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A mixed variational problem with applications in contact mechanics

Mircea Sofonea and Andaluzia Matei

Abstract. We provide an existence result in the study of an abstract mixed variational problem which involves a history-

dependent operator and two nondifferentiable functionals depending on the solution. The proof relies on generalized saddle 
point theory and a fixed point argument. Then we consider a new mathematical model which describes the quasistatic 
frictionless contact process between a viscoplastic body and an obstacle. The contact is modeled with a multivalued normal 
compliance condition and unilateral constraint. We use our abstract result to prove the weak solvability of this contact 
problem.

Mathematics Subject Classification. Primary 49J40 · 74M15; Secondary 35M86 · 35M87.
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1. Introduction

Mixed variational problems provide a functional framework useful in the analysis and numerical simulation 
of a large number of nonlinear problems with unilateral constraints. For this reason, they are used 
in numerical analysis, optimization, theory of partial differential equations, solid mechanics and fluid 
mechanics, as well. The literature in the field has been growing rapidly in the last decades. Existence 
and uniqueness results in the study of stationary mixed variational problems with multipliers, together 
with various applications in Solid Mechanics, can be found in [4,6,8,9,14,22] and the references therein. 
References concerning the analysis of mixed variational problems associated with contact problems include 
[2,10–13,16–20].

Recent results in the study of mixed variational problems were obtained in [24]. There, a system 
coupling a nonlinear variational equation involving a history-dependent operator with a time-dependent 
inequality for the multiplier was considered. The unique weak solvability of the problem was proved, and 
a continuous dependence result was obtained. The proofs were based on results on a class of generalized 
saddle point problems, various estimates and arguments of fixed point. Then, the abstract results were 
used in the study of a frictionless contact problem with normal compliance and unilateral constraint. 
In this way, the unique weak solvability of the problem was proved and the continuous dependence of 
the weak solution with respect to the viscoplastic constitutive function, the applied forces, the contact 
conditions and the initial data was obtained.

The current paper represents a continuation of [24], and its aim is twofold. The first one is to study 
the solvability of a new mixed variational problem involving a multiplier. To this end, as in [24], we 
use various estimates and fixed point arguments. Nevertheless, in contrast to [24], the present study 
is based on results on a different class of generalized saddle point problems. The problem we consider 
here has a different structure, since it is given by a system of two variational inequalities involving two 
nondifferentiable functionals which depend on the solution and on the history of the solution, respectively.
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Therefore, in this paper, we work with different assumptions on the operators and functionals involved
in the statement of the problem. The second aim is to show how our abstract result can be used in the
analysis of mathematical models in contact mechanics. To this end, we consider the quasistatic process of
contact between a viscoplastic body and a deformable foundation. As in [24], we describe the material’s
behavior with a rate-type viscoplastic constitutive law, and we model the contact with normal compliance
and finite penetration. Nevertheless, we recall that the model used in [24] was focused on the memory
effects of the foundation and, for this reason, it was assumed that the stiffness coefficient depends on the
history of the penetration. In contrast, in the current paper we use a multivalued version of the normal
compliance condition, which describes the rigid-elastic properties of the foundation, together with its
possible hardening or softening. Considering such kind of model of contact leads to a new and interesting
mathematical problem, governed by two nondifferentiable functionals.

Our manuscript is structured as follows. In Sect. 2 we introduce the abstract mixed variational problem
we are interested in. We list the assumptions on the data, and then we state and prove an existence
result, Theorem 2.1. In Sect. 3 we consider a mathematical model of contact together with its variational
formulation. The weak solvability of the model is discussed in Sect. 4. There, we use the abstract result
provided by Theorem 2.1 to prove that the model has at least a solution. The paper ends with Sect. 5 in
which we present some concluding remarks.

2. An abstract existence result

Everywhere in this paper we use the notation N for the set of positive integers and R+ for set of non-
negative real numbers, i.e., R+ = [0,∞[. Notation (x, y) will represent an element of the product of
the sets X and Y , denoted X × Y . Given a normed space (X, ‖ · ‖X), we use the notation C(R+;X)
for the space of continuous functions defined on R+ with values on X. Also, for a subset K ⊆ X, we
use the symbol C(R+;K) for the set of continuous functions defined on R+ with values in K. For an
operator L : C(R+;X) → C(R+;X), we write Lη(t) for the value of the function Lη at the point t, i.e.,
Lη(t) = (Lη)(t). With these preliminaries, we recall the following fixed point result.

Theorem 2.1. Let (X, ‖ · ‖X) be a real Banach space, and let L : C(R+;X) → C(R+;X) be a nonlinear

operator. Assume that there exists m ∈ N with the following property: for each n ∈ N, there exist two

constants cn ≥ 0 and kn ∈ [0, 1[ such that for each t ∈ [0, n],

‖Lu(t) − Lv(t)‖m
X ≤ cn

t∫

0

‖u(s) − v(s)‖m
X ds + kn‖u(t) − v(t)‖m

X (2.1)

for all u, v ∈ C(R+;X). Then the operator L has a unique fixed point η∗ ∈ C(R+;X).

The proof of Theorem 2.1 can be found in [25] and is based on the properties of the Fréchet space
C(R+;X).

We now turn to the main result of this section. Let (X, (·, ·)X , ‖ · ‖X) and (Y, (·, ·)Y , ‖ · ‖Y ) be
two real Hilbert spaces, and let (Z, ‖ · ‖Z) be a normed space. We consider two operators A : X → X,
S : C(R+;X) → C(R+;Z), two functionals ϕ : Z×X → R, j : X×X → R, a bilinear form b : X×Y → R,
a function f : R+ → X, an element h ∈ X and a set Λ ⊆ Y. With these data, we introduce the following
problem.

