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Abstract—Based on some important properties of chaos, such
as ergodicity, quasi-randomness, and high sensitivity to the secret
key, chaos is a hot research field in secured communication, and
recently a variety of chaos-based cryptosystems have been pro-
posed for achieving the confidentiality of transmitted images over
public channels. Most of chaos-based encryption algorithms are
based on the Fridrich structure, which use separate confusion-
diffusion layers. In this paper, we give an overview of some
chaos-based block cryptosystems, including our cryptosystem,
using dependent diffusion, in which the confusion process and
diffusion process are performed sequentially on each pixel of the
plain plain image. This kind of cryptosystems are more efficient
than the traditional confusion-diffusion architecture of Shannon.
A comparison study of efficiency in terms of speed performance
and of robustness against cryptanalysis is done.

Keywords: chaos-based cryptosystems; dependent
confusion-diffusion; speed performance; security analysis.

I. INTRODUCTION

Since two decades, many chaos-based image encryption

schemes have been proposed. The typical structure of these en-

cryption schemes is based on separate confusion-diffusion lay-

ers as that is done in Fridrich architecture [1], [2], [3]. El Assad

et al., [4] have given an overview of main chaos-based cryp-

tosystems, using Fridrich’s structure. Recently, many chaos-

based cryptosystems, more efficient in terms of time consum-

ing and of resistance against cryptanalysis, than the previous

ones have been investigated [5], [6], [7], [8], and [9]. These

cryptosystems are based on dependent confusion-diffusion

layers, generally achieved by substitution-diffusion processes

that use dynamic keys supplied by a chaotic sequence. The

chaotic sequence is produced by a chaotic generator which

is the heart of any chaos-based cryptosystem and so a big

part of the efficiency of the system depends on it. Compared

to the conventional cryptographic algorithms (3DES, AES),

chaos-based cryptosystems have several advantages such as: a

very high security level, more flexibility, more modularity, a

low power consuming, and easily implemented, which make

them more suitable for large scale-data encryption, such as

images and videos. In this paper we present an overview

of chaos based cryptosystems, including our cryptosystem,

using dependent confusion-diffusion. The rest of the paper is

organized as follows. In section II, we describe four known

Fig. 1: General structure of chaos-based cryptosystems

chaos based cryptosystems of the literature. Section III, gives a

comparative results of the speed performance and the security

analysis of these cryptosystems, before concluding.

II. PRINCIPAL CHAOS-BASED CRYPTOSYSTEMS USING

DEPENDENT DIFFUSION OF THE LITERATURE

All chaos-based and non chaos cryptosystems must achieve

the confusion and diffusion effects. The confusion effect is

measured by how much a change in the secret key affect

the ciphered message. The diffusion effect is measured by

how much a change in the plain message affect the ciphered

message. In the literature there are mainly two types of chaos-

based cryptosystems. The structure of the first type, as we can

see in figure 1, is composed of two layers: a confusion layer

followed by a diffusion layer that work separately. The confu-

sion process is applied rc times on the block (or on the whole

image), then the diffusion process is applied rd times on the

output of the confusion process, and finally, the two processes

are repeated r times. Both layers required image-scanning (for

rc = rd = r =1). Most of chaos-based cryptosystems of first

type are considered insecure upon chosen/known plain text

attacks. El Assad et al., [4] gave in their paper an overview

of main chaos-based cryptosystems of first type.

The structure of the second type of cryptosystems is similar

to the structure of the first type of cryptosystems, but the

confusion and diffusion processes are performed sequentially

on each pixel of the plain block or plain image as shown

in figure2. This type of cryptosystems are more efficient, in

1



Fig. 2: Dependent diffusion structure of chaos-based cryp-

tosystems

Fig. 3: Yang et al scheme

terms of security and speed performance, than the first type of

cryptosystems. Indeed, first, the diffusion process at the pixel

level is governed by the confusion process, second, a single

scan of plain image pixels is needed to perform the confusion

and diffusion effects.

In the following we will describe the main chaos-based cryp-

tosystems of the second type including our cryptosystem. Yang

et al., [5], used a permutation operation, as a confusion layer,

achieved by a modified standard map to avoid the problem

of permutation of the corner pixel (s = 0, t = 0), while

using a logistic map as a diffusion layer. In addition a keyed

hash function is used to generate a 128− bit hash value from

both the plain image and the secret hash keys. The hash value

plays the role of the key for encryption and decryption while

the secret hash keys are used to authenticate the decrypted

image. As we can see from the encryption scheme of figure 3,

a one bit change in the plain image changing the dynamic

keys of the processes of confusion and diffusion and then

the encrypted image become completely different from the

previous encrypted one. So, the immunity against known-

chosen plain text attacks is easily obtained from one round.

