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Introduction

Recently, in [START_REF] Sagitov | A special family of Galton-Watson processes with explosions[END_REF], a family of branching mechanisms involving explosions was introduced: the so-called θ-linear fractional family. It fixes the reproduction law of some specific Bienyamé-Galton-Watson branching processes [START_REF] Harris | The theory of branching processes[END_REF], and it is given in terms of its probability generating function (pgf). This pgf family has the remarkable invariance under iterated composition property so that in principle the law of the population size at each generation can be computed. This makes computation of important statistical quantities of great interest quite explicit. In this construction θ ∈ [-1, 1], with very special properties for the cases θ ∈ {-1, 0, 1} when θ is an integer. We shall revisit this θ-family and give some additional results, among which:

-the expression of the limit laws in the subcritical and super-critical with finite mean cases, solving respectively the associated Schröder and Poincaré functional equations.

-long-run behavior of the population in the critical case.

-limit laws in the super-critical cases with infinite mean when either the θ-process is regular or explosive.

-information on the time to absorption as the infimum of the times to extinction and explosion.

-an alternative expression of the probability system of the θ-branching mechanism to the one given in Proposition 4 of [START_REF] Sagitov | A special family of Galton-Watson processes with explosions[END_REF], making use of Faa di Bruno formulae and Bell polynomials.

-the explicit computation of the stochastic transition matrix of the associated Bienyamé-Galton-Watson θ-branching processes, together with its powers. This gives some access to the resolvent of such processes as a key ingredient to compute passage time statistics, hitting probabilities,...

-We end up this work by a short section of examples where the following problem of concrete interest is addressed: what is the probability that, given the θ-branching process has not yet gone extinct at some given generation, its extinction time will be infinite with a large probability close to 1. We do some computations in the special cases θ ∈ {-1, 0, 1}.

Generalities on Bienyamé-Galton-Watson branching processes

Consider a discrete-time Bienyamé-Galton-Watson (BGW) branching process [START_REF] Harris | The theory of branching processes[END_REF] whose reproduction law is given by the (sub-)probability system P (M = m) = π (m), m ≥ 0 for the number M of offspring per capita. We assume π (0) > 0 so that the process can go extinct. We let φ (z) = E z M = m≥0 π (m) z m be the probability generating function of M and we assume φ (1) ≤ 1.

-If φ (1) < 1, there is a positive probability 1 -φ (1) =: π (∞) that M = ∞ (explosion is made possible even at the first branching step): we shall speak of an explosive or non-regular process. With N n (1) the number of individuals alive at generation n given N 0 = 1, we have E z Nn (1) 

:= E z Nn | N 0 = 1 = φ •n (z) (1) 
where φ •n (z) is the n-th composition of φ (z) with itself, 1 . Similarly, if N n (i) is the number of individuals alive at generation n given there are N 0 = i founders, we clearly get

E z Nn(i) := E z Nn | N 0 = i = φ •n (z) i . (2) 
We shall also let τ i,j = inf (n ≥ 1 :

N n = j | N 0 = i) ,
the first hitting time of state j = i given N 0 = i = 0. We have:

-If φ (1) = 1 (regular case), depending on µ := E (M ) ≤ 1 (i.e. (sub-)critical case ) or µ > 1 (supercritical case): the process N n (1) goes extinct with probability 1 or goes extinct with probability ρ < 1 where ρ is the smallest fixed point solution in [0, 1] to φ (ρ) = ρ, respectively. In the latter case, the distribution of the time to extinction τ 1,0 is given by

P (τ 1,0 ≤ n) = P (N n (1) = 0) = φ •n (0) ,
and the process explodes with probability ρ := 1 -ρ, but not in finite time: only state {0} is absorbing. Clearly also, if there are i independent founders instead of simply 1,

