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Abstract. Multi-armed bandit problems are challenging sequential decision prob-
lems that have been widely studied as they constitute a mathematical framework
that abstracts many different decision problems in fields such as machine learn-
ing, logistics, industrial optimization, management of clinical trials, etc. In this
paper we address a non stationary environment with expected rewards that are
dynamically evolving, considering a particular type of drift, that we call resets, in
which the arm qualities are re-initialized from time to time. We compare different
arm selection strategies with simulations, focusing on a Bayesian method based
on Thompson sampling (a simple, yet effective, technique for trading off between
exploration and exploitation).

1 Introduction

The multi-armed bandit problem is a general framework that can represent several dif-
ferent sequential decision problems. Essentially, a multi-armed bandit is a a slot ma-
chine with n arms (representing possible decisions), each associated with a different
and unknown expected payoff (reward). The problem is to select the optimal (or near-
optimal) sequence of arms to pull in order to maximize reward (in expectation). Previ-
ous rewards obtained from earlier steps are taken into account in order to identify arms
that are associated with high payoff; but since reward is uncertain, several pulls of the
same arms are usually necessary to assess the quality of an arm with some confidence.
A key concept in bandit problems is the trade-off between exploitation (pulling the arm
with the highest estimated expected payoff) and exploration (focusing on getting more
information about the expected payoffs of the other arms).

A large number of works have addressed bandit problems [12, 11, 2, 9, 14, 10]. In
particular, large attention has been given to methods (including heuristics) that are com-
putationally fast and produce a decision about the next arm to pull in very short time.
This include action-value strategies, but also the family of UCB methods [1].

Thompson sampling is a simple and effective strategy for multi armed bandits. It
can be implemented very efficiently and it is based on principled Bayesian reasoning.
Essentially, this strategy maintain a probabilistic estimate on the value of the arms, and
select arms according to their probability of being the optimal arm (it is a randomized
selection strategy). This idea was first described eighty years ago [13]. However, it has
been surprisingly neglected until it has been recently rediscovered [7, 8, 5, 9], showing
its effectiveness in a number of different settings.

Most of the works on bandits assume a stationary distribution of rewards. In many
situations, however, one cannot expect the quality of the different arms to be constant. If



the values of the different possibilities change with time (non stationarity) the situation
is that of dynamic bandits (also called restless in the literature [3]). In this work, in
particular, we consider the situation in which drastic changes in the quality of an arm
occur (we say that the arm is “reset”). This can model situations of drastic drift, but also
situations in which an arm is substituted with a new one (for example in the problem of
choosing a seller in electronic commerce, where vendors can suddenly disappear and
new ones arrive).

The goal of this work is to show how probability matching with Thompson sampling
can be efficiently implemented in non stationary domains (in particular in the case of
resets) and to evaluate its performance compared to a number of classic bandit methods.

2 Bayesian Bandits

In bandit problems, one is accumulating rewards from an unknown distribution. There
are different possible views on this problem, mainly distribution-free methods (such as
the UCB family of strategies [1]) aiming at providing bounds on the worst-case perfor-
mance, and Bayesian methods (aiming at optimizing average performance). Bayesian
bandit strategies maintain an estimation of the goodness of the different arms in term of
probability distributions (known as “beliefs”) on the value of the arm. A prior (usually
uninformative) is given, that is updated using Bayes rules every time an arm is pulled
and a reward is observed.

In order to specify a Bayesian approach for bandit problems, we need to address two
issues. First, we need to represent distribution information in a practical way. Second,
we need to define a strategy that based on the current belief picks the next arm to pull.

More formally, at each round t we have to choose an action (arm) a ∈ A, where
|A|=n, obtaining reward rt; each arm is associated with a probability density P (r|a)
that dictates an average reward µa =EP (r|a)[r|a]; the “best” arm is the one associated
with µ∗ = maxa∈A µa. Since the true distribution P (r|a) is not known with certainty,
one will often pull suboptimal arms. Let a[t] be the arm pulled at time t. One can state
that the goal of a strategy for bandit problems is to maximize long-term (either dis-
counted or undiscounted) cumulative reward

∑
t=1,..,T rt, or alternatively, minimize

cumulative expected regret, defined as
∑

t=1,..,T µ∗−µa[t]. Expected regret is the dif-
ference between the expected reward associated with the best arm and that of choice
made; cumulative expected regret is the sum of this quantity over time.