However for the decryption scheme it is necessary to transmit

the secret encryption-decryption key for each new encrypted

image.

In their paper, Wang et al [6] introduced the idea of mixing

the two layers of permutation and diffusion into a single

layer of dependent permutation-diffusion. As a result, one

image scanning is required instead of two scanning stages, to

accelerate the encryption algorithm. The main steps of Wang

et.al., cryptosystem [6] are summarized in the following:

1) Division step: The image is divided into a number of

blocks (num), each one is 64 pixels.

num =
L× P

64
(1)

Where L and P are the height and the width of the

image, respectively.

2) First generation step: In this step, the used keys

K0,K1, ...K15 are generated, and each one is an 8-bit

number.

3) Second generation step: 64 pseudorandom values are

generated from the spatio-temporal chaotic map [10].

These pseudorandom values are defined below as

Φ(i, j).
4) Diffusion step: The pixel values inside each block are

modified based on the following equation:

Gt(i, j) = cycl{X,Y }
X = [Pt(i, j)⊕ Φ(i, j) + Ct(i− 1, j)]Mod G
Y = LSB3(Ct(i− 1, (j − 1)mod 8)⊕ Φ(i, j))

(2)

Where: Gt(i, j) is the number of levels in the gray image

(here is 256 levels) and is performed for all pixels in

the tth block. Pt(i, j) and Ct(i, j) are the plain and the

ciphered pixels at i and j positions, respectively.

5) Moving block positions: A block at the position t is

moved to a new position according to the following

equation:

tnew = �X(0)× num� (3)

X(0) is a generated value from the used chaotic map.

If the tnew is a non-visited place, then the block is

moved to this place, otherwise, the tnew is incremented

until the new value point to a non-visited place. As not

all pixels inside a given block are permuted, this step

is necessary to increase the security of this model to

the statistical analysis attacks.

6) Exchanging lattice values: The pixels C(7, i) and

C(7, (i+d)mod 8) are exchanged, where d is calculated

as:

d = LSB3(C(7, 0)) (4)

7) First Block pixel exchange: C0(0, s) is exchanged with

Ckl
(7, 7) where: s = LSB3(kl)

kl =
⌊
[K0⊕K1⊕K2⊕...K15]×num

256

⌋
Steps, 3 → 6 are performed for all blocks, and repeated r
rounds until the required security level is reached.

In Zhang’s paper [7], two cryptosystems were designed based

on Fridrich’s architecture. The first one consists of a dependent

diffusion layer based on the reverse 2-D cat map. The sec-

ond algorithm presents new mapping from a pseudo-random

position to another pseudo-random one for the confusion

effect. The diffusion layer in the cryptosystems is based on

the logistic map. In these versions, Zhang tried to achieve

the confusion and the diffusion effects sequentially. Then,

the effect of one ciphered pixel is transferred to the next

one and so on. From this idea, only two rounds (in the
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first version) and one round (in the second version) of the

diffusion-confusion process are/is needed instead of many

rounds of separated confusion and diffusion processes used

in the traditional structures such as Fridrich cryptosystem and

other cryptosystems. In the following, our work is directed to

the first Zhang cryptosystem. The mathematical model of the

first Zhang algorithm is:(Enc=the encryption process).

Enc =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
x′

y′

]
=

[
1 pi
qi piqi + 1

] [
x
y

] (
ModN

)
ciph(x, y) = arr(x′, y′)⊕ f(t)

t = ciph(x, y)

(5)

The general block diagram of the first Zhang cryptosystem is

shown in Figure. 4. It consists of the following steps iterated

n times (with n > 0):

Fig. 4: Zhang image encryption cryptosystem architecture

1) Selection: this step generates a random pair

arr(rx
j , ry

j) from the whole image. The values

of rx
j and ry

j are calculated using equation (6) and

equation (7), where j is a counter ranging from 0 to

n− 1 encryption rounds.

rx
j = (SQ1(2000 + 100+ j)× 109) mod (512) (6)

ry
j = (SQ2(2000 + 100 + j)× 109) mod (512) (7)

2) Array exchanges: the second step is to exchange the first

byte arr(0, 0) with the random byte from the previous

step arr(rx
j , ry

j).
3) Dependent diffusion: then the cryptosystem goes to the

dependent diffusion layer for m rounds (m = 2 in the

Zhang algorithm case), which also includes three stages.