P (τ i,0 ≤ n) = P (N n (i) = 0) = φ •n (0) i . -If φ (1) < 1 (explosive case), µ := E (M ) = ∞ because there is a positive probability 1 -φ (1) that M = ∞. Note that φ (1) = E M • 1 {M <∞} = m≥1 mπ (m) ,
if this quantity exists (is finite). If φ (1) < 1, state {∞} should be added to the state-space N 0 = {0, 1, ...} of N n (i) and then both states are {0, ∞} are absorbing. In this supercritical case, ρ < 1 always, and both the time to extinction τ 1,0 and the time to explosion τ 1,∞ of N n (1) are finite with positive probability, now with

P (τ 1,0 ≤ n) = P (N n (1) = 0) = φ •n (0) → n→∞ ρ = P (τ 1,0 < ∞) . P (τ 1,∞ > n) = P (N n (1) < ∞) = φ •n (1) → n→∞ ρ = P (τ 1,∞ = ∞) . (3) 
Thus ρ and ρ are now also the probabilities that τ 1,0 < ∞ and τ 1,∞ < ∞, respectively. We thus have

   P (n < τ 1,0 < ∞) = ρ -φ •n (0) , P (n < τ 1,∞ < ∞) = ρ -(1 -φ •n (1)) = φ •n (1) -ρ, and P (n < τ 1 < ∞) = P (0 < N n (1) < ∞) = φ •n (1) -φ •n (0) , (4) 
where we defined the global absorption time τ 1 := τ 1,0 ∧ τ 1,∞ . Clearly also, with

τ i := τ i,0 ∧ τ i,∞    P (n < τ i,0 < ∞) = ρ i -φ •n (0) i , P (n < τ i,∞ < ∞) = 1 -ρ i -(1 -φ •n (1)) = φ •n (1)
i -ρ i , and

P (n < τ i < ∞) = P (0 < N n (i) < ∞) = φ •n (1) i -φ •n (0) i . (5) 
Suppose a supercritical situation for which the extinction probability of N n (i) is smaller than 1 (always the case if φ (1) < 1). Of concrete interest is then the probability that, given the process N n (i) has not yet gone extinct at generation n, the extinction time of the process will be finite, namely

P (τ i,0 < ∞ | N n (i) > 0) = P (τ i,0 < ∞ | τ i,0 > n) .
We get

P (τ i,0 < ∞ | N n (i) > 0) = ρ i -φ •n (0) i 1 -φ •n (0) i ,
and the larger n, the smaller this probability because φ •n+1 (0) > φ •n (0). There is thus a value n c of n for which, with probability c close to 1,

1 -P (τ i,0 < ∞ | N nc (i) > 0) = 1 -ρ i 1 -φ •nc (0) i = c ( = say .99), (6) 
with N n (i) never going extinct in the future after n c given N nc (i) > 0.

A Bienaymé-Galton-Watson process is a time-homogeneous Markov chain with denumerable state-space N 0 := {0, 1, ...}. Its stochastic transition matrix is P , with entries

P (i, j) = z j φ (z) i = P (N 1 (i) = j).
When there is explosion and in the supercritical cases, one way wish to condition N n either on extinction or on explosion. This may be understood as follows:

The harmonic column vector h, solution to P h = h, is given by its coordinates h (i) = ρ i , i ≥ 0, because j≥0 P (i, j) ρ j = φ (ρ) i = ρ i . Introduce the stochastic matrix P h given by a Doob transform, [START_REF] Norris | Markov chains[END_REF]:

P h = D -1 h P D h or P h (i, j) = h (i) -1 P (i, j) h (j) = P (i, j) ρ j-i , i, j ≥ 0. Note h (N n (i)) = ρ Nn(i) is a martingale because E (h (N n (i))) = φ •n (ρ) i = ρ i = h (i) = h (N 0 (i))
. Then P h is the transition matrix of N n conditioned on almost sure extinction. Equivalently, when conditioning N n on almost sure extinction, one needs to deal with a regular subcritical BGW process with new branching mechanism φ 0 (z) = φ (ρz) /ρ, satisfying φ 0 (1) = 1 and φ 0 (1) = φ (ρ) < 1. Indeed, φ 0 (z) = j≥0 P h (1, j) z j . Upon iterating, we get

