
HAL Id: hal-01215228
https://hal.science/hal-01215228

Submitted on 13 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Model-to-Model Transformation with ATL
on MapReduce

Amine Benelallam, Abel Gómez, Massimo Tisi, Jordi Cabot

To cite this version:
Amine Benelallam, Abel Gómez, Massimo Tisi, Jordi Cabot. Distributed Model-to-Model Transfor-
mation with ATL on MapReduce. Proceedings of 2015 ACM SIGPLAN International Conference on
Software Language Engineering (SLE 2015), Oct 2015, Pittsburgh, United States. �hal-01215228�

https://hal.science/hal-01215228
https://hal.archives-ouvertes.fr

Distributed Model-to-Model Transformation
with ATL on MapReduce

Amine Benelallam Abel Gómez Llana
Massimo Tisi

AtlanMod Team, Inria, Mines-Nantes, Lina
4 rue Alfred Kastler, 44307 Nantes, France

{ amine.benelallam | abel.gomez | massimo.tisi }
@inria.fr

Jordi Cabot
ICREA - UOC

Av. Carl Friedrich Gauss,
508860 Castelldefells, Spain

jordi.cabot@icrea.cat

Abstract
Efficient processing of very large models is a key require-
ment for the adoption of Model-Driven Engineering (MDE)
in some industrial contexts. One of the central operations in
MDE is rule-based model transformation (MT). It is used to
specify manipulation operations over structured data coming
in the form of model graphs. However, being based on com-
putationally expensive operations like subgraph isomorphism,
MT tools are facing issues on both memory occupancy and
execution time while dealing with the increasing model size
and complexity. One way to overcome these issues is to ex-
ploit the wide availability of distributed clusters in the Cloud
for the distributed execution of MT.

In this paper, we propose an approach to automatically
distribute the execution of model transformations written
in a popular MT language, ATL, on top of a well-known
distributed programming model, MapReduce. We show how
the execution semantics of ATL can be aligned with the
MapReduce computation model. We describe the extensions
to the ATL transformation engine to enable distribution, and
we experimentally demonstrate the scalability of this solution
in a reverse-engineering scenario.

Categories and Subject Descriptors D.2.1 [Software Engi-
neering]: Requirements/ Specifications—Languages, Tools;
C.2.4 [Distributed Systems]: Distributed applications

General Terms Languages, Performance

Keywords Model Transformation, Distributed Computing,
MapReduce, ATL, Language Engineering

1. Introduction
Model-Driven Engineering (MDE) is gaining ground in indus-
trial environments, thanks to its promise of lowering software
development and maintenance effort [17]. It has been adopted
with success in producing software for several domains like
civil engineering [31], car manufacturing [19] and moderniza-
tion of legacy software systems [4]. Core concepts of MDE
are the centrality of (software, data and system) models in all
phases of software engineering and the automation of model
processing during the software life-cycle. Model Transfor-
mation (MT) languages have been designed to help users
specifying and executing these model-graph manipulations.
They are often used in implementing tooling for software
languages, especially domain-specific [33], e.g. in reverse
engineering [4]. The AtlanMod Transformation Language
(ATL) [16] is one of the most popular examples among them,
and a plethora of transformations exist addressing different
model types and intentions1.

Similarly to other software engineering approaches, MDE
has been recently facing the growing complexity of data
and systems, that comes in MDE in the form of Very Large
Models (VLMs) [8]. For example, the Building Information
Modeling language (BIM) [31] contains a rich set of concepts
(more than eight hundred) for modeling different aspects of
physical facilities and infrastructures. A building model in
BIM is typically made of several gigabytes of densely inter-
connected graph nodes. Existing MDE tools, including MT
engines, are based on graph matching and traversing tech-
niques that are facing serious scalability issues in terms of
memory occupancy and execution time. This stands espe-
cially when MT execution is limited by the resources of a
single machine. In the case study that we selected for our ex-
perimentation, we show how typical MT tasks in the reverse-
engineering of large Java code bases take several hours to
compute in local.

1 The Eclipse Foundation, ATL transformation zoo, http://www.eclipse.
org/atl/atlTransformations/, visited on June 2015

http://www.eclipse.org/atl/atlTransformations/
http://www.eclipse.org/atl/atlTransformations/

One way to overcome these issues is exploiting distributed
systems for parallelizing model manipulation (processing)
operations over computer clusters. This is made convenient
by the recent wide availability of distributed clusters in the
Cloud. MDE developers may already build distributed model
transformations by using a general-purpose language and
one of the popular distributed programming models such as
MapReduce [10] or Pregel [22]. However such development
is not trivial. Distributed programming (i) requires familiarity
with concurrency theory that is not common among MDE
application developers, (ii) introduces a completely new
class of errors w.r.t. sequential programming, linked to task
synchronization and shared data access, (iii) entails complex
analysis for performance optimization.

In this paper we show that ATL, thanks to its specific
level of abstraction, can be provided with semantics for
implicit distributed execution. As a rule-based language, ATL
allows the declarative definition of correspondences and data
flows between elements in the source and target model. By
our proposed semantics, these correspondence rules can be
efficiently run on a distributed cluster. The distribution is
implicit, i.e. the syntax of the MT language is not modified
and no primitive for distribution is added. Hence developers
are not required to have any acquaintance with distributed
programming.

The semantics we propose is aligned with the MapReduce
computation model, thus showing that rule-based MT fits in
the class of problems that can be efficiently handled by the
MapReduce abstraction. We demonstrate the effectiveness of
the approach by making an implementation of our solution
publicly available2 and by using it to experimentally measure
the speed-up of the transformation system while scaling to
larger models and clusters. We identify specific properties of
the ATL language that make the alignment possible and the
resulting solution efficient. In future work we plan to study
how our approach may be generalized to other MT languages
(e.g. QVT [25] and ETL [18]) that share some properties with
ATL.

The interest of this work extends also outside the MDE
community, as we perform the first steps for proposing the
rule-based MT paradigm as a high level abstraction for data
transformation on MapReduce. High-level languages have
already been proposed for data querying (as opposed to data
transformation) on MapReduce [7, 26, 29]. In the MapRe-
duce context, they allow for independent representation of
queries w.r.t. the program logic, automatic query optimization
and maximization of query reuse [21]. We want to extend
this approach, aiming at obtaining similar benefits in data
transformation scenarios.

