Abel Gómez

Amine Benelallam

Massimo Tisi

Decentralized Model Persistence for Distributed Computing

Keywords: Model Persistence, Key-Value Stores, Distributed Persistence, Distributed Computing

published or not. The documents may come L'archive ouverte pluridisciplinaire

Introduction

The availability of large data processing and storage in the Cloud is becoming a key resource for part of today's industry, within and outside IT. It offers a tempting alternative for companies to process, analyze, and discover new data insights, yet in a cost-efficient manner. Thanks to existing Cloud computing companies, this facility is extensively available for rent [START_REF] Garrison | Success factors for deploying cloud computing[END_REF]. This ready-to-use IT infrastructure is equipped with a wide range of distributed processing frameworks, for companies that have to occasionally process large amounts of data.

One of the principal ingredients behind the success of distributed processing are distributed storage systems. They are designed to answer to data processing requirements of distributed and computationally extensive applications, i.e., wide applicability, scalability, and high performance. Appearing along with MapReduce [START_REF] Dean | MapReduce: Simplified Data Processing on Large Clusters[END_REF], BigTable [START_REF] Chang | Bigtable: A distributed storage system for structured data[END_REF] strongly stood in for these qualifications. One of the most compliant open-source implementations of MapReduce and BigTable are Apache's Hadoop [START_REF]The Apache Software Foundation: Apache Hadoop[END_REF] and HBase [START_REF]The Apache Software Foundation: Apache HBase[END_REF], respectively.

Another success factor for widespread distributed processing is the appearance of high-level languages for simplifying distribution by a user-friendly syntax (mostly SQL-like). They transparently convert high-level queries into a series of parallelizable jobs that can run in distributed frameworks, such as MapReduce, therefore making distributed application development convenient.

We believe that Model-Driven Engineering (MDE), especially the query/transformation languages and engines, would be suitable for developing distributed applications on top of structured data (models). Unfortunately, MDE misses some fundamental bricks towards building fully distributed transformation/query engines. In this paper we address one of those components, i.e. a model-persistence framework for distributed computing. Several distributed model-persistence frameworks exist today [START_REF]CDO Model Repository[END_REF][START_REF] Scheidgen | Map/Reduce on EMF Models[END_REF]: for the Eclipse Modeling Framework (EMF) [START_REF]Eclipse Modeling Framework[END_REF] two examples are Connected Data Objects (CDO) [START_REF]CDO Model Repository[END_REF] that is based on object relational mapping 1 , and EMF fragments [START_REF] Scheidgen | EMF fragments[END_REF], that maps large chunks of model to separate URIs. We argue that these solutions are not wellsuited for distributed computing, exhibiting one or more of the following faults:

-Model distribution is not transparent: so queries and transformations need to explicitly take into account that they are running on a part of the model and not the whole model (e.g. EMF fragments) -Even when model elements are stored in different nodes, access to model elements is centralized, since elements are requested from and provided by a central server (e.g. CDO over a distributed database). This constitutes a bottleneck and does not exploit a possible alignment between data distribution and computation distribution. -The persistence backend is not optimized for atomic operations of model handling APIs. In particular files (e.g. XMI over HDFS [START_REF]Hadoop Distributed File System[END_REF]), relational databases or graph databases are widely used while we have shown in previous work [START_REF] Gómez | Map-based transparent persistence for very large models[END_REF] that key-value stores are very efficient in typical queries over very large models. Moreover key-value stores are more easily distributed with respect to other formats, such as graphs. -The backend assumes to split the model in balanced chunks (e.g. EMF Fragments). This may not be suited to distributed processing, where the optimization of computation distribution may require uneven data distribution.

In this paper we present NeoEMF/HBase, a persistence backend for EMF built on top of the Apache HBase data store. NeoEMF/HBase is transparent w.r.t. model manipulation operations, decentralized, and based on key-value stores. The tool is open-source and publicly available at the paper's website 2 . This paper is organized as follows: Section 2 presents HBase concepts and architecture, Section 3 presents the NeoEMF/HBase architecture, data model and properties; and finally, Section 4 concludes the paper and outlines future work.

2 Background: Apache HBase Apache HBase [START_REF]The Apache Software Foundation: Apache HBase[END_REF] is the Hadoop [START_REF]The Apache Software Foundation: Apache Hadoop[END_REF] database, a distributed, scalable, versioned and non-relational big data store. It can be considered an open-source implementation of Google's Bigtable proposal [START_REF] Chang | Bigtable: A distributed storage system for structured data[END_REF].