Problem 1. Find two functions u : R+ → X and λ : R+ → Λ such that u ∈ C(R+;X) and, for each
t ∈ R+, the following inequalities hold:

(Au(t), v − u(t))X + ϕ(Su(t), v) − ϕ(Su(t), u(t)) + j(u(t), v)

−j(u(t), u(t)) + b(v − u(t), λ(t)) ≥ (f(t), v − u(t))X ∀v ∈ X, (2.2)
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b(u(t), μ − λ(t)) ≤ b(h, μ − λ(t)) ∀μ ∈ Λ. (2.3)

Note that in the statement of Problem 1, the unknowns u and λ do not play a symmetric role, since
the regularity u ∈ C(R+;X) is required for the unknown u, but no regularity is required for the unknown
λ. This situation arises from the structure of the problem. Indeed, from (2.2), it follows that the solution
u cannot be outside the space C(R+;X) where the operator S is defined; in contrast, no restriction is
needed for the unknown λ which is involved as second argument of the bilinear form b.

In the study of Problem 1, we consider the following assumptions.

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(a) There exists mA > 0 such that
(Au − Av, u − v)X ≥ mA‖u − v‖2

X ∀u, v ∈ X.

(b) There exists LA > 0 such that
‖Au − Av‖X ≤ LA ‖u − v‖X ∀u, v ∈ X.

(2.4)

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

For each n ∈ N there exists sn ≥ 0 such that

‖Su1(t) − Su2(t)‖Z ≤ sn

t∫

0

‖u1(s) − u2(s)‖X ds

∀u1, u2 ∈ C(R+;X), ∀ t ∈ [0, n].

(2.5)

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(a) The function ϕ(η, ·) : X → R is convex
and Lipschitz continuous, for any η ∈ Z.

(b) There exists β ≥ 0 such that
ϕ(η1, v2) − ϕ(η1, v1) + ϕ(η2, v1) − ϕ(η2, v2)

≤ β ‖η1 − η2‖X‖v1 − v2‖X ∀ η1, η2 ∈ Z, v1, v2 ∈ X.

(2.6)

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(a) The function j(u, ·) : X → R is convex
and Lipschitz continuous, for any u ∈ X.

(b) There exists α ≥ 0 such that
j(u1, v2) − j(u1, v1) + j(u2, v1) − j(u2, v2)

≤ α ‖u1 − u2‖X‖v1 − v2‖X ∀u1, u2, v1, v2 ∈ X.

(2.7)

α < mA. (2.8)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b : X × Y → R is a bilinear form such that

(a) There exists Mb > 0 :
|b(v, μ)| ≤ Mb‖v‖X‖μ‖Y ∀ v ∈ X, μ ∈ Y.

(b) There exists b0 > 0 :

inf
µ∈Y,µ�=0Y

sup
v∈X,v �=0X

b(v, μ)

‖v‖X‖μ‖Y

≥ b0.

(2.9)

f ∈ C(R+;X), h ∈ X. (2.10)

Λ is a closed convex subset of Y that contains 0Y . (2.11)
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On these assumptions, we have the following comments. First, (2.4) shows that A is a strongly
monotone Lipschitz continuous operator. Next, following the terminology introduced in [26], (2.5) shows
that S is a history-dependent operator. Also (2.8) represents a smallness assumption which involves the
operator A and the functional j. Finally, condition (2.9)(b) is the so-called inf-sup condition, used in the
saddle point theory; see, for instance, [4,6,8,9,14] and the references therein.

The solvability of Problem 1 is given by the following result.

Theorem 2.1. Assume (2.4)–(2.11). Then, Problem 1 has a solution (u, λ), unique in u.

We recall that as explained in page 3575, a couple of functions u : R+ → X, λ : R+ → Λ is said to be a
solution of Problem 1 iff (2.2)–(2.3) hold for each t ∈ R+ and, moreover, u ∈ C(R+;X).

The proof of Theorem 2.1 will be carried out in several steps, based on the study of several intermediate
problems and fixed point arguments. To provide it, we assume in what follows that (2.4)–(2.11) hold. In
the first step, we consider the following elliptic problem.

Problem 2. Given g, θ ∈ X and z ∈ Z, find (u, λ) ∈ X × Λ such that

(Au, v − u)X + ϕ(z, v) − ϕ(z, u) + j(θ, v) − j(θ, u) (2.12)

+b(v − u, λ) ≥ (g, v − u)X ∀ v ∈ X,

b(u, μ − λ) ≤ b(h, μ − λ) ∀μ ∈ Λ. (2.13)

We have the following existence result.

Lemma 2.2. Problem 2 has a solution (u, λ) ∈ X × Λ, unique in u. In addition, if (u1, λ1) and (u2, λ2)
are two solutions of the problem corresponding to the data g1, θ1 ∈ X, z1 ∈ Z and g2, θ2 ∈ X, z2 ∈ Z,

respectively, then there exists c > 0 which depends only on A, ϕ and j such that

‖u1 − u2‖X ≤ c (‖g1 − g2‖X + ‖z1 − z2‖Z + ‖θ1 − θ2‖X). (2.14)

Proof. Let g, θ ∈ X, z ∈ Z, and let φ : X → R be the function defined as follows

φ(v) = ϕ(z, v) + j(θ, v) ∀ v ∈ X. (2.15)

Note that the function φ depends on z and θ, but, for simplicity, we do not indicate explicitly this
dependence. With this notation, it is easy to see that Problem 2 is equivalent to the problem of finding
a couple (u, λ) ∈ X × Λ such that

(Au, v − u)X + φ(v) − φ(u) + b(v − u, λ) ≥ (g, v − u)X ∀ v ∈ X, (2.16)

b(u, μ − λ) ≤ b(h, μ − λ) ∀μ ∈ Λ. (2.17)

