 1: Vorticity along z of a wake behind a cylinder at Reynolds 300.

the rotation of the fluid on this plane. A positive vorticity (in red) means a counter-
clockwise rotation. A negative vorticity (in blue) means a clockwise rotation. At this
point, one can see, in both Figures, a counter-clockwise is breaking away at the right
of the cylinder and a clockwise one is enlarging at the bottom right.

In Figure 2, Kelvin-Helmholtz instabilities at the top right and bottom right of
the cylinder can be observed just before the vortex creation zone. At the top and
bottom of the cylinder, the velocity is close to the inflow velocity U = 1 along x
whereas, at the right of the cylinder, close to it, the velocity is close to zero. Thus,
there are two mixing layers at the boundaries, at the top right and bottom right of
the cylinder. These Kelvin-Helmholtz instabilities as well as the Von Kármán vortex
street creates a turbulent wake downstream of the cylinder.
At Reynolds 300, there are only few small-scales features. Most of the energy and
most of the dynamic is in large-scale structures. We use 80 vortex shedding. At
Reynolds 3900, the turbulence is relatively important. Therefore, the spectrum sup-
port of the velocity is quite large, meaning that the velocity exists at several space
and time scales. Indeed, one can see both small and large structures on Figure 2.
Thus, in the context of POD, the Chronos live at different time scales. Since the
spectrum is more energetic for lower wave-number, the first Chronos, i.e. the most
energetic ones, have larger time-scale. Due to the quasi-periodic behavior of the flow
along time, the Chronos are closed to the Fourier modes but not exactly equal.
This analysis of the Chronos time scale is hence just a rough tendency. It explains
nevertheless why our stochastic model, based on a separation between smooth and
highly oscillating parts of the velocity is relevant.
Compared to the data of [5], we slightly filtered and sub-sampled them spatially in
order to reduce by two the number of gridded points by axes. The Gaussian filtering
is used here only to reduce a potential spatial aliasing. To speed-up and facilitate the
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Figure 2: Vorticity along z of a wake behind a cylinder in the horizontal section
z = 0, at Reynolds 3900.

computations, we also removed part of the space where the vorticity is negligible:
at |y| > 3.5 and x < 3, as seen in Figure 2. We use N = 251 time steps to observe 3
vortex shedding.

5.2. Reconstruction of Chronos

To reconstruct the Chronos, the reduced order dynamical system (4.14) is used. The
modes mean energy, (λi)16i6n, and the Topos, (φi)06i6n, are computed from the
whole sequence of snapshots (N = 3999 for Reynolds 300 and N = 251 for Reynolds
3900). As for the initial condition, we used the referenced values of the Chronos com-
puted from the scalar product of initial velocity with the Topos. Then, regarding the
Chronos spectra, an optimal time sub-sampling is chosen, as explained in subsection
4.2. Afterwards, using the Topos, the residual velocity and possibly the Chronos, the
variance tensor, a, or its decomposition is estimated. The coefficients of the reduced
order dynamical system of Chronos (see equation 4.14) are computed, using discrete
derivation schemes and integration. Finally, the Chronos are recomputed, integrat-
ing (4.14) with a 4-th order Runge-Kutta method, with (brefi )(t = 0)16i6n as initial
condition.

Figures 3 and 4 show examples of the reconstruction of the Chronos for n = 2,
at Reynolds 300, and n = 10, at Reynolds 3900, with the classical POD method
(blue lines) and our method with a variance tensor defined as a linear combination
of Chronos (red lines). At Reynolds 300, the first two modes explain most of the

energy. That is why we consider only n = 2. The reference (brefi )16i6n (black dots)
are superimposed for comparison purpose. It can be observed that our model follows
the references quite well whereas the deterministic model blows up. The divergence
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occurs very quickly at Reynolds 3900. It may be pointed out that here both reduced
models are parameter free. No constant had to be tuned to adapt any viscosity model.

Figures 5 and 6 show the error of the solution along time. The error is defined as
follows:

err(t) = T

∥∥uref − u∥∥
L2(Ω)

‖uref‖L2(Ω×[0,T ])

,

= T

∥∥∥∑n
i=1

(
brefi − bi

)
φi +

∑N
i=n+1 b

ref
i φi

∥∥∥
L2(Ω)∥∥∥∑n

i=0 b
ref
i φi

∥∥∥
L2(Ω×[0,T ])

,

=


∑n

i=1

(
brefi − bi

)2
+
∑N

i=n+1

(
brefi

)2

‖w̄‖2L2(Ω) +
∑N

i=1 λi


1/2

.