The paper is structured as follows. Section 2 describes the
running case of the paper, and uses it to introduce the syntax
of ATL and its execution semantics. Section 3 describes the
distributed execution of ATL over MapReduce. Section 4

2 https://github.com/atlanmod/ATL_MR/

FlowInstr
txt : String

Var
name : String

Method ParamSimpleStmt

cfNext * use
*def
*

(a) ControlFlow metamodel excerpt

FlowInstr
txt : String

MethodSimpleStmt

dfNext *

(b) DataFlow metamodel excerpt

Figure 2: Simplified ControlFlow and DataFlow metamodels

details the implementation of our prototype engine. Section 5
discusses the evaluation results of our solution. Section 6
discusses the main related works, while Section 7 wraps up
the conclusions and future works.

2. Running Example: Model Transformation
for Data-Flow Analysis

While our distribution approach is applicable to model trans-
formations in any domain, to exemplify the discussion we
refer throughout the paper to a single case study related to
the analysis of data-flows in Java programs. The case study
is well-known in the MDE community, being proposed by
the Transformation Tool Contest (TTC) 2013 [13] as a bench-
mark for MT engines. We focus on one phase of the scenario,
the transformation of the control-flow diagram of a Java pro-
gram into a data-flow diagram. Such task would be typically
found in real-world model-driven applications on program
analysis and reverse engineering of legacy code [4].

Excerpts of the source and target metamodels of this step
are shown in Fig. 2. In a control-flow diagram (Fig. 2a), a
FlowInstruction (FlowInstr) has a field txt containing the
textual code of the instruction, a set of variables it defines
or writes (def), and a set of variables it reads (use). A
FlowInstruction points to the potential set of instructions
that may be executed after it (cfNext). Method signatures and
SimpleStatements (SimpleStmt) are kinds of FlowInstruction.
A Parameter is a kind of Variable that is defined in method
signatures.

The data-flow diagram (Fig. 2b) has analogous concepts of
FlowInstruction, Method and SimpleStatements but a differ-
ent topology based on the data-flow links among instructions
(dfNext). For every flow instruction n, a dfNext link has to

https://github.com/atlanmod/ATL_MR/

Figure 1: ControlFlow2DataFlow transformation example

be created from all nearest control-flow predecessors m that
define a variable which is used by n. Formally [13]:

m→dfNext n⇐⇒ def(m) ∩ use(n) 6= ∅ ∧ ∃ Path m =

n0 →cfNext . . .→cfNext nk = n :

(def(m) ∩ use(n))\
(⋃
0<i<k

def(ni)
)
6= ∅

(1)

Fig. 1 shows an example of models for each metamodel,
derived from a small program calculating a number factorial.
As it can be seen in the figure, the transformation changes the
topology of the model graph, the number of nodes and their
content, and therefore can be regarded as a representative
example of general transformations. In this paper we refer
to an ATL implementation of the transformation named
ControlFlow2DataFlow and available at the article website2.

Model transformations in ATL are unidirectional. They
are applied to read-only source models and produce write-
only target models. ATL developers are encouraged to use
declarative rules to visualize and implement transformations.
Declarative rules abstract the relationship between source
and target elements while hiding the semantics dealing with
rule triggering, ordering, traceability management and so on.
However, rules can be augmented with imperative sections to
simplify the expression of complex algorithms. In this paper,
we focus on declarative-only ATL.

Languages like ATL are structured in a set of transfor-
mation rules encapsulated in a transformation unit. These
transformation units are called modules (Listing 1, line 1).
The query language used in ATL is the OMG’s Object Con-
straints Language (OCL) [24]. A significant subset of OCL
data types and operations is supported in ATL. Listing 1
shows a subset of the rules in the ControlFlow2DataFlow

transformation and Listing 2 an excerpt of its OCL queries
(helpers).

ATL matched rules are composed of a source pattern and
a target pattern. Both of source and target patterns might con-
tain one or many pattern elements. Input patterns are fired au-
tomatically when an instance of the source pattern (a match)
is identified, and produce an instance of the corresponding
target pattern in the output model. Implicitly, transient trac-
ing information is built to associate input elements to their
correspondences in the target model.

Source patterns are defined as OCL guards over a set
of typed elements, i.e. only combinations of input elements
satisfying that guard are matched. In ATL, a source pattern
lays within the body of the clause ’from’ (Listing 1, line 14).
For instance, in the rule SimpleStmt, the source pattern (List-

Listing 1: ControlFlow2DataFlow - ATL transformation rules
(excerpt)
1 module ControlFlow2DataFlow ;
2 c r e a t e OUT : DataFlow from IN : ControlFlow ;
3 r u l e Method {
4 from
5 s : ControlFlow ! Method
6 to
7 t : DataFlow ! Method (
8 txt <− s . txt ,
9 dfNext <− s . computeNextDataFlows ()

10)
11 }
12

13 r u l e SimpleStmt {
14 from
15 s : ControlFlow ! SimpleStmt (not (s . def−>
16 isEmpty () and s . use−>isEmpty ()))
17 to
18 t : DataFlow ! SimpleStmt (
19 txt <− s . txt ,
20 dfNext <− s . computeNextDataFlows ()
21)
22 }

Remote read

<+, 1>

<+ , 1>

<*, 1>

< , 1>

<+, 1>
<*, 1>

< , 1>

<*, 1>

<+, 1>

Log0

Log1

Log2

Log3

Log4

Log5

Log6

Log7

Log8

S
P

LIT
1

S
P

LIT
2

S
P

LIT
3

Write
result

<*, 1>
<*, 1>
<*, 1>
< , 1>
< , 1>

<+, 1>
<+, 1>
<+, 1>
<+, 1>

Map Reduce

Worker

Read split
Local
write <*, 3>

< , 2>

<+, 4>

Record

Figure 3: MapReduce programming model overview

Listing 2: ControlFlow2DataFlow - OCL helpers (excerpt)
1 he lp er Context ControlFlow ! FlowInstr def :

↪→computeNextDataFLows () : Sequence (ControlFlow !
↪→FlowInstr) =

2 self . def −>collect (d | self . users (d)
3 −>reject (fi | i f fi = self then not fi .