The Bayesian approach maintains a belief on the possible reward distributions.
Assuming a particular type of distribution, we write P (r|a; θ) to explicitly express
the dependency over a set of parameters θ. The belief is then a distribution P (θ)
over the possible instantiations of the parameters θ; that is updated whenever a new
pair action-reward (a, r) is observed. The belief Belt(θ) at time t is the probability
P (θ|(a[1], r1), .., (a[t−1], rt−1)) conditioned to the whole history of pulls and rewards.
The posterior Bel(θ|a[t], rt) becomes the new belief Belt+1(θ) (taking the role of
“prior”) for the timestep t+ 1.

When considering a Bayesian approach, as we do here, a fundamental issue is that
to update the beliefs whenever a new reward is obtained (this essentially mean to apply
Bayes theorem). A practical way to do that is to choose distributions of particular forms,



so that they are easy to update. In this paper we focus on Bernoulli bandits, where the
reward associated to an arm follows a Bernoulli distribution. Bernoulli bandits can for
instance model click behavior and purchase activity in electronic commerce settings [5].
The sequence of rewards/penalties obtained from each arm forms a Bernoulli process
with (unknown) probability qa of “success” (and probability 1− qa of “failure”). Thus,
in the Bernoulli case, possible rewards are in {0, 1} and the parameters θ of the model
are the elements of the vector q={q1, ..., qn} of the success probabilities for each of the
n arms; qa is also the expected reward of the arm (µa=E[r|a] = qa) and q∗=maxa qa
is the (true) optimal arm. The q values are not known with certainty, and a belief is
maintained. Let ta(k) be the timestep in which arm a was used for the k-th time; the
belief Belt(qa) is the probability P (qa | rta(1), rta(2), ...) conditioned to the rewards
obtained when using arm a.

In order to facilitate the operation of Bayesian update, we use the Beta distribution
for representing beliefs. The Beta distribution is a conjugate prior for the Binomial dis-
tribution; we can therefore implement Bayesian reasoning very efficiently. We maintain
two sets of hyper-parameters (α1, ...,αn) and (β1, ...,βn). The distribution Beta(αi,βi)
is the prior belief for arm i. Whenever a success is observed (reward is 1) after pulling
arm i, we increment the corresponding αi; if, on the contrary, we observe a failure (re-
ward is 0) we increment the corresponding βi. If one assumes an uniform prior, then
the initial α0 and β0 are set to 1, but a different choice is possible. 1

Based on the current information about the value of the arms, a strategy needs to
select the next arm to pull. Traditional methods, such as action-value strategies and the
UCB-1 method, based their selection on the empirical mean alone 2. Bayesian strategies
use the current belief distribution P (q) = P (q1, ..., qn) to select the next arm. We now
discuss, in the next Section, probability matching with Thompson sampling as a method
for arm selection. Then, in Section 4, we adapt this method for environments with resets.

3 Probability Matching with Thompson Sampling

The idea of Thompson sampling is to choose the arm that maximizes the expected re-
ward with respect to a randomly drawn belief. It is a Bayesian method because the
current belief (about the q values of the arms) is used directly in order to decide which
arm to pull. This technique is also known as “probability matching” and it is based on
the intuition that if the number of pulls for a given arm matches its (estimated) proba-
bility of being the optimal arm, one can have a good compromise between exploitation
and exploration. It is consistent with intuition: if one arm has very low chances of being
a good arm (probability of optimality close to zero), it will be (almost) never pulled;
similarly if an arm is very likely to be the best, it will be pulled very often. Thompson
sampling has been showed to be effective in the context of stationary Bernoulli ban-
dits [7, 5]. Moreover, it has been showed [8] to be effective in the presence of Brownian
motion.

1 α and β are often called “pseudo-counts” for this reason.
2 UCB-tuned considers the sample variance as well; however in Bernoulli events the variance is

a simple function of the mean.