Approximating the square of the real unresolved modes,

((
brefi

)2
)
n+16i6N

, by their

time average, (λi)n+16i6N , the error simplifies to:

err(t) ≈


∑n

i=1

(
brefi − bi

)2
+
∑N

i=n+1 λi

‖w̄‖2L2(Ω) +
∑N

i=1 λi


1/2

,(5.1)

which is greater than the minimal error associated to the modal truncation:

err(t) >

( ∑N
i=n+1 λi

‖w̄‖2L2(Ω) +
∑N

i=1 λi

)1/2

.(5.2)

Equation (5.1) defines the criterion error plotted in Figures 5 and 6, whereas (5.2)
constitutes a lower bound of this error.
Here, we use uref

4
= u − U as the reference solution, and U is the constant inflow

velocity. The reference velocity is null, far from the cylinder and the integration of
its energy, on the domain, does not depend on the size of the domain.
Figures 5 and 6 illustrate the error obtained for the standard POD Galerkin model
without sub-grid dissipative term, and our model for a variance tensor which is either
fixed constant along time or expressed as a linear combination of the Chronos. For
the Reynolds 300, only the model with constant variance has been used. Indeed, this
fluid dynamics system has only few degrees of freedom. For this Reynolds number,
the model with variance tensor varying in time is overparameterized. The doted line
represents the minimal error associated to the reduced subspace truncation error.
The black solid line is the error considering only the time mean velocity – if we set
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Figure 3: Reconstruction of the first two modes (n = 2), of a wake flow at Reynolds
300, with a variance tensor constant in time. The black plots are the observed refer-
ences. The blue lines correspond to the solutions computed with a standard POD-
Galerkin whereas the red ones are computed with the stochastic representation,
without any corrective coefficient. The initial condition, at t = 0, is common.
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Figure 4: Reconstruction of the first ten modes (n = 10), of a wake flow at Reynolds
3900, with a variance tensor expressed as a linear function of the Chronos. The black
plots are the observed references. The blue lines correspond to the solutions com-
puted with a standard POD-Galerkin whereas the red ones are computed with the
stochastic representation, without any corrective coefficient. The initial condition,
at t = 0, is common.

all the Chronos to 0.
In this case:

err|b=0(t) = T

∥∥uref − ū∥∥
L2(Ω)

‖uref‖L2(Ω×[0,T ])

,

=


∑N

i=1

(
brefi

)2

‖w̄‖2L2(Ω) +
∑N

i=1 λi


1/2

,

can be finally approximated as

err|b=0(t) ≈

( ∑N
i=1 λi

‖w̄‖2L2(Ω) +
∑N

i=1 λi

)1/2

.

This term does not constitute an upper bound of the error. However, if this limit is
crossed it means that the model is completely useless. In Figures 5 and 6, the fast ex-
ponential divergence of the standard POD reduced order (in blue) is clearly visible.
Conversely, our methods, based on a physically relevant stochastic representation of
the small scale component, have much weaker errors, without tuning any additional
parameters on the data. There is only a slight difference between a constant and
a linear representation of the variance tensor. A drawback of the second method
is that a(x, t) is not ensured to be a positive definite matrix. When the number of
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Figure 5: Normalized error for n= 2 modes, of a wake flow at Reynolds 300. The error
is normalized by the energy of the solution:

∑N
i=1 λi. The blue line corresponds to the

standard POD Galerkin. The red one stands for our model with a constant variance
tensor along time. The magenta one represents our model with linear representation
of the variance tensor. The doted line indicates the error associated to the mode
truncation :

∑N
i=n+1 λi. The black solid line is the error considering only the time

mean velocity.

modes increases, the basis used for the projection of a, (bi)06i6n, is larger. Thus, the
projection approximates better the identity, and the estimation of a(x, t) becomes
closer to a positive matrix and close to a. This may explain the difference between
the two methods.
Whatever their differences, both methods provide very encouraging results. These
representations clearly enable the construction of autonomous sub-grid models. This
constitutes an essential point for the devising of autonomous reduced order dynam-
ical systems.