We claim that the problem (2.16)–(2.17) has a solution (u, λ) ∈ X × Λ which is unique in the first
component. Indeed, let ρ > 0 and ω ∈ X. Note that assumptions (2.6)(a) and (2.7)(a) imply that
v 
→ φ(v) is a convex lower semicontinuous function on X. Then, using assumption (2.9) and standard
arguments for mixed variational problems (see, for instance, [5]), we deduce that there exists a couple
(uω, λω) ∈ X × Λ, unique in the first component, such that

(uω, v − uω)X + ρφ(v) − ρφ(uω) + ρb(v − uω, λω) (2.18)

≥ (ρ(g − Aω) + ω, v − uω)X ∀ v ∈ X,

ρb(uω, μ − λω) ≤ ρb(h, μ − λω) ∀μ ∈ Λ. (2.19)

The uniqueness of the solution of the problem (2.18)–(2.19) in the first component allows us to define an
operator Tρ : X → X by equality

Tρω := uω. (2.20)
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We prove that this operator is a contraction for an appropriate value of ρ. Indeed, let ω1, ω2 ∈ X,
and let (uω1

, λω1
), (uω2

, λω2
) be two solutions of problem (2.18)–(2.19) obtained for ω = ω1 and ω = ω2,

respectively. Then, using a standard argument, we find that

(uω1
− uω2

, uω1
− uω2

)X ≤ ρ b(uω2
− uω1

, λω1
− λω2

)

+(ω1 − ω2 + ρ(Aω2 − Aω1), uω1
− uω2

)X ,

b(uω1
− uω2

, λω2
− λω1

) ≤ 0,

which implies that

‖uω1
− uω2

‖X ≤ ‖ω1 − ω2 − ρ(Aω1 − Aω2)‖X .

Thus,

‖uω1
− uω2

‖2
X ≤ ‖ω1 − ω2‖

2
X − 2ρ(Aω1 − Aω2, ω1 − ω2)X + ρ2‖Aω1 − Aω2‖

2
X

and, using (2.4)(a)–(b), we obtain

‖uω1
− uω2

‖2
X ≤ (1 − 2ρmA + ρ2L2

A)‖ω1 − ω2‖
2
X .

Therefore, we deduce that

‖Tρω1 − Tρω2‖X ≤
√

1 − 2ρmA + ρ2L2
A ‖ω1 − ω2‖X . (2.21)

Assume now that 0 < ρ < 2mA

L2

A

. Then, it is easy to see that

√
1 − 2ρmA + ρ2L2

A < 1,

and, using (2.21) and the Banach fixed point argument, we conclude that the operator Tρ has a unique
fixed point, denoted ω∗. Then, using (2.20) it is easy to see that the solution (uω∗ , λω∗) of problem
(2.18)–(2.19) for ω = ω∗ is a solution of the problem (2.16)–(2.17).

In addition, we have uniqueness in the first component of the solution. Indeed, assume that (u1, λ1)
and (u2, λ2) are solutions to problem (2.16)–(2.17). Then, standard arguments lead to

(Au1 − Au2, u1 − u2)X ≤ b(u1 − u2, λ2 − λ1) ≤ 0

and, using (2.4)(a), we deduce that u1 = u2.
To conclude, we proved the existence of a solution to problem (2.16)–(2.17), unique in the first com-

ponent. Therefore, using the equivalence between problems (2.16)–(2.17) and (2.12)–(2.13), we conclude
the existence and uniqueness part of the Lemma 2.2.

We now turn to the proof of the estimate (2.14). To this end, consider the data g1, ω1 ∈ X, z1 ∈ Z
and g2, θ2 ∈ X, z2 ∈ Z. Then we have

(Aui, v − ui)X + ϕ(zi, v) − ϕ(zi, ui)

+ j(θi, v) − j(θi, ui) + b(v − ui, λi) ≥ (gi, v − ui)X ,

b(ui, μ − λi) ≤ b(h, μ − λi)

for all v ∈ X, μ ∈ Λ and i = 1, 2. These inequalities imply that

(Au1 − Au2, u1 − u2)X ≤ (g1 − g2, u1 − u2)X + b(u2 − u1, λ1 − λ2)

+ϕ(z1, u2) − ϕ(z1, u1) + ϕ(z2, u1) − ϕ(z2, u2)

+ j(θ1, u2) − j(θ1, u1) + j(θ2, u1) − j(θ2, u2),

b(u2 − u1, λ1 − λ2) ≤ 0.
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We combine the previous inequalities, and then we use (2.4)(a), (2.6)(b), (2.7)(b) and (2.9)(a) to obtain

mA‖u1 − u2‖X ≤ ‖g1 − g2‖X + β‖z1 − z2‖Z + α‖θ1 − θ2‖X . (2.22)

Inequality (2.22) shows that (2.14) holds with c = max{1/mA, β/mA, α/mA}, which, clearly, depends
only on A, ϕ, j. �

In the second step, we consider an element η ∈ C(R+;X) and introduce the notation yη := Sη ∈
C(R+;Z). Then we study the following time-dependent problem.

Problem 3. Find two functions uη : R+ → X and λη : R+ → Λ such that uη ∈ C(R+;X) and, for each
t ∈ R+, the following inequalities hold:

(Auη(t), v − uη(t))X + ϕ(yη(t), v) − ϕ(yη(t), uη(t)) (2.23)

+ j(η(t), v) − j(η(t), uη(t)) + b(v − uη(t), λη(t))

≥ (f(t), v − uη(t))X ∀ v ∈ X,

b(uη(t), μ − λη(t)) ≤ b(h, μ − λη(t)) ∀μ ∈ Λ. (2.24)

We proceed with the following result.

Lemma 2.3. Problem 3 has a solution (uη, λη), unique in the first component. Moreover, if (u1, λ1) and

(u2, λ2) are two solutions of Problem 3 corresponding to the data η1, η2 ∈ C(R+;X), then for each positive

integer n, we have

‖u1(t) − u2(t)‖X ≤
βsn

mA

t∫

0

‖η1(s) − η2(s)‖X ds (2.25)

+
α

mA

‖η1(t) − η2(t)‖X ∀ t ∈ [0, n].