Algorithm 1: Thompson sampling: general case
Bel0(θ)← P (θ) (Initialize belief to some initial distribution);
Set t← 0;
while true do

Sample θ̂ ∼ Belt(θ) ∀i 1 ≤ i ≤ n;
Select arm a← argmaxi E[r|θ̂i] ;
Observe reward rt;
Bayesian update: Belt+1(θ)← Belt(θ|rt);
t← t+ 1;

end

Algorithm 2: Bayesian Bernoulli bandits with Thompson sampling
Initialize pseudo-counts: (αi, βi)← (α0,β0) ;
while true do

Sample q̂i ∼ Beta(αi,βi) ∀i ∈ {1, ..., n};
Select arm a← argmax q̂i;
Observe reward rt;
αa ← αa + rt;
βa ← βa + (1− rt);

end

Formally, for Bernoulli bandits, assume indicator variable Iopti (q) to yield 1 iff
qi=q∗ and 0 otherwise. Probability matching with Thompson sampling is a randomized
strategy that consists, at any time t, in pulling arm i with probability equal to P opt(i),
being the probability that the arm i is optimal according to the current beliefs. For each
arm i, this is

P opt(i) =

∫
Iopti (q)P (q)dq =

∫ 1

0
...

∫ 1

0
Iopti (q1, ..., qn)

∏

i

P (qi) dq1...dqn. (1)

(where we use the fact the q values are probabilistically independent) Since the
value P opt might not be easy to compute, in practice, the rule is implemented in the
following way (that is what is more strictly referred as Thompson sampling). In each
round, a set of parameter q̂ is sampled from the posterior P (q|r1, ..., rt), and the arm
with highest value q̂∗ is chosen. Conceptually, this means that the agent instantiates the
value of the arms randomly according to his beliefs in each round, and then he acts opti-
mally according to this instantiation (the general algorithm is shown in Algorithm 1 and
the algorithm specific to Bernoulli bandits in Algorithm 2). An advantage of Thompson
sampling is the absence of tuning parameters, in contrast with most (if not all) heuristic
methods, where setting the right value for the parameters is crucial.

Thompson sampling is particularly simple to implement in the case of Bernoulli
bandits assuming Beta priors. The set of hyper-parameters αi and βi are initially ini-
tialized according to prior information (setting them all to 1 coincides to an uniform
prior). Bayesian update consists in updating the hyper-parameter in the following way:



Algorithm 3: Particle Filter reset-aware Thompson for Bayesian Bernoulli ban-
dits

Data: Prior hyper-parameters (pseudo-counts): α0,β0

Initialize set of particles Pi = (q1i , ..., q
L
i ) for each i uniformly in Beta(α0, β0);

Set time t← 0;
while true do

for each arm i in 1,...,n do
for each particle j in 1,...,L do

while rand() < preset do
resample qji ∼ Beta(α0,β0);

end
end
Sample a particle from each particle set: q̂i ∼ Pi ∀i;

end
Select arm a← argmaxi q̂i;
Observe reward rt;
Pa ← ImportanceSampling(Pa, rt) ;
t← t+ 1;

end

when arm i is pulled, αi is incremented if a positive reward (r=1) is observed, other-
wise in the case of no reward (r=0) βi is incremented. The decision of the arm to pull
consists in sampling the values for the qi according from Beta with the current value
hyper-parameters, and selecting the highest one.

4 Reset-aware Thompson Sampling

In this paper, we consider dynamic (restless) bandits, focusing on the particular of re-
wards that can drastically change from time to time (resets). This can model situations
like a new user of a electronic commerce website, or when a supplier changes own-
ership. In our analysis, we assume that there exists a (fixed) probability preset under
which the payoffs are changed, and reset rewards are re-sampled according to the prior
Beta(α0,β0), with hyper-parameters α0 and β0 (prior pseudo-counts).

The principle of Thompson sampling can be extended to the case of presence of
resets. The key issue in using Thompson is being able to sample from the posterior. The
problem is now that we cannot anymore represent the posterior by simply maintain-
ing a vector of pseudo-counts. We will show however that we can still use Thompson
sampling from the posterior distribution, considering two different methods.