6. Conclusion

In this paper, a fluid dynamics model built from fundamental physical principles
applied to a stochastic representation of the flow has been used. In this represen-
tation, the fluid velocity is random and partially decorrelated in time. This time
decorrelation can be interpreted as coming from a subsampling in time of a fast os-
cillating part of the velocity. In this framework, mass and momentum conservation
principles can be constituted from stochastic calculus to derive a complete fluid flow
dynamics model. This framework brings a strong theoretical support to classical em-
pirical models, while generalizing them through the incorporation of an anisotropic,
inhomogeneous and time-dependent diffusion. Compared to the original stochastic
model, introduced in [14], some initial assumptions have been removed. The diffu-
sion tensor σ does not need to be symmetric anymore, w can be any semimartingale
for the stochastic version of the Reynolds transport theorem and any finite varia-
tion process for the stochastic Navier-Stokes model. It has also been proved that the
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Figure 6: Normalized error for n = 2, 4, 6, 8, 10, 12, 14 and 16 modes, of a wake flow
at Reynolds 3900. The error is normalized by the energy of the solution:

∑N
i=1 λi.

The blue line corresponds to the standard POD Galerkin. The red one stands for
our model with a constant variance tensor along time. The magenta one represents
our model with linear representation of the variance tensor. The doted line indicates
the error associated to the mode truncation :

∑N
i=n+1 λi. The black solid line is the

error considering only the time mean velocity.
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sub-grid tensor is diffusive when the density is constant. Thanks to our stochastic
representation of fluid dynamics, a reduced model, describing the resolved modes
evolution, has been derived. This model takes explicitly into account the unresolved
modes influence. Since our stochastic model enables to deal with aliasing effects,
we have chosen a time step as large as possible to simplify the reduced model sim-
ulation. A criterion based on Shannon-Nyquist theorem has been proposed to set
the time step. Two different methods have been proposed to estimate the variance
tensor. The first one relies on the assumption of a constant variance tensor along
time, whereas the second one decomposes this tensor as a linear combination of
the Chronos basis. From both methods, closed autonomous reduced systems have
been derived. Finally, in section 5, both methods have been tested on numerical
data from DNS simulation at Reynolds 300 and LES simulation at Reynolds 3900 of
wake flow. The two kinds of reduced models have been compared to POD Galerkin
reduced system. The standard reduced system exhibits very fast diverging trajecto-
ries. On the contrary, our models have shown to provide much better results without
any parameter tuning.
Those results are very encouraging. Indeed, we have written basic physical conser-
vation laws in a stochastic framework where Itō formalism is interpreted as scale
separation. This new methodology has yielded to a powerful stochastic fluid dynam-
ics model. It is true that the variance tensor a remains to be estimated or modeled.
Nevertheless, we have proposed two estimation methods of this tensor, based on
stochastic calculus, in the context of reduced order model. These simple estimation
methods were sufficient to illustrate the potential of our new fluid dynamics model.
Needless to say, a lot of improvements are possible and may be considered. Here,
the variance has been assumed to be constant in time or in the span of Chronos.
However, it can also be assumed that it is a quadratic or a cubic function of the
temporal modes. To obtain a more sophisticated time dependence for the variance
tensor, a dynamical model can also be used. Many dynamical models of the sub-grid
velocity variance exist in the literature, based mainly on heuristic observations or
statistical estimations. For instance, the RANS equations are closed by empirical
turbulent kinetic energy evolution equations ([35]). More recent works reveal new
sub-grid dynamical models. Stochastic superparametrization ([36]) is one example
of such models. Using the so-called point approximation, the large-scale influence
on the evolution equation of the small-scale velocity becomes constant and uniform.
Then, a Gaussian closure decouples the small-scale Fourier modes and enables solv-
ing the small-scale variance dynamic. To go further, the sub-grid velocity can be
non-Gaussian. Modified Quasilinear Gaussian (MQG) closure ([37, 38]) can be used
instead of a Gaussian one. The Quasilinear Gaussian (QG) method neglects third
order moments. The MQG algorithm enables simulating accurately the two first mo-
ments by modeling the third order moments ([37]). This model is based on energy
transfer principles and estimations on long time. The MQG-DO algorithm manages
to also simulate accurately the other moments in a reduced subspace ([38]). QG,
MQG and MQG-DO closures will also lead to a dynamical model of the small-scale
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variance tensor a. Another improvement of our algorithm could consist in using sev-
eral time steps. One time step by resolved mode will involve one value of the variance
tensor by resolved mode. This should make the most of the time-decorraleted unre-
solved velocity explicit influence. Therefore, the variance tensor would be different
for each resolved modes. Finally, it could be suitable to remove the finite variations
assumption for the large-scale drift, w. This yields to a new model, that will be
exposed in future works. In such a model, an evolution equation determines the par-
tially time-correlated sub-grid velocity component: the martingale part of w. This
component is random, centered and not differentiable w.r.t. time. Therefore, it lives
at a smaller scale than the finite-variation velocity component, studied previously
in this paper. However, since the martingale component is continuous w.r.t. time,
its evolution is smoother than the time-uncorrelated component. This new evolution
equation, on the martingale part of the drift, may bring several advantages. First,
this is a linear stochastic partial differential equation with additive and multiplica-
tive noises, which is both easy to handle and physically pertinent ([13]). Then, the
noises covariances are naturally linked to the covariance of the time-uncorrelated
velocity component a(x, y) and to the sub-grid tensor. It implies a lot of interesting
properties such as energy conservation, up to molecular viscous effect. Moreover,
this stochastic equation is only inferred from fundamental physical laws. Therefore,
neither tuning nor ad hoc model assumption is needed. For all these reasons, this
new stochastic fluid dynamics model should be very helpful to built relevant uncer-
tainty quantification (UQ) and sub-grid stochastic dynamic models, with reduced
complexity. Such UQ methods can be used for stochastic reduced order models, fil-
tering or probabilistic closures. And the associated sub-grid stochastic dynamics can
be used, for instance, for stochastic superparametrization. Some work on this new
model is currently ongoing.