Proof. Let t ∈ R+ and denote yη(t) = z, η(t) = θ, f(t) = g. Then, Lemma 2.2 guarantees the existence of
a couple (uη(t), λη(t)), unique in the first component, which satisfies (2.23)–(2.24). Moreover, by (2.14)
we deduce that for each t1, t2 ∈ R+, we have

‖uη(t1) − uη(t2)‖X

≤ c (‖f(t1) − f(t2)‖X + ‖yη(t1) − yη(t2)‖Z + ‖η(t1) − η(t2)‖X).

Since f, η, yη are continuous functions defined on R+, by the previous inequality we deduce that t 
→
uη(t) : R+ → X is a continuous function. This proves the first part of the lemma.

We now turn to the proof of estimate (2.25). To this end, we fix η1, η2 ∈ C(R+;X), n ∈ N, and we
consider an element t ∈ [0, n]. We write (2.23) and (2.24) with η1 and η2 and, as a result, we obtain two
systems of the form (2.12)–(2.13) with u = uηi

(t), z = yηi
(t), θ = ηi(t) and g = f(t), i = 1, 2. Therefore,

using (2.22), we deduce that

mA‖u1(t) − u2(t)‖X ≤ β ‖yη1
(t) − yη2

(t)‖X + α ‖η1(t) − η2(t)‖X .

Since yηi
= Sηi, the previous inequality yields

‖u1(t) − u2(t)‖X ≤
β

mA

‖Sη1(t) − Sη2(t)‖X +
α

mA

‖η1(t) − η2(t)‖X . (2.26)

Estimate (2.25) is now a consequence of inequalities (2.26) and (2.5). �
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In the next step, we use Lemma 2.3 and define the operator Θ : C(R+;X) → C(R+;X) as follows:

Θη := uη ∀ η ∈ C(R+;X). (2.27)

We have the following result.

Lemma 2.4. The operator Θ has a unique fixed point η∗ ∈ C(R+;X).

Proof. Let η1, η2 ∈ C(R+;X), and let u1, u2 be the first components of the corresponding solutions to
Problem 3, obtained in Lemma 2.3. Let n ∈ N, and let t ∈ [0, n]. Then, using the definition (2.27) of the
operator Θ and estimate (2.25), we deduce that

‖Θη1(t) − Θη2(t)‖X ≤
βsn

mA

t∫

0

‖η1(s) − η2(s)‖X ds (2.28)

+
α

mA

‖η1(t) − η2(t)‖X ∀ t ∈ [0, n].

Inequality (2.28) combined with the smallness assumption (2.8) allows us to apply Theorem 2.1 with
m = 1 in order to conclude the proof of Lemma 2.4. �

We are now in a position to provide the proof of Theorem 2.1.

Proof. Let η∗ be the unique fixed point of the operator Θ. Then, writing (2.23)–(2.24) for η = η∗ and
using the equalities uη∗ = η∗, yη∗ = Sη∗, it follows that the couple (uη∗ , λη∗) is a solution of Problem 1.
The uniqueness of the solution in the first component follows from the uniqueness of the fixed point of
the operator Θ, guaranteed by Lemma 2.4. �

Note that Theorem 2.1 provides the existence of the solution to Problem 1 and its uniqueness in u.
The uniqueness of the solution in λ and its regularity with respect to t are left open.

3. A viscoplastic contact model

In this section, we provide an application of the abstract result presented in Sect. 2, in the study of a
mathematical model which describes the frictionless contact between a viscoplastic body and a foundation.
Let Ω ⊂ R

d (d = 2, 3) be a domain with a regular boundary ∂Ω = Γ partitioned into three disjoint
measurable parts Γ1, Γ2 and Γ3, such that measΓ1 > 0, and denote by S

d the space of symmetric tensors
of second order on R

d. Then, the classical formulation of the contact model is the following.

Problem 4. Find a displacement field u : Ω × R+ → R
d and a stress field σ : Ω × R+ → S

d such that

σ̇(t) = Eε(u̇(t)) + G(σ(t), ε(u(t))) in Ω, (3.1)

Div σ(t) + f0(t) = 0 in Ω, (3.2)

u(t) = 0 on Γ1, (3.3)

σ(t)ν = f2(t) on Γ2, (3.4)

στ (t) = 0 on Γ3, (3.5)
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for all t ∈ R+, there exists ξ : Γ3 × R+ → R, which satisfies

uν(t) ≤ g, σν(t) + p(uν(t)) + ξ(t) ≤ 0,

(uν(t) − g) (σν(t) + p(uν(t)) + ξ(t)) = 0,

0 ≤ ξ(t) ≤ F (uν(t)),

ξ(t) = 0 if uν(t) < 0,

ξ(t) = F (uν(t)) if uν(t) > 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

on Γ3, (3.6)

for all t ∈ R+ and, moreover,

u(0) = u0, σ(0) = σ0 in Ω. (3.7)

Details on the constructions of various models of contact similar with Problem 4 could be found in
the books [7,23,27] and the references therein. Here we restrict ourselves to present a brief descriptions
of the equations and conditions (3.1)–(3.7) and to underline the traits of novelties of this model.

First, Eq. (3.1) represents the viscoplastic constitutive law of the material; here E represents the
elasticity tensor, G is a viscoplastic constitutive function, and the dot above represents the derivative
with respect to the time. Equation (3.2) is the equilibrium equation in which f0 denotes the density of
body forces; we use it here since the process is assumed to be quasistatic. Conditions (3.3) and (3.4) are
the displacement and traction boundary conditions, respectively, in which ν denotes the unit outward
normal to Γ. Condition (3.5) shows that the tangential stress on the contact surface, denoted στ , vanishes;
we use it here since we assume that the contact process is frictionless. Finally, (3.7) represents the initial
conditions in which u0 and σ0 denote the initial displacement and the initial stress field, respectively.

