
HAL Id: hal-01215287
https://hal.science/hal-01215287v1

Preprint submitted on 13 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel and Distributed Stream Processing: Systems
Classification and Specific Issues

Roland Kotto-Kombi, Nicolas Lumineau, Philippe Lamarre, Yves Caniou

To cite this version:
Roland Kotto-Kombi, Nicolas Lumineau, Philippe Lamarre, Yves Caniou. Parallel and Distributed
Stream Processing: Systems Classification and Specific Issues. 2015. �hal-01215287�

https://hal.science/hal-01215287v1
https://hal.archives-ouvertes.fr

Parallel and Distributed Stream Processing:
Systems Classification and Specific Issues

Roland Kotto-Kombi1,2, Nicolas Lumineau1,3,
Philippe Lamarre1,2, and Yves Caniou1,4

1 Université de Lyon, CNRS
2 INSA-Lyon, LIRIS, UMR5205, F-69621, France

3 Université Lyon 1, LIRIS, UMR5205, F-69622, France
4 ENS de Lyon, LIP, F-69364, France

Abstract. Deploying an infrastructure to execute queries on distributed
data streams sources requires to identify a scalable and robust solution
able to provide results which can be qualified. Last decade, different
Data Stream Management Systems have been designed by exploiting new
paradigm and technologies to improve performances of solutions facing
specific features of data streams and their growing number. However,
some tradeoffs are often achieved between performance of the processing,
resources consumption and quality of results. This survey5 suggests an
overview of existing solutions among distributed and parallel systems
classified according to criteria able to allow readers to efficiently identify
relevant existing Distributed Stream Management Systems according to
their needs ans resources.

Keywords: Distributed Stream Management Systems, Workflow, Map
Reduce

1 Introduction

With the multiplication of data streams sources (sensor networks, con-
nected devices...), stream analysis applications have known great evolu-
tion on last years. The treatment of data stream that is to request or to
analyze data represents a challenge in terms of performance, scalability,
robustness and results quality. Unlike disk-based data, data streams are
potentially infinite and some of their features are unpredictable like items
distribution and throughput. To request data streams, the solutions[21,
18] based on centralized DBMS proves to be limited and irrelevant[22, 2].
Thus, some Data Stream Management Systems (DSMS) were designed,
like STREAM[4], Aurora[2] or TelegraphCQ[10], to compute queries on
data streams, called continuous queries. These queries may be repre-
sented as dataflow diagrams where streams runs between operators to
deliver results to end-users with low latency. Concerning the deployment
of DSMS, they turn from centralized but multi-core systems running on

5 This work has been partially supported by French National Agency for Research
(ANR), project SOCIOPLUG (ANR-13-INFR-0003).

a single machine [2] to a distributed infrastructure like Grid or Cloud [1,
20]. It is worth noting that all systems we consider in this paper are able
to execute multiple queries simultaneously and exploit on or more type
of parallelism described in the course of this article.
With the apparition of MapReduce framework[12], a different way of
distributing operators is developed. MapReduce has the advantage to
provide a highly parallel programming paradigm and to remain simple.
Operators are simple to define and parallelism management is hidden to
users. In that context, some DSMS based on MapReduce framework have
been developed like SparkStreaming[24], C-MR[8], M3[3], and provide
different visions on stream processing.
This survey aims at exploring the various issues faced by existing Data
Stream Management Systems, at bringing a more precise view of contin-
uous query processing and at facilitating the comparison of the different
known solutions.
In this article, we present an original and up-to-date classification of par-
allel DSMS. This classification is not only based on different paradigms
on which DSMS have been defined these last years, but also considering
some aspects related to systems capacities to optimize data computations
by reusing intermediate results and to be deploy in a distributed way.
These inherent DSMS features are completed by considering comple-
mentary aspects related to resource consumption, robustness and quality
results.
The remainder of this paper is built as follow: in Section 2, the back-
ground exposes stream definitions and how they can be processed with
workflows. The MapReduce framework is also reminded. Next, Section
3 presents the related work about existing surveys and their limits. Our
classification of existing DSMS is proposed in Section 4. Section 5 pro-
poses a transversal point of view of DSMS on aspects related to the
resource consumption, the robustness and the quality of results, before
concluding into Section 6.

2 Background

To understand the specific requirements of parallel and distributed stream
processing, we remind readers about some basic notions like stream and
window definitions. Next we briefly remind some features about oper-
ators and query language, before considering the two main paradigm
relevant to improve stream processing performance: workflow and Map
Reduce.

2.1 Stream

We remind the stream definition given in [5].

Definition 1. (Stream) Let consider a schema S, composed by attributes
which describe data, and an ordered timestamp set τ . A stream is a po-
tentially infinite multiset of elements < si , τi > where si is a tuple of
the stream respecting the schema S and τi ∈ τ the associated timestamp.

2

It is important to notice that the timestamp is not included in the schema
so many stream elements can share the same timestamp and the number
of elements sharing a same timestamp must be finite.
Data streams can not be managed and processed like static data be-
cause of specific features like unpredictability. For more details, see for-
mer surveys [7, 22]. Actually, they are potentially infinite bag of data.
Data streams can not be stored on disk for further treatments because
they may require unbounded amount of memory. From a practical point
of view, data streams can not be gathered completely before process-
ing them. Moreover, they are unpredictable considering input variations.
Items may arrive by millions per seconds like click logs for website mon-
itoring applications. Stream rate variations may happen any-time and
require more resources during runtime. Finally, systems can not antici-
pate arrivals of data, as they arrive continuously, not at regular intervals.

2.2 Window

Because data streams can not be stored on memory, an alternative is to
consider only recent data, called computation window, (or just window
[7]) to get a result based on a data subset.

Definition 2. (Computation Window) A computation window is a logic
stream discretization [24] which is defined by a size and a slide (see Figure
1a). Considering the front of a window and the chronological order, the
size defines the timestamp interval of elements to consider. The slide
defines the step between two consecutive window fronts.

According to Definition 2, a window is denoted tumbling window as found
for instance in [13, 2] if size and slide values are the same. In other cases,
it is denoted a sliding window as we may find in [8, 24].

(a) Sliding window (b) Window division in multiple
panes

Fig. 1: Computation window representation

For both types, the size and slide for window can be based on two dif-
ferent units of measurement: time-based and count-based approaches.

3

Definition 3. (Time-based window) A time-based window is defined on
a time interval t0 to tn. A stream element e belongs to the window if τe
∈ [t0, tn[with τe the timestamp of e.

In Figure 1a, the first time interval, represented by iteration 1, allows to
gather 20 first elements (5+3+2+2+3+5) together and iteration 2 allows
to gather 30 elements (5+6+6+6+7) together. It is worth noting that
considering the current window slide and window size, five elements are
common for the both iterations.

Definition 4. (Count-based window) A count-based window is defined
according to a number of elements k. This value k corresponds to the win-
dow size. The k-th most recent elements belong to the current iteration.
The slide defines the number of new elements to receive before computing
a new result on the updated window content.

