
HAL Id: hal-01215268
https://hal.science/hal-01215268

Submitted on 13 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ATL-MR: Model Transformation on MapReduce
Amine Benelallam, Abel Gómez, Massimo Tisi

To cite this version:
Amine Benelallam, Abel Gómez, Massimo Tisi. ATL-MR: Model Transformation on MapReduce.
Proceedings of the Second Workshop on Software Engineering for Parallel Systems (SEPS) co-located
with SPLASH 2015, Oct 2015, Pittsburgh, United States. �hal-01215268�

https://hal.science/hal-01215268
https://hal.archives-ouvertes.fr

ATL-MR: Model Transformation on MapReduce

Amine Benelallam
AtlanMod Team, Inria, Mines-Nantes,

Lina, 4 rue Alfred Kastler, 44307
Nantes, France

amine.benelallam@inria.fr

Abel Gómez
Departamento de Informática e

Ingeniería de Sistemas. Universidad
de Zaragoza. Zaragoza, Spain

abel.gomez@unizar.es

Massimo Tisi
AtlanMod Team, Inria, Mines-Nantes,

Lina, 4 rue Alfred Kastler, 44307
Nantes, France

massimo.tisi@inria.fr

Abstract
The Model-Driven Engineering (MDE) paradigm has been
successfully embraced for manufacturing maintainable soft-
ware in several domains while decreasing costs and efforts.
One of its principal concepts is rule-based Model Transfor-
mation (MT) that enables an automated processing of mod-
els for different intentions. The user-friendly syntax of MT
languages is designed for allowing users to specify and ex-
ecute these operations in an effortless manner. Existing MT
engines, however, are incapable of accomplishing transforma-
tion operations in an acceptable time while facing complex
transformations. Worse, against large amount of data, these
tools crash throwing an out of memory exception.

In this paper, we introduce ATL-MR, a tool to automati-
cally distribute the execution of model transformations writ-
ten in a popular MT language, ATL, on top of a well-known
distributed programming model, MapReduce. We briefly
present an overview of our approach, we describe the changes
with respect to the standard ATL transformation engine, fi-
nally, we experimentally show the scalability of this solution.

Keywords Model Transformation, Distributed Computing,
Tool, ATL, MapReduce

1. Introduction
Model-Driven Engineering (MDE) is gaining ground in indus-
trial environments, thanks to its promise of lowering software
development and maintenance effort [10]. It has been adopted
with success in producing software for several domains such
as the modernization of legacy software systems [3]. Core
concepts of MDE are the centrality of (software, data and sys-
tem) models in all phases of software engineering and the au-

tomation of model processing during the software life-cycle.
Model Transformation (MT) languages have been designed to
help users specifying and executing these model-graph manip-
ulations. The AtlanMod Transformation Language (ATL) [9]
is one of the most popular examples among them, and a
plethora of transformations exist addressing different model
types and intentions1.

In recent years, MDE has been witnessing the increasing
complexity of systems and data that comes in MDE in the
form of Very Large Models (VLMs) [4]. Existing MDE tools,
especially MT engines, are based on graph matching and
traversing techniques, that makes them exposed to serious
scalability issues in terms of memory occupancy and execu-
tion time. This stands in particular when MT execution is
limited by the resources of a single machine.

With the broad availability of distributed clusters and
programming models such as MapReduce [5], a natural way
to overcome these issues would be exploiting distributed
systems for parallelizing model processing operations.

In this paper we introduce ATL-MR2, a tool enabling the
automatic execution of model transformations in ATL on top
of MapReduce. The distribution is implicit, i.e. the syntax of
the ATL is not modified and no primitive for distribution is
added. Hence, no familiarity with distributed programming
is required.

The paper is structured as follows. Section 2 introduces
the syntax of ATL and its execution semantics by means of
a running example. Section 3 describes an overview of our
approach and details the implementation of our prototype
engine. Section 4 discusses the evaluation results of our
solution. Finally, Section 5 wraps up the conclusions and
future works.