4.1 Particle Filter Thompson

This method (Algorithm 3) computes an unbiased estimation of the belief distribution
of the quality of each arm using particles. Belt(q) is approximated by a set of particles:
a set of L particles is associated to each arm (each particle is a scalar between 0 and 1,



Algorithm 4: Geometric-Beta reset-aware Thompson sampling for Bayesian
Bernoulli bandits

Data: Prior pseudocount: α0,β0

Initialize history log;
Set time t← 0;
while true do

for each arm i in 1,...,n do
t̄i ← lastUse(i, t);
while rand() < 1− preset do

t̄i ← lastUse(i, t̄i);
end
αi ← α0+ number of sucessful pulls of arm i between time t̄i and t;
βi ← β0+ number of unsucessful pulls of arm i between time t̄i and t;
Sample q̂i ∼ Beta(αi,βi);

end
Select arm a← argmax q̂i;
Observe reward rt;
Log results;
t← t+ 1;

end

representing a particular hypothesis about the value qi). The approximation is unbiased,
meaning that for a large number of particles, the mean of the distribution converges to
the true mean. The belief is propagated during time using a particle filer, composed of
two parts: a transition model (that simulates the dynamics; i.e. the possibility that an
arm can be reset) and an observation filtering, where using importance sampling, a new
set of particles is selected from the old ones, favoring the particles that better explain
the observed reward.

The transition model (the innermost loop in Algorithm 3) iterates over the particles
of each arm and substitutes a particle with a new one (sampled from the prior) with
probability preset. In the observation filtering model, particles are weighted by the like-
lihood of the observed reward given their hypothesis: qi if rt =1 and 1 − qi otherwise
(if rt = 0). The weights are used to resample a new set of L particles; the new par-
ticles represent an approximation of the posterior distribution. At any given time-step,
Thompson sampling is realized by sampling exactly one particle for each arm uniformly
at random from the associated particles, and pulling the arm whose sampled particles
has the highest value.

4.2 Geometric-Beta Thompson

The key insight of this method is what it matters is the last time that the arm was reset.
The belief distribution of the value of the arm assuming the arm was reset at time t̂
is a Beta distribution with hyper-parameters dictated by the number of successes and
failures since t̂. Let xi

t be 1 if the arm i is pulled at time t (0 otherwise), and rt be
the reward received at time t. Following our intuition, and assuming Beta priors and a



probability of drift preset, we approximate the probability distribution (belief) Belt(q)
of the value of an arm i at time t with the following:

t∑

k=1

preset(1−preset)k · fBeta

(
q ;α0+

t∑

m=k

rm xi
m, β0+

t∑

m=k

(1−rm)xi
m

)

where fBeta(x;α,β) is the density of the Beta distribution with parameters α and β.
We now adapt Thompson sampling for the case of resets by sampling, indepen-

dently, for each arm, the time of the last reset. At each time step, for each arm, we
independently sample a time-step t̄i from a geometric distribution, parameterized by
preset the reset probability, in order to decide “how far in the past we should go” to set
the temporal “window” that it will be used to compute the hyper-parameters αi and βi.
Let lastUse(i, t) be a function that returns the last time-step t′ before t in which arm
i was pulled. We repeat the following procedure: we sample a uniform random number
between 0 and 1 and, while it is lower than preset, we set t̂i ← lastUse(i, t̂i) and repeat
the loop. The sampled time-step will be used to derive the pseudo-counts that will be
used for Thompson sampling.

Considering the history of previous pulls, we consider the interval from t̂i to the
current t, and count the number of successful and unsuccessful pulls (for arm i). The
belief distribution of the value of the arm i assuming the arm was reset at time t̂i can be
modeled as a Beta distribution with hyper-parameters dictated by the number of success
and failures since t̂. Using our notation, the meta-parameters areαi=α0+

∑t
t′=t̄i

rt′xi
t′

and βi=β0 +
∑t

t′=t̄i
(1−rt′)xi

t′ . The complete algorithm is shown in Algorithm 4; the
computation of pseudo-counts can be made more efficient by maintaining a cumulative
sum at each time step. We note that this is a (biased) approximated method: in general
the belief (posterior probability) of an arm being reset at a time-step is not independent
from the belief for the arm value (for example, if an arm has given reward 1 for 10 times
and then we observe reward 0 for several times since then, our estimation for a reset at
timestep 11 becomes much higher).