↪→isInALoop e l s e false e n d i f)
4 −>select (fi | thisModule . isDefinedBy (fi ,

↪→Sequence {fi } , self , Sequence {} , self .
↪→definers (d)−>excluding (self))))

5 −>flatten () ;
6

7 he lp er def : isDefinedBy (start : ControlFlow !
↪→FlowInstr , input : Sequence (ControlFlow !
↪→FlowInstr) , end : ControlFlow ! FlowInstr ,
↪→visited : Sequence (ControlFlow ! FlowInstr) ,
↪→forbidden : Sequence (ControlFlow ! FlowInstr)) :
↪→Boolean =

8 i f input−>exists (i | i = end) then true
9 e l s e l e t newInput : Sequence (ControlFlow !

↪→FlowInstr) = input −>collect (i | i .
↪→cfPrev) −>flatten () −>reject (i |
↪→visited −>exists (v | v = i) or
↪→forbidden −>exists (f | f = i)) in

10 i f newInput −>isEmpty () then false
11 e l s e thisModule . isDefinedBy (start ,

↪→newInput , end , visited−>union (
↪→newInput)−>asSet () −>asSequence () ,
↪→forbidden)

12 e n d i f
13 e n d i f ;

ing 1, line 15) matches an element of type SimpleStmt that
defines or uses at least a variable. Output patterns, delimited
by the clause ’to’ (Listing 1, line 17) describe how to com-
pute the model elements to produce when the rule is fired,
starting from the values of the matched elements. E.g., the
SimpleStmt rule produces a single element of type SimpleStmt.
A set of OCL bindings specify how to fill each of the fea-
tures (attributes and references) of the produced elements.
The binding at line 19 copies the textual representation of the
instruction, the binding at line 20 fills the dfNext link with
values computed by the computeNextDataFlows OCL helper.
The rule for transforming methods is analogous (Listing 1,
lines 3-11).

OCL helpers enable the definition of reusable OCL ex-
pressions. An OCL helper must be attached to a context, that
can be a type or global context. Since target models are not
navigable, only source types are allowed. Listing 2 shows our
implementation of the computeNextDataFlows helper derived
by the direct translation in OCL of the data-flow definition
we gave in Equation 1. It has as context FlowInstr and returns
a sequence of same type (Listing 2, line 1).

ATL matched rules are executed in two phases, a match
phase and an apply phase. In the first phase, the rules are
applied over source models’ elements satisfying their guards.
Each single match, corresponds to the creation of an explicit
traceability link. This link connects three items: the rule that
triggered the application, the match, and the newly created
output elements (according to the target pattern). At this stage,
only output pattern elements type is considered, bindings
evaluation is left to the next phase.

The apply phase deals with the initialization of output
elements’ features. Every feature is associated to a binding
in an output pattern element of a given rule application.
Indeed, a rule application corresponds to a trace link. Features
initialization is performed in two steps, first the corresponding
binding expression is computed. Resulting in a collection of
elements, it is then passed to a resolution algorithm (called
resolve algorithm) for final update into the output model. The
resolve algorithm behaves differently according to the type of
each element. If the type is primitive (in case of attributes) or
target, then it is directly assigned to the feature. Otherwise, if
it is a source element type, it is first resolved to its respective
target element – using the tracing information – before being
assigned to the feature. Thanks to this algorithm we are able
to initialize the target features without needing to navigate
the target models.

It is noteworthy that the helpers’ implementation illus-
trated in the paper is compact and straightforward (for an
OCL programmer at least) but it has quadratic time complex-

ity in the worst case (as the definition in Equation 1)3. As a
consequence it does not scale to inter-procedural data-flow
analysis of large code-bases like the ones typically found dur-
ing modernization of legacy systems [4]. In our experimental
evaluation we will show that already for medium sized code
bases (100,000 lines of code), the processing time of the full
ControlFlow2DataFlow transformation might take several
hours (more than 4 hours for our code base).

3. ATL on MapReduce
MapReduce is a programming model and software frame-
work developed at Google in 2004 [10]. It allows easy and
transparent distributed processing of big data sets while con-
cealing the complex distribution details a developer might
cross. MapReduce is inspired from the map and reduce primi-
tives that exist in functional languages. Both Map and Reduce
invocations are distributed across cluster nodes, thanks to the
Master that orchestrates jobs assignment.

Input data is partitioned into a set of chunks called Splits
as illustrated in Fig. 3. The partitioning might be monitored
by the user throughout a set of parameters. If not, splits are
automatically and evenly partitioned. Every split comprises a
set of logical Records, each containing a pair of 〈key, value〉.

Given the number of Splits and idle nodes, the Master
node decides the number of workers (slave machines) for
the assignment of Map jobs. Each Map worker reads one or
many Splits, iterates over the Records, processes the 〈key,
value〉 pairs and stores locally the intermediate 〈key, value〉
pairs. In the meanwhile, the Master receives periodically
the location of these pairs. When Map workers finish, the
Master forwards these locations to the Reduce workers that
sort them so that all occurrences of the same key are grouped
together. The mapper then passes the key and list of values to
the user-defined reduce function. Following the reduce tasks
achievement, an output result is generated per reduce task.
Output results do not need to be always combined, especially
if they will subsequently be processed by other distributed
applications.

Let’s take a closer look to the MapReduce programming
model by means of a simple example, depicted in Fig. 3. As-
sume we have set of log entries coming from a git repository.
Each entry contains information about actions performed over
a particular file (creation→ + , deletion→ X , or modifica-
tion→ ∗). We want to know how many times each action
was performed, using MapReduce. The master evenly splits
the entries among workers. For every record (log entry), the
map worker extracts the action type and creates a 〈key,value〉
pair with a key the action itself and value ’1’. In the reduce
phase, pairs with the same key are grouped together. In our
example, the modification and deletion go to the first reducer,
while the creation goes to the second one. For each group,
the reducer combines the pairs, and creates a 〈key,value〉 pair,

3 An algorithm with better efficiency, is described e.g. in the Dragon-
book [20], Chapter 9.1, and is implemented with ATL in [9].

but this time with value the sum of the values with same key.
This value refers to how many times the action occurred in
the logs.

Much of the interest of MapReduce is due to its fault-
tolerant processing. The Master keeps track of the evolution
of every worker execution. If after a certain amount of time a
worker does not react, it is considered as idle and the job is
re-assigned to another worker.