2. Background
In this section we give a brief introduction to ATL by
means of model-driven reverse engineering case study. This
case study was proposed as a simple but computationally
expensive benchmark for MT engines [8]. We focus on one

1 http://www.eclipse.org/atl/atlTransformations/
2 https://github.com/atlanmod/ATL_MR/

http://www.eclipse.org/atl/atlTransformations/
https://github.com/atlanmod/ATL_MR/

Figure 1: ControlFlow2DataFlow transformation example

phase of the scenario, the transformation of the control-flow
diagram of a Java program into a data-flow diagram.

Fig. 1 shows an example of models, derived from a
small program calculating a number factorial. Instructions
are represented by rectangles, and variables by squares. An
instruction points to the set of variables it defines or writes
(def), and a set of variables it reads (use). The links cfNext
and dfNext refer to the next control flow and data flow
instructions respectively3. As it can be seen in the figure,
the transformation changes the topology of the model graph.

2.1 The AtlanMod Transformation Language
In this paper we refer to an ATL implementation of the
transformation named ControlFlow2DataFlow and available
at the article website2. Listing 1 illustrates a rule of the
transformation.

Model transformations in ATL [9] are unidirectional. They
are applied to read-only source models and produce write-
only target models. Declarative rules abstract the relation-
ship between source and target elements while hiding the
semantics dealing with rule triggering, ordering, traceability
management and so on.

ATL matched rules are composed of a source pattern and
a target pattern. Both of source and target patterns might con-
tain one or many pattern elements. Input patterns are fired au-
tomatically when an instance of the source pattern (a match)
is identified, and produce an instance of the corresponding
target pattern in the output model. Implicitly, transient trac-
ing information is built to associate input elements to their
correspondences in the target model.

Source patterns are defined as OCL [13] guards over a
set of typed elements, i.e. only input elements satisfying that
guard are matched. In ATL, a source pattern lays within
the body of the clause ’from’. For instance, in the rule
SimpleStmt, the source pattern (Listing 1, lines 4-6) matches
an element of type SimpleStmt that defines or uses at least
a variable. Output patterns, delimited by the clause ’to’
(lines 7-11) describe how to compute the model elements to
produce when the rule is fired, starting from the values of the
matched elements. E.g., the SimpleStmt rule produces a single

3 A detailed introduction can be found in the Dragonbook [11], Chapter 9

Listing 1: ControlFlow2DataFlow - ATL rules (excerpt)
1 module ControlFlow2DataFlow ;
2 c r e a t e OUT : DataFlow from IN : ControlFlow ;
3 r u l e SimpleStmt {
4 from
5 s : ControlFlow ! SimpleStmt (not (s . def−>
6 isEmpty () and s . use−>isEmpty ()))
7 to
8 t : DataFlow ! SimpleStmt (
9 txt <− s . txt ,

10 dfNext <− s . computeNextDataFlows ()
11)
12 }

element of type SimpleStmt. A set of OCL bindings specify
how to fill each of the features (attributes and references)
of the produced elements. The binding at line 9 copies
the textual representation of the instruction, the binding at
line 10 fills the dfNext link with values computed by the
computeNextDataFlows OCL helper.

ATL matched rules are executed in two phases, a match
phase and an apply phase. In the first phase, the rules are
applied over source models’ elements satisfying their guards.
Each single match, corresponds to the creation of an explicit
traceability link. This link connects three items: the rule
that triggered the application, the match, and the newly
created output elements. At this stage, only the output pattern
elements type is considered, bindings evaluation is left to the
apply phase.

The apply phase deals with the initialization of output
elements’ features. Every feature is associated to a binding
in an output pattern element of a given rule application.
Features initialization is performed in two steps: 1) first the
corresponding binding expression is computed, resulting in
a collection of elements of the input model; 2) it is then
passed to a resolution algorithm that, if needed, navigates
the trace links produced in the match phase to determine the
corresponding target elements.