φ •n 0 (z) = φ •n (ρz) /ρ.
Similarly, when conditioning N n on almost sure explosion, one needs to deal with an explosive supercritical BGW process with new Harris-Sevastyanov branch-

ing mechanism φ ∞ (z) = [φ (ρ + ρz) -ρ] /ρ, satisfying φ ∞ (0) = 0 and φ ∞ (1) = (φ (1) -ρ) /ρ < 1. Upon iterating, we have φ •n ∞ (z) = [φ •n (ρ + ρz) -ρ] /ρ.
The second largest eigenvalue of P is γ = φ (ρ) < 1. The corresponding eigenvector u obeys P u = γu with u

(i) = iρ i-1 , i ≥ 1, because j≥1 P (i, j) jρ j-1 = φ (ρ) iφ (ρ) i-1 = γiρ i-1 .
Conditioning N n on never hitting {0, ∞} in the remote future is given by the Q-process with stochastic transition matrix

Q = γ -1 D -1 u P D u or Q (i, j) = γ -1 u (i)
-1 P (i, j) u (j) = γ -1 ρ j-i i -1 P (i, j) j, i, j ≥ 1 (see [START_REF] Lambert | Some aspects of discrete branching processes[END_REF] and [START_REF] Sagitov | A special family of Galton-Watson processes with explosions[END_REF], Section 6 in the θ-special case).

There are classes of discrete branching processes for which the pgf φ •n (z) of N n (1) is exactly computable, thereby making the above computations concrete and somehow explicit.

3 The θ-linear fractional branching mechanism model revisited, [START_REF] Sagitov | A special family of Galton-Watson processes with explosions[END_REF] With |θ| ≤ 1, a, b > 0 and z c ≥ 1, we shall reconsider the θ-linear fractional branching mechanism model, namely

   φ (z) = z c -a (z c -z) -θ + b -1/θ or (z c -φ (z)) -θ = a (z c -z) -θ + b, , (7) 
and for those values of z c ≥ 1 and a, b > 0 for which φ is a pgf with φ (1) ≤ 1.

The boundary cases θ = ±1

The boundary cases θ = ±1 deserve a special treatment that we shall first evacuate.

• When θ = 1, φ (z) = z c -a (z c -z) -1 + b -1
is an homographic map. Assuming a + b > 1 and introducing the probabilities p 0 = 1/ (a + b), q = a/ (a + b), with p 0 + q 0 = 1 and p + q = 1, this is also (a = q/q 0 , b = p/q 0 )

1 z c -φ (z) = q p 0 1 z c -z + p p 0 .
Note φ (z c ) = z c but z c is not the convergence radius of φ, which is z c + q/p. When z c = 1, this gives φ (z) = q 0 +p 0 (qz) / (1 -pz), the classical form of the simple linear fractional model as a geometric(p/q) independent sum of iid Bernoulli(p 0 ) random variables. We have µ := E (M ) = φ (1) = p 0 /q = 1/a and

φ •n (z) = 1 -a n (1 -z) -1 + b n -1
where

a n = a n and b n = b 1 + a + ... + a n-1
.

Depending on a > 1, a = 1 or a < 1, the corresponding branching process is subcritical, critical or supercritical. In the supercritical case a = q/p 0 < 1 the extinction probability is ρ = q 0 /p < 1.

If z c > 1, the additional constraints φ (0) ∈ (0, 1) and φ (1) ≤ 1 impose p 0 < q + pz c ≤ p + p 0 . This family is of interest because its n-th iterate is explicit, also homographic, with

φ •n (z) = z c -a n (z c -z) -1 + b n -1
where

a n = a n and b n = b 1 + a + ... + a n-1 . ( 8 
)
Thus for instance, if z c > 1, and q + pz c < p + p 0

P (n < τ 1 < ∞) = φ •n (1) -φ •n (0) = a n (a n + b n z c ) (a n + b n (z c -1))
,

with

P (n < τ 1 < ∞) ∼ n→∞      (a-1) 2 (a-1+bzc)(a-1+b(zc-1)) a -1 n if a > 1 (a-1) 2 b 2 zc(zc-1) a n if a < 1 1 b 2 zc(zc-1) n -2 if a = 1
.