As highlighted in [5], count-based windows are not deterministic when
considering multiple elements per timestamp stream. Indeed, let consider
a count-based window which considers the last one hundred stream ele-
ments. If more than one hundred elements arrive in the system at a same
timestamp the window definition is not deterministic anymore because it
is impossible to determine which elements to consider for computation.
According to window definition (see Definition 2), we accept that con-
secutive iterations can share elements when the slide is smaller than the
size. These shared subwindows, denoted panes, represent a logic stream
discretization as illustrated on Figure 1b. Considering that window size
and slide are fixed for all the computation, the size of a pane is mostly
given by the greatest common divisor between the size and the slide of
a given windowing schema. As mentioned above, a pane can be shared
by many consecutive iterations. This means that the result of a query
on a pane can be useful for all iterations it belongs. It is then a crucial
feature to consider for incremental computation of sliding windows for
mutualization of pane results.

2.3 Stateless or stateful operators

Operators (filter, join, sort . . .) applied on data streams may require to
treat element by element or by logical block of elements. Thus, we distin-
guish two main categories of operators : stateless and stateful operators.

Stateless operators, for example filters based on an attribute value, pro-
cessed data streams element by element. They return a new result with
an unpredictable frequency. For example, a filter will return nothing if its
input does not satisfy the filtering predicate. Moreover, they do not have
information about the current iteration of the computation window or
former results when they compute a result from a data stream element.
Nevertheless, a stateless operator may used historic data stored on local
memory or disk. It allows to compute joins or some aggregate operators
within a stateless operator.

4

In opposition, stateful operators takes as input a logic block of stream
elements to compute a single result for the entire set. The stream ele-
ment block may be defined by a range of timestamps or a number of
elements to consider. They keep information like the current iteration of
the window or the list of distinct element values to process a result from
all considered elements. Information generated during a stateful opera-
tor runtime is denoted its state. For example, a window-based stateful
operator computing the sum of an element attribute for each computa-
tion window. Its state contains the identifier of the current iteration, the
definition elements to consider for each input block and the current sum
value. It is important to notice that the definition of the block does not
necessary match with the window definition. The aim is to be able to
build the window result directly from block results.
This major distinction between stateless and stateful operators needs to
be considered in the definition of a continuous query language.

2.4 Continuous query languages

We introduce three levels of continuous query languages. These languages
provide tools to process data stream through different interfaces and with
different language expressiveness.

CQL and SQL-derived languages. The first level of continuous
query languages is based on SQL. Actually, languages like CQL[5], are
built over SQL. They add to basic SQL implementation, the support
of computation windows, described with more details in Section 2.2. In
addition, they provide operators returning a stream from data streams
or static data.
For example, CQL considers three classes of operators : Stream-to-Relation,
Relation-to-Relation and Relation-to-Stream. Stream-to-Relation refers
to computation window definition as illustrated in Section 2.2. These
operators take as input a stream and return an instantaneous relation
R according to the window definition. R is composed by tuples belong-
ing to a window and can be processed as a static relation. Relation-
to-Relation operators correspond to basic SQL operators (projection,
selection, join...). Finally, Relation-to-Stream operators allow to build a
stream from one or many instantaneous relations. CQL operators and
optimization techniques are presented with more details in [5].

Box and arrow : graphical programming. Box and arrow paradigm
[2] represents an application as a direct acyclic graph (DAG) of boxes con-
nected by arrows. A box corresponds to an operator, stateless or stateful,
taking stream elements as inputs. Arrows indicate how stream elements
run between boxes. Considering a set ω of predefined operators including
Stream-to-Relation, Relation-to-Relation and Relation-to-Stream oper-
ators, a continuous query can be defined graphically as a box and arrow
DAG where boxes are composed of operators from ω. The main difference
with CQL is that the continuous query can not benefit from automatic

5

query optimization based on algebraic properties. Performances of a box
and arrow DAG depend more on user implementation than a graph gen-
erated from an equivalent CQL query.

Programming patterns. The expressiveness of pattern allow to
define stateless and stateful operators. Thus, patterns take as input a
stream element or a list of stream elements and apply a user-defined
operator written in a programming language like JAVA, C or Python.
There are two main differences between programming patterns and other
continuous query languages. First, a continuous query must be defined
as the composition of atomic operators. It increases deeply development
and maintenance effort because each operator is user-defined. Second,
the optimization of the global execution requires to rewrite operators
one by one. No automatic optimization based on algebraic properties
can be applied.

We have exposed notions and definitions necessary to handle data streams
and define continuous queries. It is important to see then how these con-
tinuous queries are executed within a DSMS. For continuous query exe-
cution, two paradigms arise: workflow-designed queries and MapReduce
framework.

2.5 Workflow

To clarify the concept of workflow, we remind the following definition.

Definition 5. (Workflow) A workflow is a direct acyclic graph (DAG)
where vertices are operators and edges define data transmission between
operators.

Independently from their semantics, operators can process data one by
one, denoted pipeline execution (see Definition 6), or by block of data,
for example aggregative operators. Operators communicate following two
models: by invoking operator functions or via unbounded FIFO queues
(pipeline) and buffers (block). In the context of stream processing, work-
flows present the advantage to be able to play on data and operator
parallelism. Indeed, data streams can be processed in parallel without
changing operator semantic. For example, while filtering important data
stream volumes, data can be partitioned and distributed between multi-
ple replicas of a single filter, each replica being processed independently.
It is denoted as the stream partitioning pattern[19].

Definition 6. (Stream pipelining) Let P be an operator which can be
divided into k consecutive subtasks. Each Pi, i ∈ [1;k], is denoted the i-th
stage of P and is executed on an exclusive process.

According to Definition 6, operators of a workflow can be seen as stages of
a super operator. Data stream elements run then through all the stages
sequentially. The limitation to stream pipelining is the presence of an
aggregate operator requiring a set of data to compute a result.

6

Definition 7. (Stream partitioning) Let P1, P2,..., Pk be k independent
operators. They all take as input a subset of outputs produce by an oper-
ator P0. In order to process the k independent operators in parallel, P0

can split its outputs in k partition and distribute a partition to each Pi,
with 1≤i≤k.

According to Definition 7, an operator of a workflow can split its outputs
to distribute partitions among multiple operators. The partition method
varies according to the semantic of next operators. For example, an op-
erator A distributing its outputs to k replicas of a same logic operator
B. In that case, A can split its outputs only considering load balancing
between replicas of B. But, if A is distributing its outputs to distinct
and independent operators B and C, the partition policy depends on B
and C semantic. Finally, a solution is that A replicate all its outputs for
each following operator according to a workflow.