5 Experiments

In order to evaluate the effectiveness of different methods, we need to define some eval-
uation metrics. In principle, one would like to be able to accumulate as much reward
as possible. Cumulative reward is therefore a natural criterion. It is also interesting to
compare the reward obtained following a policy with that of always pulling the “best”
arm (that of course is not known with certainty by the bandit strategy). Expected re-
gret for a single pull of a Bernoulli bandit is R = q∗−qa, and cumulative expected
regret is

∑
t=1,..,T q∗− qa[t] for a particular run of the algorithm. We remark that all

algorithms make choices (on which arm to pull) based on the history of rewards ob-
tained, often including some explicit randomization (that is the case of epsilon-greedy
methods, and also Thompson sampling). In theory, each strategy could be measured
according to its expected expected regret (in expectation over possible history of pulls
and rewards obtained) and expected expected reward, but these measures are extremely



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

200

400

600

800

1000

1200

1400

number of pulls

cu
m

ul
at

iv
e 

re
gr

et

 

 

PF−Thompson
GB−Thompson
Thompson
UCB−tuned
UCB−1
Epsilon−greedy
Greedy

Fig. 1. Regret; preset=0.001, n = 2.
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Fig. 2. Fraction of optimal arm selection; preset =0.001,
n = 2.
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Fig. 3. Reward vs number of arms;
preset=0.001; (α,β)=(1, 1).
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Fig. 4. Reward vs number of arms;
preset=0.001; (α, β)=(2, 1).
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Fig. 5. Reward vs number of arms;
preset=0.001; (α,β)=(1, 2).

hard to calculate analytically. Therefore, with simulations, we compare the different
strategies according to their average performance, in particular the values obtained for
cumulative expected reward averaged over a large number of runs (this choice allows
to directly compare the degradation of total reward when preset increases).

In the following experiments we evaluate Thompson sampling and some classic
bandit strategies in presence of resets, in a variety of settings. We are interested to ver-
ify whether probability matching, implemented with Thompson sampling as presented
in this paper, is an effective strategy for balancing exploration and exploration. At any
time-step, let µ̄i be the empirical mean and σ̄i the sample variance of the rewards ob-
served when pulling arm i. We compare the following strategies for choosing the next
arm to pull:

Thompson sampling with Particle-filter: (indicated as PF-Thompson in the plots be-
low) our strategy, described in Algorithm 3, using a particle filter to estimate the
belief distribution (we use 10000 particles in our simulations).
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Fig. 7. Reward vs preset; n = 2, (α,β) =
(2, 1).
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Fig. 8. Reward vs preset; n = 10, (α,β) =
(1, 1).
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Fig. 9. Reward vs preset; n = 10,(α, β) =
(2, 1).

Geometric-Beta Thompson sampling: (indicated as Thompson-reset in the plots) our
probability matching reset-aware strategy using Thompson sampling in two steps,
sampling first from a Geometric distribution and then from Beta (see Algorithm 4).

(Standard) Thompson sampling: probability matching with Thompson sampling. A
set of hyper parameters α and β (a pair for each arm) are maintained as explained
above. A value qi ∼ Beta(αi,βi) is sampled for each arm and the arm a =
argmaxi qi with maximal value is pulled (see Algorithm 2).

UCB-tuned: The strategy is a modification of UCB-1 that is claimed to be more effec-
tive in practice; the index associated to each arm is the following:

τi= µ̄i+

√√√√ ln(t)

mi
min

(
0.25, σ̄2+

√
2ln(t)

mi

)

where mi is the number of times arm i has been pulled.
UCB-1: Each arm i is associated with an index τi = µ̄i +

√
log 2t
mi

; the arm i∗ =

argmax τi with highest index is picked.



Greedy strategy: This basic strategy always selects the currently best performing arm
according to the empirical mean: i∗ = argmax µ̄. Greedy always exploits, there-
fore it will often lead to suboptimal choices. In order to force some exploitation,
especially at the beginning, the empirical mean of each arm is biased by adding 1
to both to the numerator and the denominator.

Epsilon-Greedy: This random strategy selects the currently best performing arm i∗

(wrt empirical mean) with probability 1−ε and any other arm j %= i∗ is selected with
probability ε

n (with ε=0.05 in the simulations below).

The initial rewards are sampled from a Beta prior; we consider the following possi-
ble values for the prior hyper-parameters (α0,β0) shared by all arms: (1, 1) equivalent
to a uniform distribution, (2, 1), and (1, 2). We simulate the behavior of each strategy;
at each step of the simulation our Bayesian strategies choose which arm to pull based on
the current belief, a reward is sampled and the belief is updated; the other non-Bayesian
methods only keep aggregate information (sample mean and variance of each arm). We
let simulations proceed for a relatively long time (10000 steps) in order to be able to
witness the effect of (possibly multiple) resets. In order to compare the strategies in
the fairest possible way (and reducing noise), at each run a complete history of the re-
ward dynamics is generated beforehand, and experienced by all strategies in the same
manner. Experimental results are averaged over 300 runs.