A. Basic notions of stochastic calculus

We recall here some basic definitions and properties of stochastic calculus. Here,
for simplicity, we only deal with functions of a compact set of time: t ∈ [0, T ] with
T ∈ R∗+. However, everything can be generalized easily to functions of R+ ×Ω with
Ω ⊂ Rd (see [24], [22] and [23]).
We use a sample space Ω̆, a probability measure P, a Wiener process, (Bt)t>0, its
filtration (F)t>0 (the set of σ-algebra generated by each Bt), the whole σ-algebra,

F 4= F∞
4
=
⋃
t>0Ft, and the resulting filtered probability space (Ω̆,F , (F)t>0 ,P)

Defintion A.1. Finite variation function
t → f(t) is a finite variation function if and only if for all a < b and all partition
a = t0 < ... < tn = b of [a, b],

∑n
i=1 |f(ti)− f(ti−1)| <∞.

Defintion A.2. Finite variation process
(t, ω)→ f(t, ω) has finite variations if and only if:
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• f is adapted (i.e. f(t, .) is Ft measurable),
• For each trajectory ω, f(., ω) is a finite variation function .

Characterization:
f is a finite variation process if and only if ∃g, f(t, .) = f(0, .) +

∫ t
0 g(t′, .)dt′.

Defintion A.3. Martingale
(t, ω)→ f(t, ω) is a martingale if and only if:

• f is adapted ,

• f(t, .) ∈ L1
Ω̆

4
= {Y : E|Y | <∞},

• ∀s < t, E(f(t, .)|Fs) = f(s, .).

In particular, if f = 0 at t = 0, then f is a centered process.
Characterization:
f is a martingale if and only if ∃g, f(t, .) = f(0, .) +

∫ t
0 g(t′, .)dBt′ .

Defintion A.4. Continuous semimartingale
f is a continuous semimartingale if and only if it the sum of a finite variation process
and a martingale

Stochastic calculus deals only with semimartingales. In our fluid dynamics repre-
sentation, we also deal with time-decorrelated processes, formally, the differentiation
along time of a martingale.

Defintion A.5. Quadratic variation and quadratic cross-variation
If f and g are semimartingale and f(t = 0) = g(t = 0) = 0, then, their quadratic
cross-variation, noted < f, g >, is the unique finite variation process such fg− <
f, g > is a martingale and < f, g >t=0= 0 .