3.1 ATL and MapReduce Alignment
Transformations in ATL could be regarded as the union of
elementary transformation tasks, where each takes charge
of transforming a pattern of model elements. The approach
we are proposing follows a data-distribution scheme, where
each one of the nodes that are computing in parallel takes
charge of transforming a part of the input model. This is
made possible, thanks to the semantics alignment for ATL
distributed execution with MapReduce described in this
section.

However, implicit data distribution is not trivial for trans-
formation languages where rules applied to different parts of
the model can interact in complex ways with each other. As
result of ATL’s execution semantics, especially four specific
properties of the language (below), we argue that inter-rule
communication is made discernible. More precisely, interac-
tion among ATL transformation rules are reduced to bindings
resolution, where a target element’s feature needs to reference
to other target elements created by other rules:

1. Locality. Each ATL rule is the only one responsible of the
computation of the elements it creates, i.e., the rule that
creates the element is also responsible of initializing its
features. In case of bi-directional references, responsibility
is shared among the rules that create the source and the
target ends of the reference.

2. Single assignment on target properties. The assignment
of a single-valued property in a target model element
happens only once in the transformation execution. Multi-
valued properties can be updated only for adding values,
but never deleting them.

3. Non-recursive rule application. Model elements that are
produced by ATL rules are not subject to further matches.
As a consequence, new model elements can not be created
as intermediate data to support the computation. Target
models in ATL are read-only. This differentiates ATL
from typically recursive graph-transformation languages.
Not to confuse with recursion in OCL helpers, that are
responsible of intermediate computations over the source
models, not target ones.

4. Forbidden target navigation. Rules are not allowed to
navigate the part of the target model that has already been
produced, to avoid assumptions on the rule execution
order. Thanks to the resolve algorithm along with the
trace links that it is made possible.

int fact(int a)

int r = 1;

while (a>0)

r *= a--;

return r;

a

r

int fact(int a)

int r = 1;

while (a>0)

r *= a--;

return r;

int fact(int a)

int r = 1;

while (a>0)

r *= a--;

return r;

Map 1 output

Map 2 output

Reduce outputInput Model
Local match\apply Global resolve

Figure 4: ControlFlow2DataFlow example on MapReduce

These properties strongly reduce the possible kinds of
interaction among ATL rules, and allow us to decouple rule
applications and execute them in independent execution units,
as explained in the following.

As an example, Fig. 4 shows how the ATL transformation
of our running example could be executed on top of a MapRe-
duce architecture comprising three nodes, two map and one
reduce workers. The input model is equally split according to
the number of map workers (in this case each map node takes
as input half of the input model elements). In the map phase,
each worker runs independently the full transformation code
but applies it only to the transformation of the assigned subset
of the input model. We call this phase Local match-apply.
Afterwards each map worker communicates the set of model
elements it created to the reduce phase, together with trace
information. These trace links (grey arrows in Fig. 4) en-
code the additional information that will be needed to resolve
the binding, i.e. identify the exact target element that has to
be referenced based on the tracing information. The reduce
worker is responsible of gathering partial models and trace
links from the map workers, and updating properties value of
unresolved bindings. We call this phase Global resolve.

In the following (i) we describe the distributed execution
algorithm we propose for ATL decomposing it in the Local
match-apply phase assigned to mappers and the Global
resolve phase assigned to reducers; (ii) we define the trace
information that needs to be passed between mappers and
reducers to allow the re-composition of the global model after
distribution.

Local Match-Apply
At the beginning of the phase, input splits are assigned to
map workers. Each one of these splits contains a subset of
the input model for processing. Although, each worker has
a full view of the input models in case it needs additional
data for bindings computation. Note that while intelligent
assignment strategies could improve the algorithm efficiency
by increasing data locality, in this paper we perform a
random assignment. Intelligent assignment strategies for

Algorithm 1: Map function
input :Long key, ModelElement elmt

1 if isMatched(elmt) then
2 link ← createLink(elmt);
3 foreach bind ∈ getBindings(link) do
4 if isAttribute(bind) then
5 apply (bind);

6 else
7 foreach elmt ∈ computeBindingExp(bind)

do
8 if isLocal(elmt) then
9 addElementToTarget(elmt, binding);

10 else
11 trgElement←

resolveTarget(elmt);
12 addElementToTrace(trgElmt, bind);

13 storeLink(moduleName, link);

model elements, especially based on static analysis of the
transformation code, are left for future work.

The pseudo-code for the processing in this phase is given
in Algorithm 1. For every model element in the split, the
map function verifies if a rule guard matches and in this case
instantiates the corresponding target elements (line 2), same
as in the regular execution semantics (Sec. 2). In the case of
rules that match multiple elements, the map function would
consider the elements of the split as the first element of the
matched pattern, and look for combinations of other elements
satisfying the guard. For instance, in Fig. 1 the Method
and FlowInstr rules instantiate the method signature and the
instructions that define or use variables (all the instructions of
the example). Variables (a and r) are not instantiated since no
rule matches their type. For each instantiated output element,

TracedRule
name : String

TraceLinkSet

+ void mergeTrace(TraceLink)

TraceLink
overriden : Boolean

TargetElement

SourceElement
mapsToSelf : Boolean

TraceElement
name : String
object : EObject

TraceProperty

property : String
resolvings: EObject[]

rules
*

links
*

sourceElements
*

targetElements *

properties

*

resolvedFor
1

Figure 5: Extended Trace metamodel

int fact(int a)

while (a>0)

r *= a--;

int fact(int a)

while (a>0)

r *= a--;

Map 1

Map 2

Input Model

(a) results of dfNext binding for {int fact (int a)}

int fact(int a)

while (a>0)

r *= a--;

int fact(int a)

while (a>0)

r *= a--;

Map 1

Map 2

Input Model

(b) Resolving the results of dfNext binding for {int fact (int a)}

Figure 6: Local resolve of dfNext for {int fact (int a)}

a trace link is created connecting binding source and target
elements of the applied rule.