HBase data model

In HBase, data is stored in tables, which are sparse, distributed, persistent multidimensional sorted maps. A map is indexed by a row key, acolumn key, and a timestamp. Each value in the map is an uninterpreted array of bytes.

HBase is built on top of the following concepts [START_REF] Khurana | Introduction to HBase Schema Design[END_REF]: store data in all its families. Column Qualifier -Data within a column family is addressed via its column qualifier. Column qualifiers do not need to be specified in advance and do not need to be consistent between rows. Cell -A combination of row key, column family, and column qualifier uniquely identifies a cell. The data stored in a cell is referred to as that cell's value.

Values do not have a data type and are always treated as a byte[]. Timestamp -Values within a cell are versioned. Versions are identified by their version number, which by default is the timestamp of when the cell was written. If the timestamp is not specified for a read, the latest one is returned. The number of cell value versions retained by HBase is configured for each column family (the default number of cell versions is three).

Figure 1 (extracted from [START_REF] Chang | Bigtable: A distributed storage system for structured data[END_REF]) shows an excerpt of an example table that stores Web pages. The row name is a reversed URL. The contents column family contains the page contents, and the anchor column family contains the "CNN.com" "CNN" "<html>..." "<html>..." "<html>..." t 9 t 6 t 3 t 5 8 t "anchor:cnnsi.com" "com.cnn.www" "anchor:my.look.ca" "contents:" Fig. 1: Example of a table in HBase/BigTable (extracted from [START_REF] Chang | Bigtable: A distributed storage system for structured data[END_REF]) text of any anchors that reference the page. CNN's home page is referenced by both the Sports Illustrated and the MY-look home pages, so the row contains columns named anchor:cnnsi.com and anchor:my.look.ca. Each anchor cell has one version; the contents column has three versions, at timestamps t 3 , t 5 , and t 6 .

HBase architecture

Fig. 2 shows how HBase is combined with other Apache technologies to store and lookup data. Whilst HBase leans on HDFS to store different kind of configurable size files, ZooKeeper [START_REF]The Apache Software Foundation: Apache ZooKeeper[END_REF] is used for coordination. Two kinds of nodes can be found in an HBase setup, the so-called HMaster and the HRegionServer. The HMaster is the responsible for assigning the regions (HRegions) to each HRe-gionServer when HBase is starting. Each HRegion stores a set of rows separated in multiple column families, and each column family is hosted in an HStore. In HBase, row modifications are tracked by two different kinds of resources, the HLog and the Stores. The HLog is a store for the write-ahead log (WAL), and is persisted into the distributed file system. The WAL records all changes to data in HBase, and in the case of a HRegionServer crash ensures that the changes to

Client

Fig. 2: HBase architecture the data can be replayed. Stores in a region contain an in-memory data store (MemStore) and a persistent data stores (HFiles, that are persisted into the distributed file system) HFiles are local to each region, and used for actual data storage. The ZooKeeper cluster is responsible of providing the client with the information about both the HRegionServer and the HRegion hosting the row the client is looking up for. This information is cached at the client side, so that a direct communication could be directly setup for the next times without querying the HMaster. When an HRegionServer receives a write request, it sends the request to a specific HRegion. Once the request is processed, data is first written into the MemStore and when certain threshold is met, the MemStore gets flushed into an HFile.

HBase vs. HDFS

HDFS is the primary distributed storage used by Hadoop applications as it is designed to optimize distributed processing of multi-structured data. It is well suited for distributed storage and distributed processing using commodity hardware. It is fault tolerant, scalable, and extremely simple to expand. HDFS is optimized for delivering a high throughput of data, and this may be at the expense of latency, which makes it neither suitable nor optimized for atomic model operations. HBase is, on the other hand, a better choice for low-latency access. Moreover, HDFS resources cannot be written concurrently by multiple writers without locking and this results in locking delays. Also writes are always made at the end of the file. Thus, writing in the middle of a file (e.g. changing a value of a feature) involves rewriting the whole file, leading to more significant delays. On the contrary, HBase allows fast random reads and writes. HBase is row-level atomic, i.e. inter-row operations are not atomic, which might lead to a dirty read depending on the data model used. Additionally, HBase only provides five basic data operations (namely, Get, Put, Delete, Scan, and Increment), meaning that complex operations are delegated to the client appliaction (which, in turn, must implement them as a combination of these simple operations).