When a = 1 (p 0 = q and q 0 = p), the tails of τ 1 are no longer asymptotically geometric, rather they are power-law with index 2.

• When θ = -1, φ (z) = az + z c (1 -a) -b
is the affine map and, if φ (1) = 1, the corresponding branching process is the regular death process as each individual can only either die or survive upon splitting. With

π (1) = a, π (0) = z c (1 -a) -b = 1-π (1), φ (z) = π (1)
z+π (0) and the corresponding branching process is subcritical, always, with mean µ = π (1) = a < 1. With π n (0) + π n (1) = 1, we have

φ •n (z) = π n (0) + π n (1) z, where π n (1) = π (1)
n .

If φ (1) < 1, the corresponding branching process is an explosive process where each individual can either die, survive or give birth to infinitely many descendants on splitting. The additional constraints φ (0) ∈ (0, 1) and φ (1)

< 1 impose π (1) = a ∈ (0, 1), π (0) = z c (1 -a) -b < 1 -π (1) = 1 -a, thus (z c -1) (1 -a) < b. This family is of interest because its n-th iterate is again explicit φ •n (z) = z c -(a n (z c -z) + b n ) with a n = a n and b n = b 1 + a + ... + a n-1 = b 1-a n 1-a (9)
and again in the same class of affine maps. With π n (0) + π n (1) < 1, this is also

φ •n (z) = π n (0) + π n (1) z, where π n (0) = π (0) 1 -a n 1 -a and π n (1) = π (1) n .
We have

P (N n (1) < ∞) = π n (0) + π n (1) = π (0) 1 -a n 1 -a + π (1) n → n→∞ π (0) / (1 -a) < 1. P (N n (1) = ∞)
is an increasing sequence. The relative rate of approach of P (N n (1) = ∞) to its limiting value decays geometrically with

P (N ∞ (1) = ∞) -P (N n (1) = ∞) P (N ∞ (1) = ∞) = a n . Note P (n < τ 1 < ∞) = φ •n (1) -φ •n (0) = a n , an exact geometric distribution.

The case θ ∈ (-1, 1)

-With θ ∈ (-1, 1), a, b > 0 and z c = sup (z > 0 : φ (z) < ∞) ≥ 1, let us reconsider φ (z) as defined by [START_REF] Athreya | Branching Processes[END_REF]. Note now φ (z c ) ≤ z c (= z c if θ ∈ (0, 1]) and z c > 1 could produce φ (1) < 1, the explosion opportunity. This family is of interest because its n-th iterate is also explicit with

φ •n (z) = z c -a n (z c -z) -θ + b n -1/θ
where

a n = a n and b n = b 1 + a + ... + a n-1 (10) 
and it is in the same class as φ, although for a different set of parameters a, b (an invariance under iteration property).

There are three cases, depending on µ := E (M ) < 1, = 1 or > 1:

• (I) subcritical cases: (i) If θ ∈ (0, 1], z c = 1, a > 1, b > 0, then µ = a -1/θ < 1. Again, if θ = 1, φ (z) = q 0 + p 0 qz/ (1 -pz) with p 0 = 1/ (a + b), p = b/ (a + b)
, the classical form of the 1-fractional model as the composition of a Bernoulli(p 0 ) pgf with the one of a geometric(p/q) pgf.

(ii

) If θ ∈ (-1, 1], z c > 1, a ∈ (0, 1) and b = (1 -a) (z c -1) -θ , then µ = a < 1. (iii) If θ = -1, z c = 1 and a ∈ (0, 1), then µ = a < 1.
• (II) critical case (µ = 1): this situation occurs only when θ ∈ (0, 1],

z c = 1, a = 1, b > 0. • (III) supercritical case (∞ ≥ µ > 1): θ ∈ (-1, 1], z c ≥ 1, a ∈ (0, 1), b = (1 -a) (z c -ρ)
-θ where equivalently ρ = z c -((1 -a) /b) 1/θ is the extinction probability of the process, as the smallest solution in the interval [0, 1] to φ (ρ) = ρ with ρ ∈ (0, 1). We have a = φ (ρ).