Subsequently, the algorithm starts processing the list of
property bindings for the instantiated target elements. We
extended the behavior of the resolve algorithm to enable
handling elements transformed in other nodes, we call this
algorithm local resolve. In the case of attribute bindings, the
same standard behavior is preserved, the OCL expression
is computed and the corresponding feature is updated ac-
cordingly (lines 4– 5). While bindings related to references
connect elements transformed by different rule applications,
potentially in different nodes, the resolution is performed in
two steps: (i) the OCL expression of the binding computes to
a set of elements in the source model and ATL connects the
bound feature to these source elements using trace links; (ii)
the source-models elements are resolved, i.e. substituted with
the corresponding target element according the rule applica-
tion trace links. If source and target elements of the reference
are both being transformed in the same node, both steps hap-

pen locally (lines 8– 9), otherwise trace links are stored and
communicated to the reducer, postponing the resolution step
to the Global resolve phase (lines 11– 12).

For example, executing the binding dfNext over the method
fact(int a), results in {while(a)>0, r*=a--;} (dashed grey
arrows in Fig. 6 (a)). Since while(a) and fact(int a) reside in
the same node, a dfNext reference between them is created in
the target model. Instead, a trace property is created between
fact(int a) and r*=a--; because they belong to different nodes(
Fig. 6 (b)).

Global Resolve
At the beginning of the reduce phase, all the target elements
are created, the local bindings are populated, and the unre-
solved bindings are referring to the source elements to be
resolved. This information is kept consistent in the tracing
information formerly computed and communicated by the
mappers. Then it resolves the remaining reference bindings
by iterating over the trace links, as depicted in Algorithm 2.
For each trace link, the reducer iterates over the unresolved
elements of its property traces (line 3), resolves their corre-
sponding element in the output model (line 4), and updates
the target element with the final references(line 5). In the
right-hand side of Fig. 1 all the trace properties have been
substituted with final references to the output model elements.

Algorithm 2: Reduce function
input :String key, Set<TraceLink> links

1 foreach link ∈ links do
2 foreach prop ∈ getTraceProperties(link) do //

unresolved properties
3 foreach elmt ∈ getSourceElements(prop)

do
4 trgElmt← resolveTarget(elmt);
5 updateUnresolvedElement(prop, trgElmt);

Trace Metamodel
MT languages like ATL need to keep track during execution
of the mapping between source and target elements [32]. We
define a metamodel for transformation trace information in a
distributed setting (see Fig. 5).

As in standard ATL, traces are stored in a TracelinkSet and
organized by rules. Each TracedRule is identified by its name,
and may contain a collection of trace links. A link maps a set
of source pattern elements to a set of target pattern elements.
Both source and target pattern elements are identified by
a unique name within a trace link (same one in the rule).
Likewise, source elements and target elements refer to a
runtime object respectively from input model or output model.
This layered decomposition breaks down the complexity of
traversing/querying the trace links.

This trace information (source elements, rule name, and
target elements) is not sufficient for the distributed semantics,
that requires to transmit to the reducer trace information
connecting each unresolved binding to the source elements to
resolve. Thus, we extended the ATL trace metamodel with the
TraceProperty data structure. Trace properties are identified
by their name that refers to the corresponding feature name.
They are contained in a trace link, and associated to the source
elements to be resolved along with the target element to be
updated.

4. Tool Support
4.1 Distributed Transformation Engine
We implemented our approach as a Distributed ATL en-
gine, whose source code is available at the paper’s web-
site. The engine is built on top of the ATL Virtual Machine
(EMFTVM [28]) and Apache Hadoop [2]. Hadoop is the lead-
ing open-source implementation of MapReduce and comes
with the Hadoop Distributed File System (HDFS) that pro-
vides high-throughput access to application data and data
locality optimization for MapReduce tasks.

In ATL VM, the transformation engine iterates the set
of matched rules, and looks for the elements that match its
application condition (guard). Instead, our VM iterates over
each input model element, and checks if it is matched by
an existing rule (matchSingle(EObject) in Table. 1). In
this perspective we extended the ATL VM with a minimal
set of functions (see Table 1) allowing the VM to run ei-
ther in standalone or distributed mode. In particular, the dis-
tributed VM is required to factorize and expose methods
for launching independently small parts of the execution
algorithms. For instance the distributed VM exposes meth-
ods to perform the transformation of single model elements.
Typically the methods localApplySingle(EObject) and
globalResolve() that we call at the map and reduce func-
tions respectively.

Each node in the system executes its own instance of the
ATL VM but performs either only the local match-apply
or the global resolve phase. The standalone and distributed

execution modes share most of the code and allow for a
fair comparison of the distribution speedup. Configuration
information is sent together with the tasks to the different
workers, so that they can be able to run their local VMs
independently of each other. This information includes the
paths of transformation, models and metamodels in the
distributed file system. More information about the tool usage
and deployment can be found at the tool’s website4.

4.2 Data Distribution
Data locality is one of the aspects to optimize in distributed
computing for avoiding bottlenecks. In Hadoop, it is encour-
aged to run map tasks with input data residing in HDFS,
since Hadoop will try to assign tasks to nodes where data to
be processed is stored. In Distributed ATL we make use of
HDFS for storing input and output models, metamodels and
transformation code.

Each mapper is assigned a subset of model elements by
the splitting process. In Distributed ATL we first produce
a text file containing model elements URIs as plain strings,
one per line. This file will be splitted in chunks by Hadoop.
Hadoop provides several input format classes with specific
splitting behavior. In our implementation we use an NLineIn-
putFormat, that allows to specify the exact number of lines
per split. Finally, the default record reader in Hadoop creates
one record for each line of the input file. As a consequence,
every map function in Distributed ATL will be executing on
a single model element.

Choosing the right number of splits has significant impact
on the global performance. Having many splits means that the
time taken to process each split will be small compared to the
time to process the whole input. On the other hand, if splits
are too small, then the overhead of managing the splits and
creating map tasks for each one of them may dominate the
total job execution time. In our case we observed better results
where the number of splits matches the number of available
workers. In other words, while configuring Distributed ATL,
the number of lines per split should be set to model size

available nodes .