NeoEMF/HBase

Figure 3 shows the high-level architecture of our proposal for the EMF framework. It consists in a transparent persistence manager behind the model-management interface, so that tools built over the modeling framework would be unaware of it. The persistence manager communicates with the underlying database by a driver, and supports a pluggable caching strategy. In particular we implement the NeoEMF/HBase tool as a persistence manager for EMF on top of HBase and ZooKeeper. NeoEMF also supports other technologies, such as an embedded graph backend [START_REF] Benelallam | Neo4EMF, A Scalable Persistence Layer for EMF Models[END_REF] and an embedded key-value store [START_REF] Gómez | Map-based transparent persistence for very large models[END_REF].

This architecture guarantees that the solution integrates well with the modeling ecosystem, by strictly complying with the EMF API. Additionally, the

/HBase

HBase ZooKeeper Fig. 3: Overview of the model-persistence framework APIs are consistent between the model-management framework and the persistence driver, keeping the low-level data structures and code accessing the database engine completely decoupled from the modeling framework high level code. Maintaining these uniform APIs between the different levels allows including additional functionality on top of the persistence driver by using the decorator pattern, such as different cache levels.

NeoEMF/HBase offers lightweight on-demand loading and efficient garbage collection. Model changes are automatically reflected in the underlying storage, making changes visible to all the clients. To do so, first we decouple dependencies among objects by assigning a unique identifier to all model objects, and then:

-To implement lightweight on-demand loading and saving, for each live model object, we create a lightweight delegate object that is in charge of on-demand loading the element data and keeping track of the element's state. Delegates load and save data from the persistence backend by using the object's unique identifier.

-For efficient garbage collection in the Java Runtime Environment, we avoid to maintain hard Java references among model objects, so that the garbage collector can deallocate any model object that is not directly referenced by the application.

Map-based data model

We have designed the underlying data model of NeoEMF/HBase to minimize the data interactions of each method of the EMF model access API. The design takes advantage of the unique identifier defined in the previous section to flatten the graph structure into a set of key-value mappings. Fig. 4a shows a small excerpt of a possible Java metamodel that we will use to exemplify the data model. This metamodel describes Java programs in terms of Packages, ClassDeclarations, BodyDeclarations, and Modifiers. A Package is a named container that groups a set of ClassDeclarations through the ownedElements composition. A ClassDeclaration contains a name and a set of BodyDeclarations. Finally, a BodyDeclaration contains a name, and its visibility is described by a single Modifier. Fig. 4b shows a sample instance of the Java metamodel, i.e., a graph of objects conforming with the metamodel structure. The model contains a single Package (package1), containing only one ClassDeclaration (class1). The Class contains the bodyDecl1 and bodyDecl2 BodyDeclarations. Both of them are public.

NeoEMF/HBase uses a single table with three column families to store models' information: (i) a property column family, that keeps all objects' data stored together; (ii) a type column family, that tracks how objects interact with the meta-level (such as the instance of relationships); and (iii) a containment column family, that defines the models' structure in terms of containment references. Table 1 3 shows how the sample instance in Fig. 4b is represented using this structure.

As Table 1 shows, row keys are the object unique identifier. The property column family stores the objects' actual data. As it can be seen, not all rows have a value for a given column. How data is stored depends on the property type and cardinality (i.e., upper bound). For example, values for single-valued attributes (like the name, which stored in the name column) are directly saved as a single literal value; while values many-valued attributes are saved as an array of single literal values (Fig. 4b does not contain an of this). Values for single-valued references, such as the modifier containment reference from Body-Declaration to Modifier, are stored as a single value (corresponding to the identifier of the referenced object). Examples of this are the cells for b1, modifier and b2, modifier which contain the values 'm1' and 'm2' respectively. Finally, multi-valued references are stored as an array containing the literal identifiers of the referenced objects. An example of this is the bodyDeclarations containment reference, from ClassDeclaration to BodyDeclaration, that for the case of the c1 object is stored as { 'b1', 'b2' } in the c1, bodyDeclarations cell.

Structurally, EMF models are trees (a characteristic inherited from its XMLbased representation). That implies that every non-volatile object (except the root object) must be contained within another object (i.e., referenced from another object via a containment reference). The containment column family maintains a record of which is the container for every persisted object. The container column records the identifier of the container object, while the feature column records the name of the property that relates the container object with the child object (i.e., the object to which the row corresponds). Table 1 shows that, for example, the container of the Package p1 is ROOT through the eContents property (i.e., it is a root object and is not contained by any other object). In the next row we find the entry that describes that the Class c1 is contained in the Package p1 through the ownedElements property.