2.6 MapReduce paradigm

MapReduce [12] is a well-known framework developed initially to pro-
cess huge amount of disk-based data on large clusters. The strength of
this framework is to offer great parallelism with a simple programming
paradigm. Actually, the core of any MapReduce application relies on two
functions: Map and Reduce. These generic functions are defined as follow
according to [12]:

Map (keyin, valin) −→ list(keyinter, valinter)
Reduce (keyinter, list(valinter)) −→ list(valout)

As mentioned above, MapReduce framework aims disk-based data pro-
cessing. Contrary to DBMS, MapReduce-based systems do not rely on
data model to optimize treatments. In order to distribute great amount
of data on a large cluster, data are partitioned with regards to cluster
configuration (e.g. number of nodes executing Map and Reduce func-
tions). Each partition is identified with a key used to affect the partition
to a Map node. The scheduling between partitions and Map nodes follows
distribution strategies like Round-Robin in order to balance computation
load as good as possible. Each Map node executes the user-defined Map
function on one or many partitions. The function produces a list of inter-
mediate key/value list pairs depending on partition contents. Map phase
outputs are then shuffled and sorted in order to make the Reduce phase
easier. An optional phase, called Combine, can be processed on each Map
node. The Combine phase consists in applying the Reduce function on
Map outputs in order to have results for each partition. It may be useful
while having potentially several redundant computation like in [8]. Each
Reduce node gathers intermediate key/value list pairs and computes a
list of value which are final results.

7

3 Related works

Previous surveys[7, 22] presents some workflow-based DSMS like Au-
rora[2], STREAM[4] and TelegraphCQ[10] appeared in order to deal with
these new issues. Main objectives are to provide:

– Continuous query definition on data streams in a high level language
including windowing schema support.

– A query execution architecture that produces results as fast as pos-
sible and minimize number of computation thanks to result mutual-
ization.

– Structures to avoid that input rates overwhelm the query processor.

After works described in the survey[7], the MapReduce framework ap-
pears as a robust solution that scales up easily for highly parallel batch
processing. Some solutions based on MapReduce have emerged [8, 24, 3,
15]. An other survey[14] presents some patterns related to ability of a
DSMS to dynamically adapt their treatments to their execution environ-
ment. Those patterns are merged behind the notion of the elastic stream
processing. In addition, a survey[19] exposes patterns and infrastructures
dealing with failover management and treatment parallelization. It is rel-
evant to present those issues in order to offer a global overview of stream
processing deadlocks.
In this context, we suggest, through this survey, an up-to-date overview
of stream processing techniques and management systems covering and
comparing workflow-based and MapReduce-based DSMS.
.

4 Classification of stream processing systems

This section aims at facilitating the comparison of recent parallel and/or
distributed DSMS according to some performance features. Our classifi-
cation is based on three criteria of comparison. The first criterion con-
cerns the paradigm of the solution, i.e., the topology of a continuous
query within a DSMS. Facing our constraints of parallelism and distri-
bution, two paradigm are found in the literature: the former, named
workflow-based, consists in turning a continuous query into a workflow
(see Section 2.5) and distribute operators among nodes while the lat-
ter, named Map Reduce-based, consists in exploiting the Map Reduce
paradigm to massively parallelize query processing. Hybrid approaches
will be also considered. The second criterion allows to separate systems
supporting window incremental processing or not. As presented in
Section 2.2, window iterations can share panes. Panes size can be deter-
mined directly from window specifications. A DSMS can take advantage
of this knowledge to compute results on panes and store them for mutu-
alization between consecutive iterations of a sliding window. It aims at
reducing computations only relying on an appriopriate stream discretiza-
tion. Moreover, it allows to process in parallel consecutive panes and
merge results after. In order to discretize streams according to panes, it
requires that a DSMS includes window-oriented strategy and identifica-
tion management at least for data scheduling or, in addition, for stream

8

acquisition. Moreover, pane management within a DSMS can open to
other window-based improvements. We consider that a DSMS unable
to process windows incrementally, includes window batch processing
mechanisms. The last criterion includes the support of the paral-
lel execution and allows to distinguish centralized multi-core solutions
from distributed ones. Indeed, It appeared, like for batch processing, that
the exploitation of a cluster of machines becomes necessary to scale up
DSMS applications.

Fig. 2: Parallel Data Stream Management Systems classification

Figure 2 depicts our classification of different parallel stream processing
techniques according to the previous criteria. For instance, the Bore-
alis system is classified as a workflow-based DSMS computing window
iteration results incrementally with the possibility to distribute query
processing on a cluster. Moreover an extended classification considering
other types of query (i.e. no continuous query) and other levels of data
granularity is available here6. The rest of this section provides details for
each solution classified according to our criteria.

4.1 Workflow-based solutions

Workflow-based solutions are chronologically the first to be developed.
We suggest, for the remainder of this section, a generic runtime architec-
ture. It is composed of three layers. The acquisition layer is an interface
between inputs (raw data streams) and the query engine that execute
the workflow. This layer includes acquisition units able to operate basic
treatments on input streams like data fusion and data partitioning or

6 http://liris.cnrs.fr/roland.kotto-kombi/PDSMS/classification/

9

complex treatments like load shedding. Load shedding aims at absorb-
ing input stream variations in order that the processing layer respects
latency and quality constraints.

Fig. 3: Generic and global architecture for workflow-based DSMS

The processing layer is composed of five components. First, a workflow
compiler turns a query or a workflow into an executable query plan. Sec-
ond, a data dispatcher routes data to the appropriate operators. Then, a
scheduler applies a strategy to distribute operators on processing units.
Scheduling strategies could be based on operators cost, selectivity or
inter-unit traffic. Next, operators are allocated on a processing unit in
order to be executed. They potentially belong to multiple query plans.
These operators are executed on physical computation nodes on the in-
frastructure layer thanks to a resource manager.

Window batch processing Firstly, we consider a centralized multi-
core solution named Aurora[2]. Even if this DSMS includes window sup-
port thanks to an Aggregate operator[2], it does not compute results on
panes but on complete windows. The lack of pane management prevents
it to mutualize computations within a workflow. Moreover, considering
time-based windows, the size of a window may vary deeply and require
disk storage before processing. To tackle this issue, a timeout can be
applied to the Aggregate operator. It avoids out-of-memory errors and
guaranties a theoric maximal end-to-end latency. Aurora is a workflow-
based solution running on centralized multi-core architecture. The objec-
tive of Aurora is to suggest a data stream-oriented solution that is not
based on existing batch-oriented management systems. If we consider
the Figure 3 anew, the acquisition units are implemented by queues with

10

priority policies. The scheduling strategy is based on Quality-of-Service
(QoS) specifications defined by the user (e.g., latency). In Aurora, a
continuous query corresponds to a workflow. This workflow is denoted
an application and is composed by operator boxes. Boxes are linked by
arrows to define how data streams run into the application. Aurora pro-
vides not only graphical tools to define applications, but also a syntax
to write continuous queries in a SQL-like language based on a set of pre-
defined primitives. Moreover, these primitives implement stateless and
stateful operators. To execute stateful operators, some additional buffers
are used in the processing layer. Aurora aims applications like sensor net-
work monitoring. In fact, Aurora is limited to small scale applications
because of the capacities of memory and cores.