a) New position estimation: in the dependent diffu-

sion layer the first step is to calculate the new byte

position (x′, y′) from the old byte position (x, y)
using equation (8).[

x′

y′

]
=

[
1 pi
qi piqi + 1

] [
x
y

] (
ModN

)
(8)

where

N is the size of the square test image.

pi and qi are calculated using the following equa-

tions:

pi = (SQ1(2000 + i)× 109)mod 512 (9)

qi = (SQ2(2000 + i)× 109)mod 512 (10)

The variable i in the last equations is a counter

ranging from 0 to m− 1. The two sequences SQ1

and SQ2 as can be seen in equations (6, 7, 9, and

10) are calculated using the following equation:

f(xn) = α× xn−1(1− xn−1) (11)

With the initial values x−1=0.12345678912345 for

SQ1, and x−1=0.67856746347633 for SQ2. The

value of α is set to 3.99999.

b) Calculation of the local ciphered pixel: the next

step of the dependent diffusion layer is to calculate

the ciph(x, y) value using the following equation:

ciph(x, y) = arr(x′, y′)⊕ f(t) (12)

where

f(t) = [α(
t

1000
)× [1− t

1000
]× 1000]mod 256

(13)

c) Update of t: the last step of the dependent diffusion

layer is to change the value of the t variable using

equation (14).

t = ciph(x, y) (14)

The initial value t0 is defined by the following

equation:

t0 = [4×keyd×(1−keyd)×1000]mod 256. (15)

Where the initial value of the

keyd=0.33456434300001.

Farajallah et al., 2015 [8], and Farajallah [9] first they partially

cryptanalysis the first algorithm of Zhang (described above)

based on the following partial cryptanalysis equation.

arrk′
k
= ciphk ⊕ f(ciphk−1) (16)

where k = x × N + y and k′ = x′ × N + y′ (see equation

(8)), arrk′
k

is the input pixel of the last dependent diffusion

round (m) in the last encryption round (n) and ciphk is the

ciphered pixel. As the function f(t) is known, then equation

(16) can be used to remove the diffusion effect of the last (m

and n) rounds from the ciphered pixels. This allows recovery

of a permuted version of the previous ciphered image. This

removal gives the attacker the possibility to:

1) Decrease the dynamic key space of the whole cryptosys-

tem.

2) Perform partial cryptanalysis of the Zhang cryptosystem

for (n = 1, m = 1) and (n = 1, m = 2).

3) Decrease the UACI and NPCR values significantly.

Then, based on the previous analysis they proposed an effi-

cient cryptosystem that overcome the weaknesses of Zhang

cryptosystem while keeping a very high speed compared

to the main chaos-based cryptosystem of the literature. The

encryption side of the proposed cryptosystem is given in

Figure 5), for the first block. Each pixel from the plain

block (p0(k)) is XOR-ed with the initial byte (iv(k)) from

the initial vector (IV ), then the output is XOR-ed with the

discrete logistic map output to carry out the diffusion process.

Then, the 8 least significant bits resulting from the diffusion
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process (LSB8(y0(k)) are relocated using the modified 2-

D cat map to obtain the ciphered pixel at the new position

(c0(kn)). It is important to note that the input of the discrete

logistic map is based on the previous ciphered pixel (since

c0(kn) = LSB8(y0(k)) and the input of the discrete logistic

map is 32 bits and the ciphered pixel is 8 bits. That is why

the cryptosystem takes (y0(k− 1)) before the LSB8 function

and not after. For the first encrypted byte, the input of the

discrete logistic map is Kdm, and this value is re-initialized

every new encryption round. Because the c0(kn) is only a part

of the logistic map input, it is impossible to recover y0(k−1)
from c0(kn) only. The encryption of the next blocks is almost

the same. Each pixel from the plain block (pl(k)) is XOR-

ed with ciphered byte from the previous block at the same

position(i.e., cl−1(k) to achieve the CBC mode). Then the rest

of the operations are the same as in the first encryption block.

The modified cat-map is given by the following equation

Fig. 5: Encryption structure of the proposed cryptosystem

[
in
jn

]
= Mod

([
1 u
v 1 + uv

] [
i
j

]
+

[
ri+ rj

rj

]
,

[
M
M

])
(17)

(17) which is a one-to-one function, which means that each

point of the square matrix can be transferred to exactly one

unique point. So, instead of exchanging the values at the new

position (in, jn) with the old one (i, j), we use a transfer

operation because of its speed compared to the swap operation

that is usually used. The block size bs is M2 (M is the

square root of the block size in our proposed cryptosystem).