The type column family groups the type information by means of the nsURI and EClass columns. For example, the table specifies the element p1 is an instance of the Package class of the Java metamodel (that is identified by the http://java nsURI).

ACID properties

NeoEMF/HBase is designed as a simple persistence layer that maintains the same semantics as the standard EMF. Modifications in models stored using NeoEMF/HBase are directly propagated to the underlying storage, making changes visible to all possible readers immediatly. As in standard EMF, no transactional support is explicitly provided, and as such, ACID properties [START_REF] Haerder | Principles of transaction-oriented database recovery[END_REF] (Atomicity, Consistency, Isolation, Durability) are only supported at the object level:

Atomicity -Modifications on object's properties are atomic. Modifications involving changes in more than one object (e.g. bi-directional references), are not atomic.

Consistency -Modifications on object's properties are always consistent using a compare-and-swap mechanism. In the case of modifications involving changes in more than one object, consistency is only guaranteed when the model is modified to grow monotonically (i.e., only new information is added, and no already existing data is deleted nor modified). Isolation -Reads on a given object always succeeds and always give a view of the object's latest valid state. Durability -Modifications on a given object are always reflected in the underlying storage, even in the case of a Data Node failure, thanks to the replication capabilities provided by HBase.

These properties allow the use of NeoEMF/HBase as the persistence backend for distributed and concurrent model transformations, since reads in the source model are consistent and always success; and the creation of the target model is a building process that creates a model that grows monotonically.

Conclusion and Future Work

In this paper we have outlined NeoEMF/HBase, an on-demand, memoryfriendly persistence layer for distributed and decentralized model persistence. Decentralized model persistence is useful in scenarios where multiple clients may access models when performing distributed computing. NeoEMF/HBase is built on top of HBase, a distributed, scalable, versioned and non-relationals big data store, specially designed to run together with Apache Hadoop.

NeoEMF/HBase takes advantage of the HBase properties by using a simple data model that minimizes data dependencies among stored objects. More specifically, NeoEMF/HBase exploits the row-locking mechanisms of HBase to provide limited ACID properties without requiring the use of transactions, which may increase latency in model operations. NeoEMF/HBase provides ACID properties at the object level, and guarantees that: (i) object queries always return the last valid state of an object; (ii) attribute modifications always succeed and produce a consistent model; and (iii) modifications of references which make the model grow monotonically always succeed and produce a consistent model.

Previous work [START_REF] Gómez | Map-based transparent persistence for very large models[END_REF] shows that key-value stores present clear benefits for storing big models, since model operations cost remains constant when models size grows. However, NeoEMF/HBase still lacks of a thorough performance evaluation. Hence, immediate future work is focused in the development of an evaluation benchmark. In this sense, we pursue to determine how the latency introduced by HBase -specially on write operations -affects the overall performance.

Additionally, a more advanced locking mechanism allowing arbitrary object locks will be implemented. Such a mechanism will provide multi-object ACID properties to the framework, allowing client applications to implement the synchronization logic to perform arbitrary, distributed and concurrent modifications.

Fig. 4 :

 4 Fig. 4: Excerpt of the Java metamodel (4a) and sample instance (4b)

Table -

 - Tables have a name, and are the top-level organization unit for data in HBase. Row -Within a table, data is stored in rows. Rows are uniquely identified by their row key. Column Family -Data within a row is grouped by column family. Column families are defined at table creation and are not easily modified. Every row in a table has the same column families, although a row does not need to

Acknowledgments

This work is partially supported by the MONDO (EU ICT-611125) project.

http://www.emn.fr/z-info/atlanmod/index.php

'ROOT' 'http://java' 'RootEObject' 'p1' 'ROOT' 'eContents' 'http://java' 'Package' 'c1' 'p1' 'ownedElements' 'http://java' 'ClassDeclaration' 'b1' 'c1' 'bodyDeclarations' 'http://java' 'BodyDeclaration' 'b2' 'c1' 'bodyDeclarations' 'http://java' 'BodyDeclaration' 'm1' 'b1' 'modifiers' 'http://java' 'Modifier' 'm2' 'b2' 'modifiers' 'http://java' 'Modifier'