Amongst distributed solutions that are tuple-oriented and based on work-
flows, we have identified some Aurora extensions [11, 9] and some Apache
solutions [23]. As direct extension of Aurora project, Aurora* [11] aims
at extending Aurora architecture with a computation cluster composed
by heterogeneous machines. All machines must be under a same admin-
istration domain. Indeed, a master has to be able to gather information
about each machine and distribute application fragments between ma-
chines. Aurora* applications can be write exactly like Aurora applica-
tions. Operator distribution is completely manage by the master’s sched-
uler. It limits tuning opportunities to manage specifically operators. The
gain obtained through distribution allows to target medium and large
scale stream-based applications. Targeted applications are network mon-
itoring, location tracking services or fabrication line management.

Aurora* installed main tools to distribute Aurora’s applications on a
cluster of machines. Nevertheless, many stream-based applications can
be processed on clusters which are physically separated and grouped
under administrative entities. These administrative entities encapsulate
information on cluster nodes. The DSMS Medusa[9] aims then at pro-
viding an infrastructure to support federated operation across adminis-
trative boundaries. Actually, the master does not have information about
each machine. The global cluster is composed of participant, themselves
composed of a variable number of heterogeneous machines. Medusa dis-
tributes application fragments between participants. Each participant
has, at the initialization, a same amount of economical resources. They
can use those resources to delegate operators to an other participant in
case of potential or effective overload. The global system follows micro-
economic concept to reach a stability. Medusa relies on Aurora interface
to define continuous queries. As Aurora*, Medusa targets medium and
large scale stream-based applications.

Apache Storm7 aims at providing a framework for scalable and fault-
tolerant stream processing. It relies on a cluster of heterogeneous ma-
chines. According to Storm architecture, a machine, called a worker node
is composed of workers. Each worker contains a variable number of slots.
A slot is an available computation unit which has dedicated CPU re-
sources. When an operator is affected to a slot, it is encapsulated in

7 https://storm.apache.org/

11

an executor. According to our generic architecture, processing units are
equivalent to workers. Each operator corresponds to an executor. Con-
trary to Aurora’s architecture, acquisition units are explicitly operators
of workflows in Storm. Continuous queries are represented as user-defined
workflows, denoted as topologies. These topologies are also workflows but
vertices belongs to two main categories: Spout and Bolt. Spouts are data
transmission nodes and can be conceptualized as multiplexers. They pro-
vide an interface between sources and processing environment. After get-
ting connected to one or many sources, they transmit data streams to
one or many Bolts. Each Bolt execute a user-defined operator which is
considered as atomic. Storm does not include primitives but provides pro-
gramming patterns (see Section 2.4). Basically, Storm does not support
stateful operators, so naturally does not support window incremental
processing, but they can be added through API extension. Allocation of
executors on workers is achieved by a scheduler minimizing CPU and
memory usage. Storm targets applications handling huge volume of data
like social data management.

T-Storm [23] extends Storm by suggesting a traffic-aware scheduler to
handle potential network bottleneck. Topologies tends to be split in more
dense subgraphs before operator allocations on slots.

Window incremental processing Some centralized solutions [4,
10] have appeared including window-based techniques due to the need
to mutualize some calculus during sliding windows computations.
STREAM[4] aims at suggesting a data stream-oriented solution sup-
porting the declarative and expressive SQL-like query language CQL.
On the architecture level, STREAM differs from Aurora on two major
aspects: i) the acquisition units exploit the Stream-to-Relation operators
defined in CQL (see Section 2.4) and ii) the scheduler module is based
on the chain scheduling algorithm minimizing memory usage during run-
time[6]. Thanks to CQL, STREAM can automatically optimize SQL-like
queries and turn them into query plan as explained in Section 2.5. As
Aurora, STREAM supports stateless and stateful operators. Instead ded-
icating a core for a workflow, STREAM can identify operators common
to multiple workflows and mutualize computations. But, like Aurora, it
aims small scale applications. Targeted applications by STREAM deal
with real-time monitoring like financial analysis.

TelegraphCQ[10] aims at offering a flexible infrastructure for fault-
tolerant stream processing. TelegraphCQ totally differs from the generic
architecture. Acquisition units are replaced by ingress and caching mod-
ules like a sensor proxy to create an interface with external data sources.
TelegraphCQ engine, called Eddy, replaces processing units and considers
a workflow only like an operator set with a routing policy. Operators are
connected to the Eddy and all operator inputs and outputs pass through
him. TelegraphCQ provides an hybrid interface for continuous query def-
inition. Actually, it offers a set of predefined operators (project, join,
filter, tumble...). But these operators can only be combined for the defi-
nition of operators respecting programming patterns (see Section 2.4). A

12

TelegraphCQ application is then a workflow of user-defined stateless and
stateful operators and each operator is the composition of primitive. Like
Aurora and STREAM, it can handle small scale applications because the
star-like model, centred on the Eddy, may generate an important inter-
operator traffic increasing deeply with data stream volumes. Targeted
applications are event-based business processing.
Amongst existing distributed workflow-based solutions, we identify Bo-
realis[1], solution derived from Aurora*, as a distributed solution which
considers windows for performance improvement. The main objective of
Borealis is to improve result quality by softening the impact of real-world
stream defects during processing. Indeed, some anomalies may be due to
not only an inefficient tuple transport inside an overloaded network but
also the emission of incorrect tuple values. Corrections can be done by
dynamically revising query results and modifying query specifications
(e.g., modifying latency between two consecutive results). Taking ad-
vantage of Aurora* and Medusa improvements, Borealis can be executed
under one or multiple administrative domains. As Aurora* and Medusa
Borealis is based on Aurora’s graphical interface and syntax for contin-
uous query definition. Borealis aims more specifically applications based
on self-correcting stream sources like financial service applications.