Characterization:

• If f(t, .) =
∫ t

0 f1(t′)dt′ +
∫ t

0 f2(t′)dBt′ and g(t, .) =
∫ t

0 g1(t′)dt′ +
∫ t

0 g2(t′)dBt′ ,

then < f, g >t=
∫ t

0 f2(t′)g2(t′)dt′.
It should be noticed that, if f2 and g2 are random, < f, g > is also random.
• < f, g >t= P− lim

∆t→0

∑tn=t
ti=0(f(ti)− f(ti−1))(g(ti)− g(ti−1)).

Thus, < f, g > may be interpreted as a kind of ”covariance along time”.

Theorem A.1. Itô-Wentzell Formula
If (t, x)→ f(t, x) and (t, y)→ g(t, y) are semimartingale (as function of time), and
x→ f(., x) is twice differentiable, then

dt (f(t, g(t, y))) = dtf + ∂xfdtg +
1

2
∂2
xxfdt < g, g > +dt < ∂xf, g > .
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B. Equivalence of formulation for the stochastic transport and
Navier-Stokes theorem

B.1. Stochastic Reynolds transport model

[14] describes the stochastic transport theorem as follows:

d

∫
V (t)

q(x, t)dx =

∫
V (t)

dtq +

∇ · (qw) +
1

2
‖∇ · σ‖2q − 1

2

∑
i,j

∂xi∂xj (aijq)|∇·σ=0

 dt+∇ · (qσdBt)

 dx,

where:∑
i,j

∂xi∂xj (aijq)|∇·σ=0
=

∑
i,j

(∂xi∂xj (σi.σ
t
j.))|∇·σ=0

q + 2(∂xi(σi.σ
t
j.))|∇·σ=0

)∂xjq + aij∂xi∂xjq,

=
∑
i,j

∂xjσi.∂xiσ
t
j.q + 2σi.∂xiσ

t
j.∂xjq + aij∂xi∂xjq,

=
∑
i,j

∂xi∂xj (aijq)− 2∂xi∂xjσi.σ
t
j.q − ∂xiσi.∂xjσtj.q − 2∂xiσi.σ

t
j.∂xjq.

So,

1

2
‖∇ · σ‖2q − 1

2

∑
i,j

∂xi∂xj (aijq)|∇·σ=0
=

∑
i,j

−1

2
∂xi∂xj (aijq) + ∂xi∂xjσi.σ

t
j.q

+∂xiσi.∂xjσ
t
j.q + ∂xiσi.σ

t
j.∂xjq,

= −1

2
∇ · (∇ · (aq)T ) +∇ · (σ(∇ · σ)T q),

= ∇ ·
(
−1

2
(∇ · (aq)T ) + σ(∇ · σ)T q

)
.

B.2. Stochastic Navier-Stokes model

[14] describes the r-th coordinate of the diffusion tensor of the stochastic Navier-
Stokes model as:

τr(w) =
∑
i,j

1

2
ρaij∂xi∂xj (wr) + ∂xi(ρaij)|∇·σ=0

∂xjwr,

=
∑
i,j

1

2
ρaij∂xi∂xj (wr) + ∂xi(ρaij)∂xjwr − ρ∂xi(σi.)σj.∂xjwr,

=
1

2
(∇ · (∇ · (ρawr)T ))−∇ · (∇ · (ρa)T )))wr − ρ∇ · σσT∇wr.
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C. Dissipative effect of sub-grid tensor τ

If the density, ρ, is assumed to be constant, then ∇·σ = 0 by the martingale part of
the mass conservation. Moreover, a or w and its derivatives are assumed to be null
in the border of Ω, then with two integrations by parts,∑

k

∫
Ω
wk∇ · (∇ · (awk))T dx =

∫
Ω
w ·
∑
i,j

∂2

∂xi∂xj
(ai,jw) dx

= −
∫

Ω

∑
i,j

∂

∂xi
wt
∂ (ai,jw)

∂xj
dx,

= −
∫

Ω

∑
i,j

(
∂wT

∂xi

∂ai,j
∂xj

w +
∂wT

∂xi
ai,j

∂w

∂xj

)
dx,

= −
∫

Ω

∑
i,j

(
1

2

∂‖w‖22
∂xi

∂ai,j
∂xj

+
∂wT

∂xi
ai,j

∂w

∂xj

)
dx,

=

∫
Ω

(
1

2
∇ · (∇ · a)T ‖w‖22 − ‖∇wT‖2a

)
dx,

where ‖∇wt‖2a
4
=
∑

k ‖∇wk‖2a
4
=
∑

k∇wT
ka∇wk = tr ((∇wT )Ta∇wT ).