We now provide some comments on condition (3.6) in which the constant g > 0 represents a given
bound for the penetration, p is a prescribed positive function which vanishes for a negative argument,
F is a given positive function, and uν , σν represent the normal displacement and the normal stress,
respectively. This condition was introduced for the first time in [28], in the case when F does not depend
on uν . There, the arguments used to obtain this condition were presented, together with some mechanical
interpretation. Here we restrict ourselves to recall that condition (3.6) with F given describes the following
features of the contact: when there is separation between the body’s surface and the foundation, then
the normal stress vanishes; the penetration arises only if the absolute value of the normal stress reaches
the critical value F ; when there is penetration, the contact follows a normal compliance condition of the
form

− σν(t) = p(uν(t)) + F, (3.8)

but up to the bound g and then, when this limit is reached, the contact follows a Signorini-type unilateral
condition with the gap g. For this reason, following [28], we refer to condition (3.6) as a multivalued normal

compliance contact condition with unilateral constraint. It can be interpreted physically as follows. The
foundation is assumed to be made of a hard material covered by a thin layer of a soft material with
thickness g. The soft material has a rigid-elastic behavior, i.e., is deformable, allows penetration, but only
if the absolute value of the normal stress arrives to the yield value F ; then, when this limit is reached,
the contact with this layer is modeled with normal compliance, as shown in equality (3.8). Here p is a
positive function which describes the dependence of the normal stress with respect to the penetration.
The hard material is perfectly rigid, and, therefore, it does not allow penetration; the contact with this
material is modeled with the Signorini contact condition.

Note that, in contrast to [28], in this paper we consider the contact condition in the case when the
yield value F depends on the normal displacement, i.e., F = F (uν(t)). This dependence could describe
the hardening and the softening properties of the foundation. Considering the dependence F = F (uν(t))
makes the contact problem more general and leads to a new and interesting mathematical model, as
shown in the rest of this paper.
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We now proceed with further notation and preliminaries which are needed in the study of Problem 4.
Everywhere below the indices i, j, k, l run between 1 and d and, unless stated otherwise, the summation
convention over repeated indices is used. We denote by “·” and ‖·‖ the inner product and norm on R

d and
S

d and use standard notation for the Lebesgue and Sobolev spaces associated with Ω and Γ. Moreover,
x = (xi) will represent a typical point in Ω ∪ Γ, and index that follows a comma will denote the partial
derivative with respect to the corresponding component of the spatial variable, e.g., ui,j = ∂ui/∂xj . In
addition, we consider the spaces

V = {v = (vi) ∈ H1(Ω)d : v = 0 on Γ1 },

Q = { τ = (τij) ∈ L2(Ω)d×d : τij = τji },

which are real Hilbert spaces with the inner products

(u,v)V =

∫

Ω

ε(u) · ε(v) dx, (σ, τ )Q =

∫

Ω

σ · τ dx.

Here ε represents the deformation operator, i.e.,

ε(v) = (εij(v)), εij(v) =
1

2
(vi,j + vj,i) ∀v ∈ H1(Ω)d.

The associated norms on these space will be denoted ‖ · ‖V and ‖ · ‖Q, respectively.

For an element v ∈ V , we still denote v for the trace of v on the boundary. Moreover, we use the
notation vν and vτ for the normal and tangential components of v on Γ, given by vν = v · ν and
vτ = v − vνν, respectively. In addition, the Sobolev trace theorem yields that exists a positive constant
ctr which depends only on Ω, Γ1 and Γ3 such that

‖v‖L2(Γ3)d ≤ ctr‖v‖V ∀ v ∈ V. (3.9)

We also consider the space

S = {w = v|Γ3
: v ∈ V }

where, here and below, v|Γ3
denotes the restriction of the trace of the element v ∈ V to Γ3. Recall that S

can be organized as a Hilbert space in a canonical way, as explained in [1,15]. We denote by D the dual
of the space S, and we use 〈·, ·〉Γ3

for the duality paring between D and S. In addition, when μ ∈ D and
v ∈ V , we shall write 〈μ,v〉Γ3

instead of 〈μ,v|Γ3
〉Γ3

.

Assume now that σ ∈ Q is a regular function. Then we use the notation σν and στ for the normal and
the tangential traces, i.e., σν = (σν) · ν and στ = σν − σνν. Moreover, we denote by Div the divergence
of the field σ, i.e., Div σ = (σij,j).

We now turn to the variational formulation of the mechanical problem (3.1)–(3.7), and, to this end,
we assume that the elasticity tensor E and the nonlinear constitutive function G satisfy the following
conditions.

⎧
⎪⎪⎨
⎪⎪⎩

(a) E = (Eijkl) : Ω × S
d → S

d.
(b) Eijkl = Eklij = Ejikl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d.
(c) There exists mE > 0 such that

Eτ · τ ≥ mE‖τ‖2 ∀ τ ∈ S
d, a.e. in Ω.

(3.10)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) G : Ω × S
d × S

d → S
d.

(b) There exists LG > 0 such that
‖G(x,σ1, ε1) − G(x,σ2, ε2)‖
≤ LG (‖σ1 − σ2‖ + ‖ε1 − ε2‖)

∀σ1,σ2, ε1, ε2 ∈ S
d, a.e. x ∈ Ω.

(c) The mapping x 
→ G(x,σ, ε) is measurable in Ω,
for any σ, ε ∈ S

d.
(d) The mapping x 
→ G(x,0,0) belongs to Q.