The case θ = 0 is defined by continuity from the case θ ∈ (-1, 1) \ {0} while observing

φ (z) = z c -a (z c -z) -θ + (1 -a) (z c -ρ) -θ -1/θ → |θ|→0 z c -(z c -ρ) 1-a (z c -z) a , (11) 
with φ (1) < 1 if z c > 1. Note that if z c = 1, φ (1) = 1 and µ = ∞ (the only regular case with infinite mean).

In the supercritical case with z c > 1, then µ = ∞ because in this case,

φ (1) = z c -a (z c -1) -θ + (1 -a) (z c -ρ) -θ -1/θ < 1
and M = ∞ with a positive probability.

In general, we have φ

(1) = a a + b (z c -1) θ -(θ+1)/θ = a a + (1 -a) zc-1 zc-ρ θ -(θ+1)/θ
which coincides with µ if z c = 1. We conclude that in the supercritical case with

z c = 1 µ = ∞ if θ ∈ (-1, 0] , a ∈ (0, 1) a -1/θ if θ ∈ (0, 1] , a ∈ (0, 1) .
In the first case, -if θ ∈ (-1, 0), a ∈ (0, 1) then µ = ∞ as a result of finite-time explosion because

φ (1) = 1 -(1 -a) (1 -ρ) -θ -1/θ < 1 (explosive case).
-if θ = 0, a ∈ (0, 1), µ = ∞ even though φ (1) = 1 (the only regular case with infinite mean).

Remarks:

(i) To the subset of models (I) to (II), we have added the special affine case θ = -1 with z c = 1. If z c > 1, the affine model is supercritical with µ = ∞ because the branching event M = ∞ has a positive probability. The special case θ = 0 is supercritical with µ = ∞ both when z c = 1 and z c > 1. The special case θ = 1 corresponds to the standard linear fractional model and its criticality status has been included in the above classification.

(ii) Due to the invariance under iterated composition of the θ-family of pgfs, it holds that [φ

•n ] -1 (z) = φ •(-n) (z): the inverse function of φ •n (z) simply is φ •(-n) (z), obtained while substituting -n to n in φ •n (z).

Limit laws

We shall investigate different limit laws concerning cases (I) to (III).

4.1 Limit laws (subcritical/critical and super-critical with finite mean cases)

• Subcritical case with µ < 1: There are three different cases where this can occur:

(i) In the case (I)

-(i) with θ ∈ (0, 1], z c = 1, a > 1, b > 0 and φ (z) = 1 -a (1 -z) -θ + b -1/θ , N n | N n > 0 d → N ∞ where N ∞ is a random variable with value in N 0 = {1, 2, ...} whose pgf φ ∞ (z) := E z N∞ = l≥1 π ∞ (l) z l obeys the Schröder functional equation φ ∞ (φ (z)) = µφ ∞ (z) , φ ∞ (z) = 1 -φ ∞ (z) , µ = a -1/θ . ( 12 
) Note φ (z) = φ -1 ∞ µφ ∞ (z) and thus φ •n (z) = φ -1 ∞ µ n φ ∞ (z) . With α = a-1 a+b-1
and β = b a+b-1 (α + β = 1), we find the pgf of the Yaglom quasi-stationary limit N ∞ [START_REF] Yaglom | Certain limit theorems of the theory of branching stochastic processes[END_REF] as

φ ∞ (z) = 1 - 1 -z α + β (1 -z) θ 1/θ , (13) 
obeying φ ∞ (0) = 0, φ ∞ (1) = 1 and with mean µ ∞ := φ ∞ (1) = α -1/θ = a-1 a+b-1 -1/θ . If in particular θ = 1, φ ∞ (z) = z 1 + β α (1 -z) = αz 1 -βz is the pgf of a geometric random variable with mean 1 + β/α = 1/α. Thus π ∞ (l) = P (N ∞ = l) = αβ l-1 , l ≥ 1, decays geometrically fast. If θ ∈ (0, 1), the tail pgf is 1 -φ ∞ (z) 1 -z = α + β (1 -z) θ -1/θ .
Thus, with π ∞ (k) := l>k π ∞ (l), by Tauberian theorem,