2.2 MapReduce
MapReduce is a programming model and software framework
developed at Google in 2004 [5]. It allows easy and transpar-
ent distributed processing of big data sets while concealing
the complex distribution details a developer might cross. Both
Map and Reduce invocations are distributed across cluster
nodes, thanks to the Master that orchestrates jobs assignment.
Input data is partitioned into a set of chunks called Splits.
Every split comprises a set of logical Records.

Given the number of Splits and idle nodes, the Master
node decides the number of workers (slave machines) for
the assignment of Map jobs. Each Map worker reads one or
many Splits, iterates over the Records, processes the records
and stores the results locally. When Map workers finish, the
Master forwards these locations to the Reduce workers that
sort the records by key so that all occurrences of the same key

int fact(int a)

int r = 1;

while (a>0)

r *= a--;

return r;

a

r

int fact(int a)

int r = 1;

while (a>0)

r *= a--;

return r;

int fact(int a)

int r = 1;

while (a>0)

r *= a--;

return r;

Map 1 output

Map 2 output

Reduce outputInput Model
Local match\apply Global resolve

Figure 2: ControlFlow2DataFlow example on MapReduce

are grouped together. The mapper then passes the key and list
of values to the user-defined reduce function for processing.

3. ATL-MR
Our ATL-MR transformation engine follows a data-distribu-
tion scheme, where each one of the nodes that are computing
in parallel takes charge of transforming a part of the input
model. Its source code is available at the paper’s website.
The engine is built on top of the ATL Virtual Machine
(EMFTVM [15]) and Apache Hadoop [2].

Fig. 2 shows how the ATL transformation of our running
example is executed on top of three nodes, two map and one
reduce workers. The input model is equally split over map
workers. In the map phase, each worker runs independently
the full transformation code but applies it only to the assigned
subset of the input model. We call this phase Local match-
apply. Afterwards each map worker communicates the set
of model elements it created to the worker that performs
the reduce phase, together with trace information. These
trace links (grey arrows in Fig. 2) encode the additional
information that will be needed to resolve the binding, i.e.
identify the exact target element that has to be referenced
based on the tracing information. The reduce worker is
responsible of gathering partial models and trace links from
the map workers, and updating properties value of unresolved
bindings. We call this phase Global resolve. Each node in the
system executes its own instance of the ATL VM but performs
either only the local match-apply or the global resolve phase.

At the map phase, input splits are assigned to map workers.
Each one of these splits contains a subset of the input model
for processing. However, each worker has a full view of the
input models in case it needs additional data for bindings
computation. For example, executing the binding dfNext
over the method fact(int a), results in {while(a)>0, r*=a-
-;} (grey arrows in Fig. 2). Since while(a) and fact(int a)
reside in the same node, a dfNext reference between them
is created in the target model during this map phase. At the
beginning of the reduce phase, all the target elements are
created, the local bindings are populated, and the unresolved
bindings are referring to the source elements to be resolved.
This information is kept consistent in the tracing information
formerly computed and communicated by the mappers. Then
it resolves the remaining reference bindings by iterating over

Figure 3: ATL-MR’s integration within MONDO platform

the trace links. For each trace link, the reducer iterates over
the unresolved elements of its property traces, resolves their
corresponding element in the output model, and updates the
target element with the final references. In the right-hand side
of Fig. 2 all the trace properties have been substituted with
final references to the output model elements.

The standalone and distributed ATL engines share most of
the code. In the standard ATL VM, the transformation engine
iterates over the matched rules, and looks for the elements
that match its application condition (guard). Instead, our
distributed VM iterates over each input model element, and
checks if it is matched by an existing rule. In this perspective,
we extended the ATL VM with a minimal set of functions
allowing the VM to run either in standalone or distributed
mode. In particular, the distributed VM is required to factorize
and expose methods for launching independently small parts
of the execution algorithms, for instance the transformation
of single model elements. More information about the tool
usage and deployment can be found at the tool’s website2.