The system parameters u, v, ri and rj are in the range of

[0, M − 1]. The structure of the dynamic keys which are

produced by the chaotic generator [11] during the permutation

process is:

Kp =
[
Kp0 ‖ Kp1 ‖ Kp2 ‖ · · · ‖ Kpr−1

]
Kpm =

[
um ‖ vm ‖ rim ‖ rjm

] (18)

The modulo operation of equation (17) makes it a non-

invertible equation. But it is still a reversible one. Thus, in

the decryption part of the proposed cryptosystem, the reverse

layer is also achieved by equation (17).

The Logistic map is a non-linear chaotic discrete function

that produces random sequences. In the proposed cryptosys-

tem, the logistic map is used as a diffusion function to

achieve the diffusion effect, by transferring the effect from

one byte in the block to other bytes in the same block. This

structure makes the proposed cryptosystem highly sensitive to

the plaintext. The mathematical model of the discrete logistic

map is:

Xk+1 =

⎧⎨
⎩
⌊
Xk×(2N−Xk)

2N−2

⌋
ifXk �=

[
3× 2N−2, 2N

]
2N − 1 ifXk =

[
3× 2N−2, 2N

] (19)

where Xk+1 is the new value calculated from the previous one

Xk. N is the number of bits representing the integer output

of the discrete logistic map, which is equal to 32 bits. From

the figure 5, we can write the encryption mathematical model

as:

cl(kn) = LSB8[yl(k)] (20)

yl(k) = pl(k)⊕ sl−1(k)⊕ f(yl(k − 1)) (21)

where yl(k) is a 32-bit variable, pl(k), sl−1(k) are 8-bit

variables and f is the logistic map. The following remarks

should be considered:

1) During the encryption, equation (21) should be evaluated

before equation (20), for each byte of a block and for

all blocks.

2) The input of the logistic map for k = 0 is kdm when

l = 0 and it is yl−1(bs − 1) for l > 0.

3) For k > 0 and for all l, the input of the logistic map is

the result of equation (21) and not the previous output

(see equation 19).

Note that: k = i×M + j
kn = in ×M + jn
in and jn are calculated using equation (17). The sequence

sl−1(k) is given by the following equation:

sl−1(k) =

{
iv(k) if l = 0

cl−1(k) if l > 0
(22)

where l = 0, 1, 2, ...bn − 1, k = 0, 1, 2, ...bs − 1,

IV = {iv(0), iv(1), iv(2), ..., iv(bs − 1)}, bs is block size

in bytes

bn = image size
block size

= L×C×P
bs

, is the number of blocks.

with, L, C, and P are the number of lines, the number of

columns, and the number of planes of the image respectively.
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TABLE I: Average encryption/decryption times for different cryptosystems for Lena image with different sizes.

Cryptosystem 256× 256× 3 512× 512× 3 1024× 1024× 3

Proposed Cryptosystem 2.04/2.68 8.08/10.57 31.85/41.83
Zhang 7.5/7.5 30/30 120/120
Wang 7.79/8.39 31.16/33.54 124.64/134.16

TABLE II: Average Encryption throughput and average Num-

ber of cycles for to encrypt/decrypt one byte.

Cryptosystem ET in MBps Number of cycles per byte

Proposed Cryptosystem 92.975/70.879 29.87/40.57
Zhang 25/25 122.07/122.07
Wang 24.06/22.35 122.85/132.24

III. TIME PERFORMANCE AND SECURITY ANALYSIS

A. Time performance

The time performance is determined by evaluating the

running speed that can be measured by: the average encryp-

tion/decryption times, the average encryption throughput, and

the average needed number of cycles to encrypt one byte. The

encryption throughput (ET) and the number of cycles, which

are required to encrypt (or decrypt) one byte, are defined as:

ET =
ImageSize(Byte)

EncryptionTime(second)
(23)

Number of cycles per Byte =
CPU Speed(Hertz)

ET(Byte)
(24)

The last equation permits to compare the running speed of

different cryptosystems working on different platforms. In

table I, we give the average encryption/decryption times for

Lena image at different sizes with different cryptosystems(for

our cryptosystem the used block size is 1024 byte). In table

II we give the average throughput and the average number of

cycles. The proposed cryptosystem is at least 3 times faster

that zhang and wang cryptosytems.