13

A
u
ro

ra
A

u
ro

ra
∗

M
ed

u
sa

B
o
re

a
li
s

S
T

R
E

A
M

S
to

rm
T

-S
to

rm
T

el
eg

ra
p
h
C

Q

E
x
ec

u
ti

o
n

su
p
p

o
rt

ce
n
tr

a
li
ze

d
m

u
lt

i-
co

re
d
is

tr
ib

u
te

d
d
is

tr
ib

u
te

d
d
is

tr
ib

u
te

d
ce

n
tr

a
li
ze

d
m

u
lt

i-
co

re
d
is

tr
ib

u
te

d
d
is

tr
ib

u
te

d
ce

n
tr

a
li
ze

d
m

u
lt

i-
co

re

C
o
n
ti

n
u
o
u
s

q
u
er

y
d
efi

n
it

io
n

g
ra

p
h
ic

a
l

g
ra

p
h
ic

a
l

g
ra

p
h
ic

a
l

g
ra

p
h
ic

a
l

C
Q

L
o
r

g
ra

p
h
ic

a
l

A
P

I
A

P
I

A
P

I

W
o
rk

fl
ow

te
rm

in
o
lo

g
y

a
p
p
li
ca

ti
o
n

a
p
p
li
ca

ti
o
n

a
p
p
li
ca

ti
o
n

a
p
p
li
ca

ti
o
n

q
u
er

y
p
la

n
to

p
o
lo

g
y

to
p

o
lo

g
y

q
u
er

y
p
la

n

V
er

ti
ce

s
te

rm
in

o
lo

g
y

b
ox

es
b

ox
es

b
ox

es
b

ox
es

o
p

er
a
to

rs
sp

o
u
ts

o
r

b
o
lt

s
sp

o
u
ts

o
r

b
o
lt

s
m

o
d
u
le

s

P
ri

m
it

iv
e

o
p

er
a
to

rs
y
es

y
es

y
es

y
es

y
es

n
o

n
o

y
es

In
cr

em
en

ta
l

w
in

-
d
ow

su
p
p

o
rt

n
o

n
o

n
o

y
es

y
es

n
o

n
o

y
es

O
p

er
a
to

r
sc

h
ed

u
li
n
g

Q
o
S
-b

a
se

d
Q

o
S
-b

a
se

d
C

o
n
tr

a
ct

-
b
a
se

d
Q

o
S
-b

a
se

d
C

P
U

a
n
d

m
em

o
ry

b
a
se

d

C
P

U
a
n
d

m
em

o
ry

b
a
se

d

C
P

U
,

m
em

-
o
ry

a
n
d

n
et

-
w

o
rk

tr
a
ffi

c
b
a
se

d

C
P

U
a
n
d

m
em

o
ry

b
a
se

d

F
a
il
ov

er
m

a
n
a
g
em

en
t

n
o

y
es

y
es

y
es

n
o

y
es

y
es

n
o

Q
u
a
li
ty

ev
a
lu

a
ti

o
n

y
es

y
es

y
es

y
es

y
es

n
o

n
o

n
o

Q
u
a
li
ty

d
efi

n
it

io
n

sc
o
p

e
w

o
rk

fl
ow

ex
ec

u
ti

o
n

n
o
d
e

ex
ec

u
ti

o
n

n
o
d
e

v
er

te
x

v
er

te
x

-
-

-

A
p
p
li
ca

ti
o
n

ex
a
m

p
le

se
n
so

r
m

o
n
it

o
ri

n
g

n
et

w
o
rk

m
o
n
it

o
ri

n
g

n
et

w
o
rk

m
o
n
it

o
ri

n
g

st
o
ck

m
a
rk

et
a
n
a
ly

si
s

fi
n
a
n
ci

a
l

a
n
a
ly

si
s

st
o
ck

m
a
rk

et
a
n
a
ly

si
s

st
o
ck

m
a
rk

et
a
n
a
ly

si
s

ev
en

t-
b
a
se

d
b
u
si

n
es

s
p
ro

ce
ss

in
g

F
ig

.4
:

W
o
rk

fl
ow

-b
a
se

d
D

S
M

S
fe

a
tu

re
s

14

To sum-up (see Figure 4), workflow-based DSMS can process sets of
stateless and stateful operators on data streams[2, 4]. The definition of
a workflow can be done following two ways. On one hand, a workflow
is derived from a global continuous query[4]. These DSMS benefit from
algebraic optimization. On the other hand, a workflow is defined operator
per operator. Each operator is composed of predefined operators[2, 10]
or through an API[23]. They all take advantage of stream pipelining
but there are different scopes : multi-core on a single machine [2, 4] or
distributed on a cluster of heterogeneous[11, 9, 1, 23]. This scope impacts
the scalability of a DSMS.

4.2 MapReduce-based solutions

MapReduce-based DSMS [8, 16, 24, 3] are all designed to support win-
dowing schema and they can not return results as soon as data arrives in
the system. They must consider finite substreams which corresponds to
window definition. Nevertheless, it is rarely relevant to process an entire
window at a single time because it could represent huge volume of data
and delay the next window treatment. In this context, an other window-
oriented solution appeared to tackle stream discretization issue. We sug-
gest to separate MapReduce-based DSMS in two categories: Pipeline
DSMS [8, 16] which executes asynchronously Map and Reduce phase as
soon as they receive new inputs, and Buffer-based DSMS [24, 3] which
collects data pane-per-pane and computes Map and Reduce phase after.
Moreover, it is worth noting stream elements are turned into key/value
pairs to fit with MapReduce framework. Timestamps are neither key nor
value but only metadata to support windowing schema. Most phases de-
scribed in Section 2.6 are also implemented with some variations. The
main difference with batch-oriented systems like Hadoop is that sources
are data streams. Beyond the obvious acquisition challenge data streams
represents, it is also important to notice that handling multiple sources
is difficult. For some systems [8, 3], handling multiple sources is solved
by routing elements considering their respective keys.

Pipeline systems rely on an asynchronous execution of Map and Re-
duce phase. A pipeline DSMS based on MapReduce, called Continuous-
MapReduce (C-MR) suggests an implementation of asynchronous MapRe-
duce. The aim is to take advantage of stream partitioning (see Definition
7) based on key value. In C-MR [8], data streams are infinite sequence
of key/value pairs. As soon as a new element arrives in the system,
it triggers a Map operation. A node can then execute a Map operation
without considering which operation is running on other nodes. Elements
are routed to Mappers considering their respective keys. A specificity of
C-MR is that the Combine phase, described in Section 2.6, is manda-
tory. Thanks to the Combine phase, C-MR is able to generate a pane
oriented scheduling. Indeed, Map phase outputs are sorted according to
their timestamps and gathered on a node executing a Reduce function
on a pane content. To materialize the end of a pane during the exe-
cution, punctuation mechanisms are used. Each source sends a specific
tuple which marks that all tuples for a given pane have been sent. When

15

a Combine node receives punctuation tuples from all sources, the exe-
cution starts. C-MR essentially exploits these Combine nodes to avoid
redundant computations between consecutive sliding windows. An other
solution based on Hadoop[15] aims to take advantage of stream pipelin-
ing between mappers and reducers. The main contribution relies on a
scheduler based on hash functions optimizing jobs.

Some buffer-based solutions have been developed. The objective of those
DSMS is to discretize data streams and process each batch as any disk-
based data. Nevertheless, a complete MapReduce job is not triggered
from scratch for each batch. Apache Spark Streaming[24] brings the
Apache Spark Engine 8 to stream processing. Apache Spark is a par-
allel engine which executes DAG obtained from a SQL-derived query
or a MapReduce job. A graph is decomposed in MapReduce jobs by
Apache Spark and its execution is optimized to fit on main memory.
Spark Streaming appears then as an interface receiving tuples from data
streams and discretizing them into multiple batches. It directly corre-
sponds to our acquisition layer. Each batch is then processed by the
Spark Engine. According to Spark Streaming terminology, data streams
are turned into Discretized Stream, or DStream. A DStream is a poten-
tially infinite sequence of Resilient Distributed Dataset (RDD). A RDD
is defined by a timestamp range and it is important to notice that this
range is equivalent for all RDDs. A RDD can be considered as a pane
(see Figure 5) explicitly defined by a user. Spark Streaming supports the
definition of MapReduce jobs on sliding windows. As window size is a
whole number of RDDs, Spark Streaming can foresee which RDDs are
involved in multiple window computations. They are then cached as long
as a window benefits the intermediate result. It belongs to the second
generation of stream processing engines for large scale applications like
social network data management.