4.3 Tool Limitations
Currently, our ATL VM supports only the default EMF se-
rialization format XMI. This file-based representation faces
many issues related to scalability. In particular, models stored
in XMI need to be fully loaded in memory, but more im-
portantly, XMI does not support concurrent read/write. This
hampers our tool at two levels, first, all the nodes should load
the whole model even though if they only need a subset of
it. This prevents us from transforming very big models that
would fit in memory. The second one concerns the reduce
phase parallelization, and this is due to the fact that only
one mapper can write to the output XMI file at once. In a
recent work, we extended an existing persistence backend
NeoEMF [11] with support for concurrent read/write [12]

4 https://github.com/atlanmod/ATL_MR/

https://github.com/atlanmod/ATL_MR/

Table 1: API extension

CLASS NAME OPERATION DESCRIPTION

ExecEnvironment matchSingle(EObject) Matching a single object
localApplySingle(EObject) Matching and Applying if possible
globalResolve() Resolving unresolved bindings and assignements in the global scope

TraceLinkSet mergeTrace(TraceLink) Add traceLink if does not exist and resolve input and output cross
references

on top of Apache HBase [27]. NeoEMF is an extensible and
transparent persistence layer for modeling tools designed to
optimize runtime performance and memory occupancy. In
future work, we plan to couple it with our VM to solve these
two particular issues.

5. Experimental Evaluation
We evaluate the scalability of our proposal by comparing
how the transformation of our running example performs
in different test environments. The transformation covers
a sufficient set of declarative ATL constructs enabling the
specification of a large group of MTs. It also contains an
interesting number of OCL operations, recursive helper’s call
included.

We use as input different sets of models of diverse sizes.
The original case study [13] already includes a set of in-
put models for the benchmark. These models are reverse-
engineered from a set of automatically generated Java pro-
grams, with sizes up to 12 000 lines of code. For our bench-
mark we used the same generation process but to stress scal-
ability we produced larger models with sizes up to 105 000
lines of code. We consider models of these sizes sufficient
for benchmarking scalability in our use case: in our experi-
mentation, processing in a single machine the largest of these
models takes more than four hours. All the models we gen-
erated and the experimentation results are available at the
article website.

In what follows we demonstrate the scalability of our
approach through two different but complementary experi-
mentations. The first one shows a quasi-linear speed-up w.r.t.
the cluster size for input models with similar size, while the
second one illustrates that the speed-up grows with increasing
model size.

5.1 Experiment I: Speed-Up Curve
For this experiment we have used a set of 5 automatically
generated Java programs with random structure but similar
size and complexity. The source Java files range from 1 442 to
1 533 lines of code and the execution time of their sequential
transformation ranges from 620s to 778s. The experiments
were run on a set of identical Elastic MapReduce clusters
provided by Amazon Web Services. All the clusters were
composed by 10 EC2 instances of type m1.large (i.e. 2
vCPU, 7.5GB of RAM memory and 2 magnetic Hard Drives).
Each execution of the transformation was launched in one

of those clusters with a fixed number of nodes – from 1 to
8 – depending on the experiment. Each experiment has been
executed 10 times for each model and number of nodes. In
total 400 experiments have been executed summing up a
total of 280 hours of computation (1 120 normalized instance
hours[1]). For each execution we calculate the distribution
speed-up with respect to the same transformation on standard
ATL running in a single node of the cluster.

Fig. 7 summarizes the speed-up results. The approach
shows good performance for this transformation with an
average speed-up up between 2.5 and 3 on 8 nodes. More

1 2 3 4 5 6 7 8

0.5

1

1.5

2

2.5

3

3.5

4

Number of splits/nodes

× faster
Average speed-up

Model 1 Model 2 Model 3
Model 4 Model 5

1 2 3 4 5 6 7 8

0.5

1

1.5

2

2.5

3

Number of splits/nodes

× faster
Aggregated speed-up variation

Figure 7: Speed-up obtained in Experiment I

Table 2: Execution times and speed-up (between parentheses) per model

STD. Distributed VM using x nodes (time and speed-up)
SIZE ELTS VM 1 2 3 4 5 6 7 8
1 ∼4MB 20 706 244s 319s

(×0.8)
165s

(×1.5)
128s

(×1.9)
107s

(×2.3)
94s

(×2.6)
84s

(×2.9)
79s

(×3.1)
75s

(×3.3)
2 ∼8MB 41 406 1 005s 1 219s

(×0.8)
596s

(×1.7)
465s

(×2.2)
350s

(×2.9)
302s

(×3.3)
259s

(×3.9)
229s

(×4.4)
199s

(×5.1)
3 ∼16MB 82 806 4 241s 4 864s

(×0.9)
2 318s
(×1.8)

1 701s
(×2.5)

1 332s
(×3.2)

1 149s
(×3.7)

945s
(×4.5)

862s
(×4.9)

717s
(×5.9)

4 ∼32MB 161 006 14 705s 17 998s
(×0.8)

8 712s
(×1.7)

6 389s
(×2.3)

5 016s
(×2.9)

4 048s
(×3.6)

3 564s
(×4.1)

3 050s
(×4.8)

2 642s
(×5.6)

importantly, as it can be seen in upper side, the average
speed-up shows a very similar curve for all models under
transformation, with a quasi linear speedup indicating good
scalability w.r.t. cluster size. We naturally expect the speed-up
curve to become sub-linear for larger cluster sizes and very
unbalanced models. The variance among the 400 executions
is limited as shown by the box-plots in the lower side.

5.2 Experiment II: Size/Speed-Up Correlation
To investigate the correlation between model size and speed-
up we execute the transformation over 4 artificially generated
Java programs with identical structure but different size (from
13 500 to 105 000 lines of code). Specifically, these Java
programs are built by replicating the same imperative code
pattern and they produce a balanced execution of the model
transformation in the nodes of the cluster. This way, we
abstract from possible load unbalance that would hamper
the correlation assessment.

This time the experiments have been executed in a virtual
cluster composed by 12 instances (8 slaves, and 4 additional
instances for orchestrating Hadoop and HDFS services) built
on top of OpenVZ containers running Hadoop 2.5.1. The
hardware hosting the virtual cluster is a Dell PowerEdge
R710 server, with two Intelr Xeonr X5570 processors at
2.93GHz (allowing up to 16 execution threads), 72 GB of
RAM memory (1 066MHz), and two hard disks (at 15K rpm)
configured in a hardware-controlled RAID 1.

As shown in Fig. 8 and Table 2, the curves produced by
Experiment II are consistent to the results obtained from
Experiment I, despite the different model sizes and cluster
architectures. Moreover, as expected, larger models produce
higher speed-ups: for longer transformations the paralleliza-
tion benefits of longer map tasks overtakes the overhead of
the MapReduce framework.