2

∫
Ω
w · τ dx = ρ

∫
Ω

(
1

2
∇ · (∇ · a)T ‖w‖22 − ‖∇wT‖2a −∇ · (∇ · a)T ‖w‖22

)
dx,

= −ρ
∫

Ω

(
1

2
∇ · (∇ · a)T ‖w‖22 + ‖∇wT‖2a

)
dx.

Using now the finite variation part of the mass conservation, which is ∇ · w =
1
2∇ · (2∇ · a)T , we get:

2

∫
Ω
w · τ dx = −ρ

∫
Ω

(
∇ · w‖w‖22 + ‖∇wT‖2a

)
dx,

= ρ

∫
Ω

(
(w · ∇) ‖w‖22 − ‖∇wT‖2a

)
dx,

= ρ

∫
Ω

(
2 w · ((w · ∇)w)− ‖∇wT‖2a

)
dx.

Considering together the advection term and the sub-grid term of the Navier Stokes
equation we have for the energy:

(C.1)

∫
Ω
w · (−ρ (w · ∇)w + τ) dx = −ρ

2

∫
Ω
‖∇wT‖2adx < 0,

which is the sought result. It should be noted that in the incompressible deterministic
equation, ∇ · w = 0 and thus the advection term (w · ∇)w does not influence the
global energy. Here however, it is not the case anymore and this term has to be
taken into account, as above.



27

Acknowledgements

The authors would like to kindly thank Johan Carlier and Dominique Heitz for
providing data and their expertise in physical interpretations.

References

[1] J. Slingo and T. Palmer. Uncertainty in weather and climate prediction. Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and En-
gineering Sciences, 369(1956):4751–4767, 2011.

[2] T. Palmer and P. Williams. Introduction. stochastic physics and climate mod-
elling. Philosophical Transactions of the Royal Society of London A: Mathe-
matical, Physical and Engineering Sciences, 366(1875):2419–2425, 2008.

[3] G. Vallis. Atmospheric and oceanic fluid dynamics: fundamentals and large-
scale circulation. Cambridge University Press, 2006.

[4] R. Kraichnan. Eddy viscosity and diffusivity: exact formulas and approxima-
tions. Complex Systems, 1(4-6):805–820, 1987.

[5] P. Parnaudeau, J. Carlier, D. Heitz, and E. Lamballais. Experimental and
numerical studies of the flow over a circular cylinder at Reynolds number 3900.
Physics of Fluids, 20(8):085101, 2008.

[6] M. Lesieur and O. Metais. New trends in large-eddy simulations of turbulence.
Annual Review of Fluid Mechanics, 28(1):45–82, 1996.
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35042 Rennes, FRANCE
e-mail: valentin.resseguier@inria.fr

etienne.memin@inria.fr

url: http://www.irisa.fr/fluminance

Ifremer,
Pointe du Diable,
29280 Plouzan, FRANCE
e-mail: bertrand.chapron@ifremer.fr

mailto:valentin.resseguier@inria.fr
mailto:etienne.memin@inria.fr
http://www.irisa.fr/fluminance
mailto:bertrand.chapron@ifremer.fr

	Introduction
	The proposed stochastic model
	Stochastic representation of the Reynolds-transport theorem
	Stochastic Navier-Stokes model

	Classical model reduction using POD
	Stochastic POD
	Model
	Choice of the time step
	Estimation of the uncertainty variance tensor
	The uncertainty variance tensor is constant in time
	The uncertainty variance tensor is time varying
	The uncertainty variance tensor is in the span of the Chronos


	Numerical results
	Characteristics of the data
	Reconstruction of Chronos

	Conclusion
	Basic notions of stochastic calculus
	Equivalence of formulation for the stochastic transport and Navier-Stokes theorem
	Stochastic Reynolds transport model
	Stochastic Navier-Stokes model

	Dissipative effect of sub-grid tensor 
	Acknowledgements
	References
	Author's addresses