The motivation of iMR [16] is that many log processing applications
produce much less data than they consume. In this context, it is relevant
to process data streams locally and then send results for storage. Runtime
architecture of iMR is similar to C-MR’s architecture except operator
granularity. The aim remains to group pane results for potential multiple
reuses. But an important distinction is that iMR triggers a Map/Reduce
operation for a list of elements. In addition, iMR suggests an uncombine
operator to allow incremental operations. The physical implementation
of iMR relies on a cluster of machines. The heterogeneity of machines is
not handled by iMR’s resources manager.

M3[3] is an implementation for MapReduce execution exclusively on
main memory for stream processing. The objective is to suggest a MapRe-
duce DSMS resilient to input rate variations by dynamically revising dis-
cretization parameters. Instead of fixing the acquisition buffer size, M3

is based on a dynamic load balancing mechanism between Map nodes.
In fact, stream discretization aims at processing approximately the same
amount of data instead of triggering an execution at fixed timestamps.

8 https://spark.apache.org/

16

C-MR iMR Spark
Streaming

M3

Execution
support

centralized
multi-core

distributed distributed distributed

Continuous
query definition

API
(MapRe-
duce job)

API
(MapRe-
duce job)

SparkSQL
or API
(MapReduce
job)

API
(MapRe-
duce job)

Window
management

punctuation buffer-based buffer-based buffer-based

Pane
terminology

pane pane RDD pane

Operator
scheduling

window-
aware

window-
aware

window-
aware

window-
aware

Failover
management

no no yes yes

Application
example

sensor moni-
toring

logs analytic social data
analysis

network
monitoring

Fig. 5: MapReduce DSMS features

To summarize (see Figure 5), MapReduce-based DSMS integrate window-
oriented schedulers. The objective is to obtain intermediate results on
windows or subwindows for reuse. They take advantage of stream par-
titioning (see Defintion 7) in order to parallelize computations. In com-
parison with workflow-based DSMS, the definition of continuous queries
can be done operator per operator through MapReduce APIs [8, 16, 3]
but also globally with a SQL-derived [24].

4.3 Hybrid solutions

Hybrid DSMS rely on continuous queries represented by a workflow as
defined in Aurora*. But contrary to workflow-based DSMS, data are
turned into events [17]. An event is a key/value like MapReduce inputs.
The key represents the type of the data and the value, denoted the
attribute, corresponds to the tuple of the stream.

Window batch processing S4 [17] is an hybrid DSMS without
window-based optimization. It enriches workflow representation. Indeed,
each operator is associated to two metadata: a type list of consumed
events and a value list for each of them. It forms a Processing Element
according to S4 terminology. Each Processing Element has a dedicated
buffer which contains data to process. Data are grouped by key to make
operator execution easier like Reduce operations. Operators are user de-
fined but must respect patterns to guaranty that their execution can be
done in parallel. Even if S4 benefits from both paradigms, it lacks many

17

features. Contrary to most workflow-based DSMS, S4 does not support
a continuous query language. It compels developers to define ad hoc op-
erators for each query. Moreover, queries must be designed as a set of
Processing Element operators so difficult to translate for other DSMS.
It does not support windowing schema natively. Nevertheless, the in-
tegration of windowing schema only requires to set time-based buffers
for relevant Processing Element, e.g. an aggregate operator. Finally, S4
defines static routes between operators according to the global workflow.

Window incremental processing Based on a similar hybrid archi-
tecture than S4 but including window-based scheduling strategies, ESC
[20] is a DSMS aiming real-time stream analysis like pattern mining. ESC
has been developed as a platform for Cloud computing. The execution
support must be a cluster of homogeneous virtual machines in terms of
performances. It includes CPU speed, main memory capacity and also
bandwidth. Like S4, ESC represents a query as a DAG where each ver-
tex is a Processing Element. ESC offers more flexibility than S4 because
input Processing Elements are similar to Apache Storm Spouts [23]. Ac-
tually, they do not execute a specific task on data but only get connect to
multiple sources and send data to other Processing Elements which exe-
cute operators specified by the workflow. Data are represented as events
different from S4 ones. ESC events are sets of four elements: a type, a
context, a key and an associated value. The key/value pair is exploited
as it is in S4 architecture. The type is the semantic representation of an
event. For example while processing stock market data, the type can be
”stock value” or ”stock evolution” and the key, the acronym representing
a given stock. The context corresponds to the query interested by the
event. Comparing to S4, ESC suffers less drawbacks because window sup-
port is effective through time-based buffers. In fact, tumbling windows
are supporting thanks to a tick mechanism. ESC includes a clock which
emits a tick at regular interval. When a tuple arrives in the system, it
is affected to the closest tick which is used as timestamp. In addition,
all operators are synchronized and must process data belonging to their
respective buffers and flush them after. Nevertheless, ESC only provides
function patterns to define operators. Apache Flink is a DSMS which
relies on a distributed streaming dataflow engine. As Storm, Flink allows
the definition of a continuous query as a workflow of operators sending
their outputs to one or many other operators. Nevertheless, Flink sup-
ports a SQL-like language enriched with the operators Map and Reduce.
In this way, Flink is clearly an hybrid DSMS exploiting both stream
pipelining and stream partitioning. Finally, Flink implements a specific
memory management to tackle garbage collection issues.

We have exposed several DSMS according to our classification and it
emerges that stream processing on tumbling or sliding windows suffers
many constraints. Workflow-based solutions [2, 10, 9] aims at providing
results as soon as possible for monitoring and real-time analysis ap-
plications. They are mostly expressive [4] through the definition of a
continuous query language [5] which includes stateful operators and ex-

18

plicit windowing schema support. Comparing to Workflow-based DSMS,
MapReduce-based DSMS [8, 24, 16, 3] are designed to store and reuse
intermediate results. Our classification relies on logical criteria like the
integration of window-based optimization, conceptual like the paradigm
and physical like the execution support. Nevertheless, aspects dealing
with the adaptation of DSMS to their environment of execution must
also be considered for a complete overview.

5 Complementary issues for stream processing

This section aims at covering most aspects for resilient DSMS design.
In a first time, we introduce some dynamic optimization techniques for
elastic stream processing used in DSMS presented in Section 4. Secondly,
failover issues are presented. Some existing solutions are presented with
their limits. Then we introduce Quality-of-Service evaluation and differ-
ent variants existing in some DSMS.