3.1 Platform Integration
Besides running independently, ATL-MR can be used as
a component of MONDO, an integrated platform to sup-
port scalable MDE [12]. MONDO consists of a distributed
platform and an Eclipse-based tool workbench counterpart
through which developers can interact with the facilities pro-
vided by the platform. As depicted in Fig. 3 ATL-MR client
is implemented as OSGI bundle integrated with the MONDO
client. It comes with a command line-based API enabling
four primary operations, namely launch and kill for launching
and stopping a transformation respectively, whereas, status
returns the status of a transformation job. Finally, listJobs,
returns the list of running jobs. On the server side, ATL-MR
is implemented as part of the MONDO server by means of a
web servlet communicating with the Resource Manager of
the Hadoop cluster.

3.2 Limitations
Currently, our ATL VM supports only the default EMF se-
rialization format XMI (XML Metadata Interchange). This

1 2 3 4 5 6 7 8

0.5
1

1.5
2

2.5
3

3.5

Number of splits/nodes

× faster
Average speed-up

Model 1 Model 2 Model 3

Model 4 Model 5

Figure 4: Speed-up obtained in Experiment I

file-based representation faces many issues related to scala-
bility. In particular, models stored in XMI need to be fully
loaded in memory, but more importantly, XMI does not sup-
port concurrent read/write. This hampers our tool at two
levels, first, all the nodes should load the whole model even
though if they only need a subset of it. This prevents us from
transforming very big models that would not fit in memory.
The second one concerns the reduce phase parallelization,
and this is due to the fact that only one mapper can write to
the output XMI file at once. In a recent work, we extended an
existing persistence backend NeoEMF [7] with support for
concurrent read/write and on-demand loading [6] on top of
Apache HBase [14]. In our current work, we are coupling it
with our VM to solve these two particular issues.

4. Experimentation
In this section we experimentally evaluate the scalability of
our approach by conducting two different but complementary
experiments. We run our experiments in our running example
and compare how it performs in two different test environ-
ments (clusters). The transformation covers a sufficient set
of declarative ATL constructs enabling the specification of a
large group of MTs. We use as input different sets of models
of various sizes, reverse-engineered from a set of automati-
cally generated Java programs. While the first one shows a
quasi-linear speed-up w.r.t. the cluster size for input models
with similar size, the second one illustrates that the speed-up
grows with increasing model size.

For the first experiment we have used a set of 5 automat-
ically generated Java programs with random structure but
similar size and complexity. The source Java files range from
1 442 to 1 533 lines of code and the execution time of their
sequential transformation ranges from 620s to 778s. The ex-
periments were run on a set of identical Elastic MapReduce
clusters provided by Amazon Web Services. All the clusters
were composed by 10 EC2 instances of type m1.large. Each
execution of the transformation was launched in one of those
clusters with a fixed number of nodes – from 1 to 8 – depend-

1 2 3 4 5 6 7 8

0

2

4

6

Number of splits/nodes

× faster Speed-up

(∼4MB) (∼8MB) (∼16MB) (∼32MB)

Figure 5: Execution times and speed-up on Experiment II

ing on the experiment. Each experiment has been executed
10 times for each model and number of nodes. In total 400
experiments have been executed summing up a total of 280
hours of computation (1 120 normalized instance hours[1]).
Fig. 4 summarizes the speed-up results.

To investigate the correlation between model size and
speed-up we execute the transformation over 4 artificially
generated Java programs with identical structure but different
size (from 13 500 to 105 000 lines of code). This time the
experiments have been executed in a virtual cluster composed
by 12 instances built on top of OpenVZ containers running
Hadoop 2.5.1.

As shown in Fig. 5, the curves produced by Experiment
II are consistent to the results obtained from Experiment I,
despite the different model sizes and cluster architectures.
Moreover, as expected, larger models produce higher speed-
ups: for longer transformations the parallelization benefits of
longer map tasks overtakes the overhead of the MapReduce
framework.