First, let’s consider a specific setting with 2 arms and preset = 0.001 (this means
we can expect approximately around 10 resets per arm during each simulation). We
show the cumulative regret obtained by each of the strategy as function of the number
of pulls in Figure 1. PF-Thompson clearly dominates all other methods; the approx-
imated strategy Thompson-reset beats the other methods, but it is significantly worse
than PF-Thompson. Action-value methods and UCB methods fail to effectively adapt
to the reward dynamics. We also note that regret is practically stable for PF-Thompson,
but it actually increases for the other strategies (this is due to the drift). We also show
the fraction of optimal arm selection (Figure 2): the Thompson strategies are constantly
selecting the true highest performing arm with high probability. The fraction of opti-
mal arm selection decreases over time for action value methods, only UCB-1 remains
somewhat competitive.

We evaluated the impact of the number of arms on total reward. The results are
shown in Figures 3, 4, and 5 for prior hyper-parameters (α0,β0) set to (1, 1), (2, 1)
and (1, 2), respectively. The reset-aware Thompson strategy with particle filter (PF-
Thompson) is dominating in most of the settings. The Geometric-Beta version is also
very efficient in many settings (in particular when considering 2 arms); however, when
considering 10 arms, it seems that either UCB-1 (in some settings) or UCB-tuned (in
other settings) are better.

We also considered the impact of changing preset on the total cumulative reward
(obtained with 10000 pulls) when fixing the number of arms (Figures 6, 7, 8, and 9).
Surprisingly, UCB-1 is the best performing strategy when considering 10 arms and a
high reset probability. When prior hyper-parameters are optimistic (α0 = 2, β0 = 1),
also UCB-tuned becomes very effective for preset ≥ 0.003 and 10 arms.

Overall, our reset-aware Thompson sampling is an effective technique for bandit
problems with presence of resets. In particular, the version based on particle-filtering



is particularly effective, and it is dominating the other strategies in most of the settings
we tested. However, it is not the best strategy in all the cases; UCB-1 and UCB-tuned
are surprisingly competitive in a small number of settings (but perform very poorly in
others).

6 Discussion and Conclusion

Multi-armed bandits are the quintessential problem facing the exploration/exploitation
tradeoff. In this paper we addressed the problem of non-stationary multi armed bandits
with resets, a form of drift that will typically occur (relatively) rarely but it is associated
with drastic changes in the value of the choices. In our specific setting, a reset occur
with a fixed i.i.d. probability at each step and, in case of reset, the value of the arm is
reassigned to a random value sampled from a prior distribution.

We compared different strategies for multi armed bandits, aimed at achieving a
good compromise between exploitation and exploration in presence of resets, evaluating
them with respect to cumulative reward and regret. We simulated a number of bandit
problems, with different values for the reset probability preset, the number of arms and
the initial priors. In particular we showed how Thompson sampling can be effective
in case of resets. Differently from drift-aware techniques based on computing pseudo-
counts in fixed temporal windows [8], our is a principled solution that use Thompson
sampling form the right posterior.

We stress that, while much interest in the Bandit community is about theoretical
bounds, we are instead particularly interested in practical efficacy. We show, with sim-
ulations, how our strategy based on Thompson sampling is effective in practical cir-
cumstances. Thompson sampling is particularly appealing because of its simplicity
and (when using conjugate-prior distributions) its efficient implementation. A practi-
cal problem is that generally one cannot assume that the reset probability is known
a priori. Moreover, realistic domains will possibly include different type of drifts at
the same type; for instance, one could consider dynamic values generated by random
walks. We plan to investigate techniques for simultaneously learning the “drift” (the
reset probability preset in our case) while estimating the value of the arms.

Our work is related to the Mortal bandit problem of Chakrabarti et al. [4], where
arms may “die” and become unavailable, while at the same time new arms may appear.
In our model, an arm that is reset could be viewed as dead arm substituted with a
new one, but our problem is more challenging as we do not observe which arm dies.
Gittins indices [6] are a solution to the bandit problems, and in principle can be used
for dynamic settings as well. However they are computationally intensive to compute.

Other directions for future works include bandits with continuous rewards, further
experimental evaluation, theoretical analysis of the worst-case.
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