(3.11)

The body forces and the tractions have the regularity

f0 ∈ C(R+;L2(Ω)d), f2 ∈ C(R+;L2(Γ2)
d) (3.12)

and, recall, the bound g is positive, i.e.,

g > 0. (3.13)

Moreover, the normal compliance function and the surface yield function are such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) p : Γ3 × R → R+.
(b) There exists Lp > 0 such that

|p(x, r1) − p(x, r2)| ≤ Lp|r1 − r2|
∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(c) (p(x, r1) − p(x, r2))(r1 − r2) ≥ 0
∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(d) The mapping x 
→ p(x, r) is measurable on Γ3,
for any r ∈ R.

(e) p(x, r) = 0 ∀ r < 0, a.e x ∈ Γ3;

(3.14)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) F : Γ3 × R → R+.
(b) There exists LF > 0 such that

|F (x, r1) − F (x, r2)| ≤ LF |r1 − r2|
∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(c) The mapping x 
→ F (x, r) is measurable on Γ3,
for any r ∈ R.

(d) The mapping x 
→ F (x, 0) belongs to L2(Γ3).

(3.15)

Finally, we assume that

u0 ∈ V, σ0 ∈ Q (3.16)

and, in addition,

there exists θ̃ ∈ V such that θ̃ν = 1 a.e. on Γ3. (3.17)

Next, we define the sets K ⊂ V and Λ ⊂ D, the operator P : V → V , the functional j : V × V → R, the
bilinear form b : V × D → R and the function f : R+ → V by equalities

K = {v ∈ V : vν ≤ 0 a.e. on Γ3 }, (3.18)

Λ = {μ ∈ D : 〈μ, v〉Γ3
≤ 0 ∀v ∈ K }, (3.19)

(Pu,v)V =

∫

Γ3

p(uν)vν da ∀u, v ∈ V, (3.20)

j(u,v) =

∫

Γ3

F (uν)v+
ν da ∀u, v ∈ V, (3.21)
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b(v,μ) = 〈μ,v〉Γ3
∀v ∈ V, μ ∈ D, (3.22)

(f(t),v)V =

∫

Ω

f0(t) · v dx +

∫

Γ2

f2(t) · v da (3.23)

∀v ∈ V, t ∈ R+.

Let u and σ are regular functions which verify (3.1)–(3.7), and let t ∈ R+, v ∈ V , μ ∈ Λ. Then, using
(3.1) and (3.7), we find that

σ(t) = E ε(u(t)) +

t∫

0

G(σ(s), ε(u(s))) ds + σ0 − Eε(u0). (3.24)

Next, an integration by part combined with the equation of equilibrium (3.2) yields

(σ(t), ε(v) − ε(u(t)))Q (3.25)

= (f0(t),v − u(t))L2(Ω)d +

∫

Γ

σ(t)ν · (v − u(t)) da.

Then, since v − u(t) = 0 on Γ1, using (3.4), (3.5) and (3.23) we obtain that

(σ(t), ε(v) − ε(u(t)))Q = (f(t),v − u(t))V +

∫

Γ3

σν(t)(vν − uν(t)) da. (3.26)

We now introduce the multiplier λ(t) ∈ D defined by

〈λ(t),w〉Γ3
= −

∫

Γ3

(σν(t) + p(uν(t)) + ξ(t))wν da ∀w ∈ S. (3.27)

Then, (3.22) and (3.27) imply that

−

∫

Γ3

σν(t)(vν − uν(t)) da = b(v − u(t),λ(t)) +

∫

Γ3

(p(uν(t)) + ξ(t))(vν − uν(t)) da,

and combining this equality with (3.26) yields

(σ(t), ε(v) − ε(u(t)))Q +

∫

Γ3

p(uν(t))(vν − uν(t)) da (3.28)

+

∫

Γ3

ξ(t)(vν − uν(t)) da + b(v − u(t),λ(t)) = (f(t),v − u(t))V .

Next, using (3.6) it is easy to see that

ξ(t)(vν − uν(t)) ≤ F (uν(t))(v+
ν − u+

ν (t)) a.e. on Γ3

which implies that ∫

Γ3

ξ(t)(vν − uν(t)) da ≤

∫

Γ3

F (uν(t))(v+
ν − u+

ν (t)) da. (3.29)

We now combine (3.28), (3.29), and then we use notation (3.20), (3.21). As a result, we find that

(σ(t), ε(v) − ε(u(t)))Q + (Pu(t),v − u(t))V (3.30)

+j(u(t),v) − j(u(t),u(t)) + b(v − u(t),λ(t)) ≥ (f(t),v − u(t))V .
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On the other hand, using (3.6) and definitions (3.18), (3.19), (3.27), we deduce that λ(t) ∈ Λ. Moreover,
using assumption (3.17) and the definition (3.22) of the bilinear form b, it is easy to see that

b(u(t),μ − λ(t)) = b(u(t) − gθ̃,μ − λ(t)) + b(gθ̃,μ − λ(t))

= 〈μ − λ(t),u(t) − gθ̃〉Γ3
+ b(gθ̃,μ − λ(t))

and, therefore,

b(u(t),μ − λ(t)) = 〈μ,u(t) − gθ̃〉Γ3
(3.31)

−〈λ(t),u(t) − gθ̃〉Γ3
+ b(gθ̃,μ − λ(t)).

In addition, (3.6) and (3.17) imply that

u(t) − gθ̃ ∈ K, 〈λ(t),u(t)〉Γ3
= 〈λ(t), gθ̃〉Γ3

.

Therefore,

〈μ,u(t) − gθ̃〉Γ3
≤ 0 and 〈λ(t),u(t) − gθ̃〉Γ3

= 0. (3.32)

We combine now (3.31) and (3.32) to deduce that

b(u(t),μ − λ(t)) ≤ b(gθ̃,μ − λ(t)). (3.33)

We now gather equality (3.24), and inequalities (3.30), (3.33) to obtain the following variational
formulation of Problem 4.