6. Related Work
To our knowledge, our work is the first applying the Map-
Reduce programming model to model transformation. The
only other proposal addressing MT distribution is Lintra, by

1 2 3 4 5 6 7 8

102

103

104

Number of splits/nodes

s Execution time

1 2 3 4 5 6 7 8

0

2

4

6

Number of splits/nodes

× faster Speed-up

Model 1 (∼4MB) Model 2 (∼8MB)
Model 3 (∼16MB) Model 4 (∼32MB)

Figure 8: Execution times and speed-up on Experiment II

Burgueño et al. [5], based on the Linda coordination lan-
guage. Lintra uses the master-slave design pattern for their
execution, where slaves are in charge of applying the trans-
formation in parallel to submodels of the input model. The

same authors propose a minimal set of primitives to specify
distributed model transformations, LintraP [6]. With respect
to our approach, Lintra requires to explicitly use distribu-
tion primitives, but it can be used in principle to distribute
any transformation language by compilation. However no
compiler is provided, and it is difficult to compare their per-
formance results with ours, since they only perform a local
multi-threaded experimentation in a case with low speed-up
(maximum 3.4 on 16 nodes).

Among distributed graph transformation proposals, a re-
cent one is Mezei et al. [23]. It is composed of a transforma-
tion-level parallelization and a rule-level parallelization with
four different matching algorithms to address different distri-
bution types. Unlike our approach, their main focus is on the
recursive matching phase, particularly expensive for graph
transformations, but less significant in MT (because of Prop-
erty 3). In [15], Izso et al. present a tool called IncQuery-D
for incremental query in the cloud. This approach is based
on a distributed model management middleware and a state-
ful pattern matcher framework using the RETE algorithm.
The approach has shown its efficiency, but it addresses only
distributed model queries while we focus on declarative trans-
formation rules.

Shared-memory parallelization is a closely related prob-
lem to distribution. For model transformation, Tisi et al. [30]
present a systematic two-steps approach to parallelize ATL
transformations. The authors provided a multi-threaded im-
plementation of the ATL engine, where every rule is executed
in a separate thread for both steps. The parallel ATL compiler
and virtual machine have been adapted to enable a parallel
execution and reduce synchronization overhead. A similar
approach for parallel graph transformations in multicore sys-
tems [14] introduces a two-phase algorithm (matching and
modifier) similar to ours. Bergmann et al. propose an ap-
proach to parallelize graph transformations based on incre-
mental pattern matching [3]. This approach uses a message
passing mechanism to notify of model changes. The incre-
mental pattern matcher is split into different containers, each
one is responsible for a set of patterns. The lack of distributed
memory concerns make these solutions difficult to adapt to
the distributed computing scenario. Moreover in these cases
the authors investigate task distribution, while we focus on
data distribution, especially for handling VLMs.

While MapReduce lacks a high-level transformation lan-
guage, several high-level query languages have been pro-
posed. Microsoft SCOPE [7], Pig Latin [26], and HiveQL [29]
are high level SQL-like scripting languages targeting massive
data analysis on top of MapReduce. Pig Latin and SCOPE
are hybrid languages combining both forces of a SQL-like
declarative style and a procedural programming style using
MapReduce primitives. They provide an extensive support for
user defined functions. Hive is a data warehousing solution
built on top of Hadoop. It comes with a SQL-like language,
HiveQL, which supports data definition statements to create

tables with specific serialization formats, and partitioning
and bucketing columns. While all these query languages
compile down to execution plans in the form of series of
MapReduce jobs, in our approach each node executes its own
instance of the transformation VM, re-using the standard
engine. However our approach computes single transforma-
tions in only two MapReduce rounds, while these language
may compile in multi-round MapReduce chains. We also
manipulate EMF model elements instead of tool-specific
data representations, hence leaning on a standardized way to
represent data structure.

7. Conclusion and Future Work
In this paper we argue that model transformation with rule-
based languages like ATL is a problem that fits in the Map-
Reduce execution model. As a proof of concept, we introduce
a semantics for ATL distributed execution on MapReduce.
We experimentally show the good scalability of our solution.
Thanks to our publicly available execution engine, users may
exploit the availability of MapReduce clusters on the Cloud
to run model transformations in a scalable and fault-tolerant
way.

In our future work we plan to improve the efficiency of
our approach, by addressing related research aspects. We aim
to investigate:

• I/O optimization of model processing in MapReduce by
coupling with the transformation engine our distributed
model-persistence backend supporting concurrent read-
/write;
• parallelization of the Global Resolve phase, made possible

by high-performance I/O;
• efficient distribution of the input model over map workers

aiming to optimize load balancing and minimize workload,
relying on a static analysis of the transformation;
• global optimization and pipelining for transformation

networks on MapReduce.

Acknowledgments
This work is partially supported by the MONDO (EU ICT-
611125) project.

References
[1] Amazon Web Services, Inc. Amazon EMR FAQs, June, 2015.

URL: http://aws.amazon.com/elasticmapreduce/
faqs.

[2] Apache Software Foundation. Apache Hadoop, June, 2015.
URL: http://hadoop.apache.org/.

[3] G. Bergmann, I. Ráth, and D. Varró. Parallelization of Graph
Transformation Based on Incremental Pattern Matching. In
Electronic Communications of the EASST, volume 18, 2009.

[4] H. Bruneliére, J. Cabot, G. Dupé, and F. Madiot. MoDisco: A
Model Driven Reverse Engineering Framework. Information
and Software Technology, 56(8):1012–1032, 2014.

http://aws.amazon.com/elasticmapreduce/faqs
http://aws.amazon.com/elasticmapreduce/faqs
http://hadoop.apache.org/

[5] L. Burgueño, J. Troya, M. Wimmer, and A. Vallecillo. On the
Concurrent Execution of Model Transformations with Linda.
In Proceeding of the First Workshop on Scalability in MDE,
BigMDE ’13, pages 3:1–3:10, New York, NY, USA, 2013.
ACM.

[6] L. Burgueño, E. Syriani, M. Wimmer, J. Gray, and
A. Moreno Vallecillo. LinTraP: Primitive Operators for the Ex-
ecution of Model Transformations with LinTra. In Proceedings
of 2nd BigMDE Workshop, volume 1206. CEUR Workshop
Proceedings, 2014.