5. Conclusion and Future Work
In this paper we introduce ATL-MR a tool to enable the
distribution of ATL transformation in a distributed environ-
ment. We show its interoperability by integrating it with a
distributed MDE platform, MONDO. Also, we experimen-
tally show the good scalability of our solution. Thanks to our
publicly available execution engine, users may exploit the
availability of MapReduce clusters on the Cloud to run model
transformations in a scalable and fault-tolerant way.

In our future work we plan to improve the efficiency of our
tool, by addressing related research aspects. We aim to investi-
gate: (i) coupling with the transformation engine a distributed
model-persistence backend supporting concurrent read/write,
and on-demand loading, (ii) efficiently distributing the in-
put model over map workers with the aim to optimize load
balancing and minimize workload.

Acknowledgments
This work is partially supported by the MONDO (EU ICT-
611125) project. Many thanks to Antonio García-Domínguez
for his valuable help while integrating ATL-MR with the
MONDO platform.

References
[1] Amazon Web Services, Inc. Amazon EMR FAQs, June, 2015.

URL: http://aws.amazon.com/elasticmapreduce/
faqs.

[2] Apache Software Foundation. Apache Hadoop, June, 2015.
URL: http://hadoop.apache.org/.

[3] H. Bruneliére, J. Cabot, G. Dupé, and F. Madiot. MoDisco:
A Model Driven Reverse Engineering Framework. IST,
56(8):1012–1032, 2014.

[4] C. Clasen, M. Didonet Del Fabro, and M. Tisi. Transforming
Very Large Models in the Cloud: a Research Roadmap. In
CloudMDE, Copenhagen, Denmark, 2012. Springer.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In Commun. ACM, volume 51,
pages 107–113, NY, USA, 2008. ACM.

[6] A. Gómez, A. Benelallam, and M. Tisi. Decentralized
Model Persistence for Distributed Computing. In Proc.
of 3rd BigMDE Workshop. CEUR Workshop, July 2015.
urn:nbn:de:0074-1406-4.

[7] A. Gómez, M. Tisi, G. Sunyé, and J. Cabot. Map-based
transparent persistence for very large models. In A. Egyed
and I. Schaefer, editors, Proc. of FASE’15, volume 9033 of
Lecture Notes in Computer Science, pages 19–34. Springer
Berlin Heidelberg, 2015.

[8] T. Horn. The TTC 2013 Flowgraphs Case. arXiv preprint
arXiv:1312.0341, 2013.

[9] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A Model
Transformation Tool. Science of Computer Programming, 72(1-
2):31–39, 2008.

[10] J. Kärnä, J.-P. Tolvanen, and S. Kelly. Evaluating the use
of domain-specific modeling in practice. In 9th OOPSLA
workshop on Domain-Specific Modeling. Helsinki School of
Economics, 2009.

[11] M. Lam, R. Sethi, J. Ullman, and A. Aho. Compilers: Princi-
ples, Techniques, and Tools. Addison-Wesley, 2006.

[12] MONDO Project. MONDO Platform, June, 2015. URL:
https://github.com/mondo-project/.

[13] Object Management Group. Object Constraint Language, OCL,
June, 2015. URL: http://www.omg.org/spec/OCL/.

[14] The Apache Software Foundation. Apache HBase, June, 2015.
URL: http://hbase.apache.org/.

[15] The Eclipse Foundation. ATL EMFTVM, June, 2015. URL:
https://wiki.eclipse.org/ATL/EMFTVM/.

http://aws.amazon.com/elasticmapreduce/faqs
http://aws.amazon.com/elasticmapreduce/faqs
http://hadoop.apache.org/
https://github.com/mondo-project/
http://www.omg.org/spec/OCL/
http://hbase.apache.org/
https://wiki.eclipse.org/ATL/EMFTVM/

	Introduction
	Background
	The AtlanMod Transformation Language
	MapReduce

	ATL-MR
	Platform Integration
	Limitations

	Experimentation
	Conclusion and Future Work