5.1 Elastic stream processing

As introduced in Section 2.1, data streams are unpredictable. Input rates
may vary deeply in terms of volume and distribution of values at any mo-
ment during runtime. It may lead to bottlenecks at the acquisition and
processing layers. It is then an important aspect to consider in the anal-
ysis of a DSMS in order to estimate his availability during execution.
Dynamic reconfiguration patterns, gathered under the notion of elastic
stream processing [14], are exploited by DSMS to tackle this issue.
Spark Streaming[24] does not integrate auto-reconfiguration mechanisms
because of its architecture. Actually, Spark Streaming sets its acquisition
units to process RDD per RDD (see Figure 5) and bases mutualization of
computation on this strategy. Nevertheless, tuning opportunities are pro-
vided like the configuration of the level of task parallelism. Spark Stream-
ing also allows to defined each RDD size on its memory size in order to
avoid triggering execution for a low amount of data. S4[17] decentralized
architecture prevents global reconfiguration of the workflow. Processing
units are managed locally and workflow edges are static. However, load
balancing is managed locally by each processing nodes. As reminder,
S4 operators, denoted processing elements, are grouped by processing
nodes. A processing node belongs to a single physical machine. Instead
managing load balancing, iMR[16] is able to apply adaptive load shed-
ding policies on each processing unit to balance input rate increases. The
architecture of M3 allows to dynamically adapt acquisition units, more
precisely buffer sizes, to gathered multiple panes in a buffer or acquire
a pane on multiple buffers. C-MR[8] includes more sophisticated elastic
mechanisms. Scheduling strategies can be enabled to decrease as much
as possible global latency (Oldest-Data-First strategy) or decrease mem-
ory usage to avoid out-of-bound errors (Memory-Conservative strategy).
Storm bases operator sliding more on resources required by an executor
(see Section 4). The objective is to balance load among worker nodes. As

19

described in Section 4, T-Storm modifies Storm’s scheduler by consider-
ing in priority inter-worker traffic generated by an execution layout. But
those strategies do not take advantage of operator reordering [14]. Actu-
ally, some operators can be compute without changing final outputs, e.g.
commutation of filters. Operator reordering is exploited by ESC[20]. The
master process analyses, during runtime, costs of operators, and mod-
ifies execution order if necessary. In the same way, STREAM[4] takes
advantage of SQL support to operate a dynamic algebraic optimization.
STREAM optimizer is based on operator selectivity and average end-to-
end latencies. Aurora[2] suggests many elastic mechanisms even it can
not take advantage of a cluster of machines.Operator boxes (see Section
4) can be combined to be executed in a single time. For example, a pro-
jection of some attributes followed by a filter can be processed in a tuple-
per-tuple on a single node. Moreover, projections can be automatically
added in an application to decrease tuple size without loosing relevant
attributes. Aurora also integrates operator reordering like ESC and load
shedding. Finally, Aurora is able to dynamically change some operator
implementations like joins. Algorithm selection [14] requires to monitor
each box end-to-end latency in order to evaluate if an other implemen-
tation can process data more efficiently. Aurora’s extents (Aurora*[11],
Medusa[9], Borealis[1]) includes all Aurora’s elastic mechanisms and im-
plements to mechanisms for load balancing among nodes : operator slid-
ing and operator split [11]. An operator slides from an execution node to
an other to avoid local overload. Operator split aims at taking advantage
of data partitioning to parallelize the execution of an operator. Finally,
TelegraphCQ[10] integrates operator reodering thanks to its centralized
processing engine Eddy[10].

5.2 Failover management

Failover management aims at balancing dynamically execution environ-
ment variations which decrease safety of the system. Contrary to elastic
stream processing, safe failover induces resource consumption at any time
during the execution to prevent quality degradation because of a failure.
Considered failures are complete node failures (neither CPU nor mem-
ory are available) implying data loss. The aim is then to prevent those
losses through three failover patterns [19] for safety improvement: simple
standby, checkpointing and hot standby.
DSMS supporting only a centralized multi-core architecture (Aurora,
TelegraphCQ, C-MR) do not integrate failover management. Some DSMS
make a compromise between end-to-end latency and failover manage-
ment. Indeed, S4 and iMR accept lossy processing. If iMR provides an
explicit feedback on data losses, S4 only restarts a new node with lost
operators on current data. M3 and Spark Streaming rely on a cluster
of Zookeeper9 nodes to operate checkpointing[19] and restart failed op-
erators on one or many active nodes. The distinction between Spark
Streaming and M3 is that M3 stores operator states on main memory ex-
clusively. Storm and T-Storm use a heartbeat mechanism to detect node

9 https://zookeeper.apache.org/

20

failures. Actually, the master node receives continuously heartbeats from
worker nodes and try to restart them if a heartbeat is not received for
a predefined timeout. Operator states are stored on a shared memory of
a Zookeeper cluster or on disk. Aurora’s extents (Aurora*, Medusa and
Borealis) guaranty k-safety. The failure of any node k does not impact
the final result of an application. In order to offer that guarantee, these
DSMS discard tuples lazily. A tuple is lazily discarded if it is deleted
only after it does not serve as input to any operator of a workflow.

5.3 Quality evaluation

Stream processing implies to process continuous queries on potentially
infinite data. As exposed above, execution environment may induce ir-
reversible data loss. Some DSMS [2, 1, 16] aim at providing a feedback
to end-users on data losses. This feedback is conceptualized as a quality
score. The quality is used as a threshold to make the difference between
satisfying and unsatisfying results. Aurora [2] integrates quality score
included in a Quality-of-Service (Qos) specification. QoS is defined as a
function depending on performance or result accuracy expectancy. Users
do not define a threshold value for quality but define which parameter to
give advantage. Aurora application tends then to maximize final results’
quality scores. In order to control quality, Aurora resource management
is based on QoS-aware algorithms.
Nevertheless, Aurora is designed for centralized multi-core execution and
QoS-aware algorithms are not adapted for distributed architectures. In-
deed, QoS definitions used in Aurora do not consider that data can be
lost because of network failures. In order to deal with this issue, Aurora*
is able to infer intermediate QoS constraints for any node of a Aurora*
cluster. Intermediate QoS constraints are inferred only for internal nodes.
They are nodes which are neither connected to sources nor final outputs.
Borealis [1] extends QoS specification to a more fine-grained level. Ac-
tually, Aurora* is able to infer QoS specification for each node output,
each node executing a subgraph of the global Aurora application. But
there is no inner-node QoS control from user’s side. In this way, Bore-
alis[1] allows to define QoS specification for any vertex in the dataflow
(see Figure 4).
An other quality function, denoted C2 [16], aims at providing informa-
tion about the completeness to end-users. Actually, C2 is defined as a
spatio-temporal quality score. The spatial aspect represents resource con-
sumption involved by the computation of the current result. The tempo-
ral component is more related to Aurora’s QoS and provides information
about data loss during last window computation.