Problem 5. Find a displacement field u : R+ → V, a stress field σ : R+ → Q and a multiplier λ : R+ → Λ
such that u ∈ C(R+;V ), σ ∈ C(R+;Q) and

σ(t) = E ε(u(t)) +

t∫

0

G(σ(s), ε(u(s))) ds + σ0 − Eε(u0), (3.34)

(σ(t), ε(v) − ε(u(t)))Q + (Pu(t),v − u(t))V (3.35)

+j(u(t),v) − j(u(t),u(t)) + b(v − u(t),λ(t))

≥ (f(t),v − u(t))V ∀v ∈ V,

b(u(t),μ − λ(t)) ≤ b(gθ̃,μ − λ(t)) ∀μ ∈ Λ, (3.36)

for all t ∈ R+.

It follows from here that a triple of functions (u,σ,λ) : R+ → V × Q × Λ represents a solution of
Problem 5 iff (3.34)–(3.36) hold for each t ∈ R+ and, moreover, u ∈ C(R+;V ), σ ∈ C(R+;Q). Such
a solution will be also called a weak solution of Problem 4. Note that, in the study of Problem 5, the
unknowns u and σ (on the one hand) and λ (on the other hand) do not play a symmetric role. The
reason arises from arguments similar to those explained in page 3.

Note that Problem 5 represents a mixed variational formulation which couples a nonlinear implicit
integral equation for the stress field, (3.34), a time-dependent quasivariational equation for the displace-
ment field, (3.35), and a first-order time-dependent variational inequality for the multiplier, (3.36). This
formulation is quite different to that in Problem 1. Nevertheless, we shall see in the next section that we
can associate with Problem 5 a mixed variational formulation of the form (2.2)–(2.3) and, therefore, the
analysis of Problem 5 can be carried out by using the abstract result obtained in Section 2 of this paper.
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4. Existence of the solution

In the study of Problem 5, we have the following existence result.

Theorem 4.1. Under the assumptions (3.10)–(3.17), there exists d0 > 0 which depends only on E, Ω,

Γ1 and Γ3 such that if LF < d0, then Problem 5 has at least one solution (u,σ,λ), unique in u and

σ.

We conclude from above that under assumptions (3.10)–(3.17), Problem 4 has at least one weak
solution (u,σ,λ), unique in u and σ, if the Lipschitz constant of the surface yield function F is small
enough.

The proof of Theorem 4.1 will be carried out in several steps. To present them, we assume in what
follows that (3.10)–(3.17) holds. The first step is given by the following existence and uniqueness result,
already obtained in [3], that we present here with the details, for the convenience of the reader.

Lemma 4.2. For each function u ∈ C(R+;V ), there exists a unique function Su ∈ C(R+;Q) such that

Su(t) =

t∫

0

G(Su(s) + Eε(u(s)), ε(u(s))) ds + σ0 − Eε(u0) ∀ t ∈ R+. (4.1)

Moreover, the operator S : C(R+;V ) → C(R+;Q) satisfies the following property: for every n ∈ N, there

exists sn > 0 such that

‖Su1(t) − Su2(t)‖Q ≤ sn

t∫

0

‖u1(s) − u2(s)‖V ds (4.2)

∀u1, u2 ∈ C(R+;V ), ∀ t ∈ [0, n].

Proof. Let u ∈ C(R+;V ) and consider the operator L : C(R+;Q) → C(R+;Q) defined as follows

Lτ (t) :=

t∫

0

G(τ (s) + Eε(u(s)), ε(u(s))) ds + σ0 − Eε(u0) (4.3)

∀ τ ∈ C(R+;Q), t ∈ R+.

The operator L depends on u, but for simplicity, we do not indicate explicitly this dependence.
Let τ 1, τ 2 ∈ C(R+;Q) and let t ∈ R+. Then, using (4.3) and (3.11), we have

‖Lτ 1(t) − Lτ 2(t)‖Q

=
∥∥∥

t∫

0

G(τ 1(s) + Eε(u(s)), ε(u(s))) ds −

t∫

0

G(τ 2(s) + Eε(u(s)), ε(u(s))) ds
∥∥∥

Q

≤ LG

t∫

0

‖τ 1(s) − τ 2(s)‖Q ds.

Next, we use Theorem 2.1 to see that L has a unique fixed point in C(R+;Q), denoted Su. And, finally,
we combine (4.3) with equality L(Su) = Su to see that (4.1) holds.

To proceed, let u1, u2 ∈ C(R+;V ), n ∈ N, and let t ∈ [0, n]. Then, using (4.1) and taking into account
(3.10)–(3.11), we write
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‖Su1(t) − Su2(t)‖Q

≤ k

⎛
⎝

t∫

0

‖Su1(s) − Su2(s)‖Q ds +

t∫

0

‖ε(u1(s)) − ε(u2(s))‖Q ds

⎞
⎠

= k

⎛
⎝

t∫

0

‖Su1(s) − Su2(s)‖Q ds +

t∫

0

‖u1(s) − u2(s)‖V ds

⎞
⎠ ,

where k is a positive constant which depends on G and E . Using now a Gronwall argument, we deduce
that

‖Su1(t) − Su2(t)‖Q ≤ k enk

t∫

0

‖u1(s) − u2(s)‖V ds.

This inequality shows that (4.2) holds with sn = k enk. �

Next, we define the operator A : V → V and the functional ϕ : Q × V → R by equalities

(Av,w)V := (Eε(v), ε(w))Q + (Pv,w)V ∀v, w ∈ V, (4.4)

ϕ : Q × V → R ϕ(σ,v) := (σ, ε(v))Q ∀σ ∈ Q, v ∈ V. (4.5)

The next step is given by the following equivalence result.