[7] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. SCOPE: Easy and Efficient Parallel
Processing of Massive Data Sets. Proceedings of the VLDB
Endowment, 1(2):1265–1276, 2008.

[8] C. Clasen, M. Didonet Del Fabro, and M. Tisi. Transforming
Very Large Models in the Cloud: a Research Roadmap. In First
International Workshop on Model-Driven Engineering on and
for the Cloud, Copenhagen, Denmark, 2012. Springer.

[9] V. Cosentino, M. Tisi, and F. Büttner. Analyzing Flowgraphs
with ATL. arXiv preprint arXiv:1312.0343, 2013.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In Commun. ACM, volume 51,
pages 107–113, NY, USA, 2008. ACM.

[11] A. Gómez, M. Tisi, G. Sunyé, and J. Cabot. Map-based
transparent persistence for very large models. In A. Egyed and
I. Schaefer, editors, Proceedings of Fundamental Approaches
to Software Engineering, volume 9033 of Lecture Notes in
Computer Science, pages 19–34. Springer Berlin Heidelberg,
2015.

[12] A. Gómoz, A. Benelallam, and M. Tisi. Decentralized Model
Persistence for Distributed Computing. In Proceedings of 3rd
BigMDE Workshop, volume 1406. CEUR Workshop Proceed-
ings, July 2015.

[13] T. Horn. The TTC 2013 Flowgraphs Case. arXiv preprint
arXiv:1312.0341, 2013.

[14] G. Imre and G. Mezei. Parallel Graph Transformations on
Multicore Systems. In Multicore Software Engineering, Per-
formance, and Tools, volume 7303 of LNCS, pages 86–89.
Springer, 2012.

[15] B. Izsó, G. Szárnyas, I. Ráth, and D. Varró. IncQuery-D
Incremental Graph Search in the Cloud. In Proceedings of
the Workshop on Scalability in MDE, BigMDE ’13, pages
4:1–4:4, New York, NY, USA, 2013. ACM.

[16] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A Model
Transformation Tool. Science of Computer Programming, 72(1-
2):31–39, 2008. Special Issue on 2nd issue of experimental
software and toolkits (EST).

[17] J. Kärnä, J.-P. Tolvanen, and S. Kelly. Evaluating the use
of domain-specific modeling in practice. In 9th OOPSLA
workshop on Domain-Specific Modeling. Helsinki School of
Economics, 2009.

[18] D. S. Kolovos, R. F. Paige, and F. A. Polack. The epsilon trans-
formation language. In Proceedings of the 1st International
Conference on Theory and Practice of Model Transformations,
ICMT ’08, pages 46–60, Berlin, Heidelberg, 2008. Springer-
Verlag.

[19] A. Kuhn, G. Murphy, and C. Thompson. An Exploratory
Study of Forces and Frictions Affecting Large-Scale Model-
Driven Development. In R. France, J. Kazmeier, R. Breu, and
C. Atkinson, editors, MDE Languages and Systems, volume
7590 of LNCS, pages 352–367. Springer, 2012.

[20] M. Lam, R. Sethi, J. Ullman, and A. Aho. Compilers: Princi-
ples, Techniques, and Tools. Addison-Wesley, 2006.

[21] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon.
Parallel Data Processing with MapReduce: A Survey. In
SIGMOD Rec., volume 40, pages 11–20, New York, NY, USA,
2012. ACM.

[22] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A System for Large-
scale Graph Processing. In Proceeding of the 2010 ACM
SIGMOD International Conference on Management of Data,
SIGMOD ’10, pages 135–146, Indianapolis, Indiana, USA,
2010. ACM.

[23] G. Mezei, T. Levendovszky, T. Meszaros, and I. Madari.
Towards Truly Parallel Model Transformations: A Distributed
Pattern Matching Approach. In IEEE EUROCON 2009, pages
403–410. IEEE, 2009.

[24] Object Management Group. Object Constraint Language, OCL,
June, 2015. URL: http://www.omg.org/spec/OCL/.

[25] Object Management Group. Query/View/Transformation,
QVT, June, 2015. URL: http://www.omg.org/spec/QVT/.

[26] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig latin: a not-so-foreign language for data processing. In Pro-
ceedings of the 2008 ACM SIGMOD international conference
on Management of data, pages 1099–1110. ACM, 2008.

[27] The Apache Software Foundation. Apache HBase, June, 2015.
URL: http://hbase.apache.org/.

[28] The Eclipse Foundation. ATL EMFTVM, June, 2015. URL:
https://wiki.eclipse.org/ATL/EMFTVM/.

[29] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy. Hive: a warehousing
solution over a map-reduce framework. Proceedings of the
VLDB Endowment, 2(2):1626–1629, 2009.

[30] M. Tisi, S. Martínez, and H. Choura. Parallel Execution of
ATL Transformation Rules. In Model-Driven Engineering
Languages and Systems, volume 8107 of Lecture Notes in
Computer Science, pages 656–672. Springer, 2013.

[31] R. Volk, J. Stengel, and F. Schultmann. Building Information
Modeling (BIM) for Existing Buildings: Literature Review and
Future Needs. Automation in Construction, 38(0):109–127,
2014.

[32] A. Yie and D. Wagelaar. Advanced Traceability for ATL. In
Proceeding of the 1st International Workshop on Model Trans-
formation with ATL (MtATL), pages 78–87, Nantes, France,
2009.

[33] S. Zschaler, D. Kolovos, N. Drivalos, R. Paige, and A. Rashid.
Domain-specific metamodelling languages for software lan-
guage engineering. In M. van den Brand, D. Gašević, and
J. Gray, editors, Software Language Engineering, volume
5969 of Lecture Notes in Computer Science, pages 334–353.
Springer Berlin Heidelberg, 2010.

http://www.omg.org/spec/OCL/
http://www.omg.org/spec/QVT/
http://hbase.apache.org/
https://wiki.eclipse.org/ATL/EMFTVM/

	Introduction
	Running Example: Model Transformation for Data-Flow Analysis
	ATL on MapReduce
	ATL and MapReduce Alignment

	Tool Support
	Distributed Transformation Engine
	Data Distribution
	Tool Limitations

	Experimental Evaluation
	Experiment I: Speed-Up Curve
	Experiment II: Size/Speed-Up Correlation

	Related Work
	Conclusion and Future Work