6 Conclusion

In this paper, we have proposed a classification of Data Steam Man-
agement Systems according to their paradigm, their capacities to handle
windowing and the type of infrastructure on which they can be deployed.
To offer to readers an additional point of view about those DSMS we

21

consider some aspects related to elastic stream processing, failover man-
agement and the evaluation of the quality of results. It appears that
targeted applications are the main key to decide which DSMS will more
likely deliver best performances. In the case of a an application composed
by complex operators handling potentially important volumes of data,
updating results as soon as possible and with a tolerance to non opti-
mal accuracy, Borealis appears as the best choice. It includes high level
operators has automatic mechanisms for workflow optimization. More-
over, it supports window incremental processing and QoS specifications.
Storm delivers great performances in a similar context but development
and maintenance efforts are important. In an other case, an application
computing periodically results that can be totally or partially reused
on potentially huge volume of data will be handled efficiently by Spark
Streaming. The use of Discretized Streams [24] allows mutualization of
intermediate results and tuning opportunities soften elastic stream pro-
cessing issues. This survey underline that in the era of Big Data and
GreenIT, no solution are completely adapted and full satisfying. Indeed,
existing systems suffer from not having specific optimization at each steps
of the query processing.

22

References

[1] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Mitch Cher-
niack, Jeong hyon Hwang, Wolfgang Lindner, Anurag S. Maskey,
Er Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stan
Zdonik. The design of the borealis stream processing engine. In In
CIDR, pages 277–289, 2005.

[2] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack,
Christian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tat-
bul, and Stan Zdonik. Aurora: A new model and architecture for
data stream management. The VLDB Journal, 12(2):120–139, Au-
gust 2003.

[3] A.M. Aly, A. Sallam, B.M. Gnanasekaran, L. Nguyen-Dinh, W.G.
Aref, M. Ouzzani, and A. Ghafoor. M3: Stream processing on main-
memory mapreduce. In Data Engineering (ICDE), 2012 IEEE 28th
International Conference on, pages 1253–1256, April 2012.

[4] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz,
Keith Ito, Rajeev Motwani, Utkarsh Srivastava, and Jennifer
Widom. Stream: The stanford data stream management system.
Springer, 2004.

[5] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The cql con-
tinuous query language: Semantic foundations and query execution.
Technical report, VLDB Journal, 2003.

[6] Brian Babcock, Shivnath Babu, Mayur Datar, and Rajeev Mot-
wani. Chain: Operator scheduling for memory minimization in
data stream systems. In ACM International Conference on Man-
agement of Data (SIGMOD 2003), 2003. An extended version of
this paper titled ”Operator Scheduling in Data Stream Systems”
appears on this publications server as technical report 2003-68
at http://dbpubs.stanford.edu/pub/2003-68. This technical report
proves an NP-completeness result showing the intractability of the
problem of minimizing memory. The report also contains theoretical
results and experiments for miminizing run-time memory require-
ments subject to user-specified latency constraints.

[7] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and
Jennifer Widom. Models and issues in data stream systems. In
Proceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS ’02, pages
1–16, New York, NY, USA, 2002. ACM.

[8] Nathan Backman, Karthik Pattabiraman, Rodrigo Fonseca, and
Ugur Cetintemel. C-mr: Continuously executing mapreduce work-
flows on multi-core processors. In Proceedings of Third International
Workshop on MapReduce and Its Applications Date, MapReduce
’12, pages 1–8, New York, NY, USA, 2012. ACM.

[9] Magdalena Balazinska, Hari Balakrishnan, and Michael Stone-
braker. Load management and high availability in the medusa dis-
tributed stream processing engine. In In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 929–930, 2004.

[10] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J.
Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy,
Samuel R. Madden, Fred Reiss, and Mehul A. Shah. Telegraphcq:
Continuous dataflow processing. In Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, SIG-
MOD ’03, pages 668–668, New York, NY, USA, 2003. ACM.

[11] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Don-
ald Carney, Ugur Cetintemel, Ying Xing, and Stan Zdonik. Scal-
able Distributed Stream Processing. In CIDR 2003 - First Biennial
Conference on Innovative Data Systems Research, Asilomar, CA,
January 2003.

[12] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data
processing on large clusters. In Proceedings of the 6th Conference on
Symposium on Opearting Systems Design & Implementation - Vol-
ume 6, OSDI’04, pages 10–10, Berkeley, CA, USA, 2004. USENIX
Association.

[13] Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu, and
Myungcheol Doo. Spade: The system s declarative stream process-
ing engine. In Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’08, pages 1123–
1134, New York, NY, USA, 2008. ACM.

[14] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and
Robert Grimm. A catalog of stream processing optimizations. ACM
Comput. Surv., 46(4):46:1–46:34, March 2014.

[15] Boduo Li, Edward Mazur, Yanlei Diao, Andrew McGregor, and
Prashant Shenoy. A platform for scalable one-pass analytics us-
ing mapreduce. In Proceedings of the 2011 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’11, pages
985–996, New York, NY, USA, 2011. ACM.

[16] Dionysios Logothetis, Chris Trezzo, Kevin C. Webb, and Kenneth
Yocum. In-situ mapreduce for log processing. In Proceedings of
the 2011 USENIX Conference on USENIX Annual Technical Con-
ference, USENIXATC’11, pages 9–9, Berkeley, CA, USA, 2011.
USENIX Association.

[17] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed
stream computing platform. In Data Mining Workshops (ICDMW),
2010 IEEE International Conference on, pages 170–177, Dec 2010.

[18] A. Rosenthal, U. S. Chakravarthy, B. Blaustein, and J. Blakely.
Situation monitoring for active databases. In Proceedings of the 15th
International Conference on Very Large Data Bases, VLDB ’89,
pages 455–464, San Francisco, CA, USA, 1989. Morgan Kaufmann
Publishers Inc.

[19] Kai-Uwe Sattler and Felix Beier. Towards elastic stream processing:
Patterns and infrastructure. In Graham Cormode, Ke Yi, Antonios
Deligiannakis, and Minos N. Garofalakis, editors, BD3@VLDB, vol-
ume 1018 of CEUR Workshop Proceedings, pages 49–54. CEUR-
WS.org, 2013.

[20] B. Satzger, W. Hummer, P. Leitner, and S. Dustdar. Esc: Towards
an elastic stream computing platform for the cloud. In Cloud Com-

24

puting (CLOUD), 2011 IEEE International Conference on, pages
348–355, July 2011.

[21] Ulf Schreier, Hamid Pirahesh, Rakesh Agrawal, and C. Mohan.
Alert: An architecture for transforming a passive dbms into an ac-
tive dbms. In Proceedings of the 17th International Conference on
Very Large Data Bases, VLDB ’91, pages 469–478, San Francisco,
CA, USA, 1991. Morgan Kaufmann Publishers Inc.

[22] Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. The 8 re-
quirements of real-time stream processing. SIGMOD Rec., 34(4):42–
47, December 2005.

[23] Jielong Xu, Zhenhua Chen, Jian Tang, and Sen Su. T-storm: Traffic-
aware online scheduling in storm. In Distributed Computing Systems
(ICDCS), 2014 IEEE 34th International Conference on, pages 535–
544, June 2014.

[24] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. Discretized streams: A fault-tolerant model
for scalable stream processing. Technical Report UCB/EECS-2012-
259, EECS Department, University of California, Berkeley, Dec
2012.

25