Lemma 4.3. The triple (u,σ,λ) is a solution of Problem 5 if and only if

σ(t) = Eε(u(t)) + Su(t), (4.6)

(Au(t),v − u(t))V + ϕ(Su(t),v) − ϕ(Su(t),u(t)) (4.7)

+j(u(t),v) − j(u(t),u(t)) + b(v − u(t),λ(t))

≥ (f(t),v − u(t))V ∀v ∈ V,

b(u(t),μ − λ(t)) ≤ b(gθ̃,μ − λ(t)) ∀μ ∈ Λ, (4.8)

for all t ∈ R+.

Proof. Assume that (u,σ,λ) is a solution of Problem 5 and let t ∈ R+. Then, using (3.34), we have

σ(t) − Eε(u(t)) =

t∫

0

G(σ(s) − Eε(u(s)) + Eε(u(s)), ε(u(s))) ds + σ0 − Eε(u0)

and using the definition (4.1) of the operator S, we obtain (4.6). Inequality (4.7) follows now from (3.35)
combined with the definition of A and ϕ. Finally (4.8) coincides with (3.36).

Conversely, assume that (u,σ,λ) satisfies (4.6)–(4.8). Then by (4.6) and the definition (4.1) of Su(t),
we obtain (3.34). Moreover, using (4.6), (4.7) and the definition of A and ϕ, we obtain (3.35), which
concludes the proof. �

We now proceed with the following existence and uniqueness result.

Lemma 4.4. There exists d0 > 0 which depends only on E, Ω, Γ1 and Γ3 such that if LF < d0, then the

problem (4.7)–(4.8) has a unique solution (u,λ), unique in u.
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Proof. We apply Theorem 2.1, with X = V , Y = D, Z = Q. To this end, we use assumptions (3.10) and
(3.14) to see that the operator A defined by (4.4) verifies condition (2.4) with

mA = mE . (4.9)

Moreover, inequality (4.2) shows that the operator S satisfies condition (2.5) and, obviously, the map ϕ
defined by (4.5) verifies (2.6).

We turn now on the functional j defined by (3.21). It is easy to see that j satisfies condition (2.7)(a).
Moreover, using (3.9) and (3.15), we find that

j(u1,v2) − j(u1,v1) + j(u2,v1) − j(u2,v2)

=

∫

Γ3

(F (u1ν) − F (u2ν))(v+
2ν − v+

1ν) da

≤

∫

Γ3

|F (u1ν) − F (u2ν)|‖v1 − v2‖da

≤ LF

∫

Γ3

‖u1 − u2‖‖v1 − v2‖da

≤ c2
trLF ‖u1 − u2‖V ‖v1 − v2‖V

for all u1, u2, v1, v2 ∈ V . We conclude from here that j satisfies condition (2.7)(b) with

α = c2
trLF . (4.10)

To continue, as shown, e.g., in [17], the bilinear form b(·, ·) is continuous and satisfies the “inf-sup”
condition, i.e., there exists b0 > 0 which depends only on Ω, Γ1 and Γ3 such that

inf
μ∈D, μ �=0D

sup
v∈V, v �=0V

b(v,μ)

‖v‖V ‖μ‖D

≥ b0.

We conclude from here that condition (2.9) holds. Also, taking into account (3.12) and (3.23), it follows

that f ∈ C(R+, V ). Finally, assumption (3.17) implies that gθ̃ ∈ V. Therefore, the condition (2.10) holds,
too.

Let

d0 :=
mE

c2
tr

(4.11)

which, clearly, depends only on E , Ω, Γ1 and Γ3. Assume that LF < d0. Then, using (4.9)–(4.11), it follows
that condition (2.8) is satisfied. We now apply Theorem 2.1 to conclude the proof of the lemma. �

We now have all the ingredients to provide the proof of Theorem 4.1.

Proof. Let d0 be defined by (4.11) and assume that LF < d0. Under this condition, Lemma 4.4 implies
that there exists a couple of functions (u,λ), unique in u, such that (4.7)–(4.8) hold, for all t ∈ R+.
Define σ : R+ → Q by equality

σ(t) = Eε(u(t)) + Su(t) ∀ t ∈ R+

and note that, obviously, σ ∈ C(R+;Q). Then, we deduce that the triple (u,σ,λ) represents a solution
to problem (4.6)–(4.8) which shows the existence part of the theorem. The uniqueness part follows from
the uniqueness in u of the solution of the system (4.7)–(4.8), guaranteed by Lemma 4.4. �
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5. Conclusions

This paper provides an existence and uniqueness result in the study of a new mixed variational problem
with history-dependent operators. This result was presented in an abstract framework and was motivated
by the development of the mathematical theory of contact mechanics, which requires new mathematical
tools needed for the study of the contact problems. In particular, the theory requires results for new
classes of variational inequalities, hemivariational inequalities and mixed variational problems, under
specific assumptions on functionals and operators. It is clear from the contents of the books [7,21,23,27]
that considerable progress has been made in the development of the mathematical theory of contact
mechanics. However, a short analysis shows that plenty remains to be done in the future. We now briefly
present three open problems, related to the contents of this paper, which could represent a subject for
future research. Any progress in their study will open avenues for new advances and applications.

The first one would be to consider abstract evolutionary versions of Problem 1 in which the derivatives
of the unknown u are involved. This would open the way to the study of dynamic contact problems with
viscoplastic materials of the form (3.1) for which, to the best of our knowledge, there are no results in
the literature. A second open problem would be to relax the assumptions (2.4)–(2.11) in the study of
the system (2.2)–(2.3). For instance, it would be interesting to avoid the convexity of the function j and
to obtain a version of Theorem 2.1 in the case when j is locally Lipschitz with respect to its second
argument. This would provide a mathematical tool in the study of quasistatic viscoplastic problems with
nonmonotone normal compliance and unilateral constraints. Finally, since the solutions of Problem 1 are
defined on the positive real line, it would be of interest to study their asymptotic behavior as t → ∞.
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