B. security analysis

usually A cryptanalyst tries to break the cipher without

knowing the secret key, and this with several levels of dif-

ficulties based on the available resources. Chosen plain-text

attack is the easiest one for the attacker: The attacker has

access to the system without knowing the secret keys. Then,

he has the possibility to choose a set of plain-text messages

and to encrypt them. If a cryptosystem can resist to chosen

plain-text attack, then it can resist to all other attacks such

as:cipher text only, known plain-text and chosen cipher attacks.

The chosen plain-text attack can be realised by the plain-

text sensitivity attack or differential attacks introduced by

Eli Biham and Adi Shamir [12]. Most researchers use two

security parameters to measure the resistance of any chaos-

based cryptosystem for plain-text sensitivity attacks. These

parameters are: the Number of Pixel Change Rate (NPCR)

and the Unified Average Changing Intensity (UACI); they are

given by the following equations, respectively:

NPCR =
1

L× C × P
×

P∑
p=1

L∑
i=1

C∑
j=1

D(i, j, p)×100% (25)

where

D(i, j, p) =

{
0, if C1(i, j, p) = C2(i, j, p)

1, if C1(i, j, p) �= C2(i, j, p)
(26)

UACI =
1

L× C × P × 255

×
P∑

p=1

L∑
i=1

C∑
j=1

|C1(i, j, p)− C2(i, j, p)| × 100%
(27)

In the previous equations, i, j and p are the row, column,

and plane indexes of the image, respectively. L, C and P are,

respectively, the length, width, and plane sizes of the image.

The optimal NPCR value is 99.61%, and the optimal UACI

value is 33.46% [13]. The previous metrics are necessary

but not sufficient to ensure that the proposed cryptosystem

is resistant against plain-text sensitivity attacks. Then, a new

metric measurement, the Hamming Distance (HD) is used to

quantify the avalanche effect. The Avalanche effect is achieved

for any block cipher, when a small change (for example,

flipping a single bit) in either the plain-text or the secret key,

causes a drastic change in the cipher-text (e.g., half of the

output bits are flipped), [14]. Therefore, this evaluation test

is used to measure the resistance of any cryptosystem to the

plain-text and the key sensitivity attacks. The HD is defined

by:

HD(C1, C2) =
1

|Ib|
|Ib|∑
K=1

(C1(K)⊕ C2(K)) (28)

where |Ib| = L×C × P × 8, is the size of the image in bits.

The optimum HD value is 50%. A good block cipher should

produce an HD close to 50% (probability of bit changes,

which means that a one bit difference in plain-image will

make every bit of the corresponding cipher-image change

with a probability of a half. In table III, we show the obtained

comparative results of NPCR, UACI and HD for Boat bmb

image of size 256× 256× 3.

Statistical attack

To resist the statistical attacks, the histogram of the ciphered

image must be uniform and the correlation coefficient should

be close to zero . In figure 6a, 6b we show the plain image
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TABLE III: The NPCR, UACI and HD

Cryptosystem NPCR UACI HD

Proposed Cryptosystem 99.615 33.463 0.500030
Zhang 99.633 33.34 −
wang 99.96 33.33 −

for boat and its ciphered one, and in the figure 6c, 6d we

give the histograms for the plain/cipher images. As we can

see the histogram of the ciphered image seems to be uniform,

to be sure we made the Chi square test with the following

parameters: alpha=0.05, and number of classes equal to 256.

The obtained experimental value is 255.12 which is less

than the theoretical one that equal 293. This means that the

histogram is uniform.

(a) Plain image boat (b) Cipherd image boat

(c) Histogram for the plain image (d) Histograme for the cipher image

Fig. 6: Histogram of the boat plain image and its ciphered

image

Figure 7 shows the correlation curves of the adjacent pixels

in the horizontal direction for the plain image and its ciphered

one. The values of their corresponding correlation coefficient

are 0.96606 and 0.0085.

All these results imply a high security level of the proposed

cryptosystem.

IV. CONCLUSION

In this paper, we presented an overview of chaos-based

cryptosystems, including our cryptosystem, that are based on

dependent confusion-diffusion processes, and we compared

their speed performance and their robustness against crypt-

analysis. The obtained results show that, our cryptosystem is

faster than the others while having a very high security level.

(a) Plain image correlation of
adjacent pixels

(b) ciphered image correlation of
adjacent pixels

Fig. 7: correlation of the boat plain image and its ciphered

image
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