α + β (1 -z) θ -1/θ ∼ z↓1 µ ∞ 1 - β αθ (1 -z) θ π ∞ (k) ∼ k↑∞ - 1 Γ (-θ) β θα 1+1/θ k -(1+θ) ,
displaying power law tails with index 1 + θ if θ ∈ (0, 1) : N ∞ only has moments of order strictly less than 1 + θ only.

(ii) In the subcritical case (I)

-(ii) with θ ∈ (-1, 1] \ {0}, z c > 1, a ∈ (0, 1), b = (1 -a) (z c -1)
-θ . Here, with φ (1) = 1 (a regular case)

φ (z) = z c -a (z c -z) -θ + (1 -a) (z c -1) -θ -1/θ and µ = φ (1) = a < 1. ( 14 
) Let h (z) = z c -z = h -1 (z) , g (z) = z -θ and f (z) = g (h (z)) = (z c -z) -θ
. The above equation is also

f (φ (z)) = af (z) + (1 -a) f (1) .

Let us look for an invertible function

A (z) with inverse B (x) = A -1 (x) such that φ (z) = B (µA (z)) = B (aA (z)).
Combining the two equations, we should have

f • B (aA (z)) = af (z) + (1 -a) f (1) or f • B (ax) = af • B (x) + (1 -a) f (1)
leading to an affine solution f •B (x) = αx+β with β = f (1) and α left undetermined so far. We get

B (x) = f -1 (αx + f (1)) = z c -(αx + f (1)) -1/θ A (z) = B -1 (z) = 1 α (z c -z) -θ -(z c -1) -θ . We thus have φ ∞ (z) = 1 -A (z) = 1 -1 α (z c -z) -θ -(z c -1) -θ with φ ∞ (1) = 1. Imposing φ ∞ (0) = 0 yields α = z -θ c -(z c -1) -θ and so φ ∞ (z) = 1 - (z c -z) -θ -(z c -1) -θ z -θ c -(z c -1) -θ = 1 -(1 -z/z c ) -θ 1 -(1 -1/z c ) -θ (15) 
is the searched pgf of the unique Yaglom limit N ∞ in this case study. It has finite mean φ ∞ (1) (and moments) and

P (N ∞ = k) is asymptotically equivalent to k θ-1 z -k c
with both power-law and geometrically decaying factors.

The case θ = 0 is finally obtained by continuity. We get a logarithmic pgf for N ∞ as a result of

φ ∞ (z) = 1 -(1 -z/z c ) -θ 1 -(1 -1/z c ) -θ → |θ|→0 -log (1 -z/z c ) -log (1 -1/z c ) , (16) 
with mean φ ∞ (1) = -

1 (zc-1) log(1-1/zc) > 1.
(iii) In the subcritical case (I) -(iii) (pure death case with φ (z) = π (0) + π (1) z

and µ = π (1) < 1), N n | N n > 0 d → N ∞ where simply N ∞ = 1 whose pgf φ ∞ (z) := E z N∞ = z clearly obeys the Schröder functional equation φ ∞ (φ (z)) = µφ ∞ (z) , φ ∞ (z) = 1 -z. Obviously, φ (z) = φ -1 ∞ µφ ∞ (z) and thus φ •n (z) = φ -1 ∞ µ n φ ∞ (z) = 1-µ n (1 -z) as required.
• Critical case with µ = 1: This concerns the case (II) when θ ∈ (0, 1], z c = 1, a = 1, b > 0. We have

φ (z) = 1 -(1 -z) -θ + b -1/θ φ •n (z) = 1 -(1 -z) -θ + nb -1/θ
. This is a regular case with φ (1) = 1. The process goes extinct with probability 1 but it takes a long time to do so. Indeed,

P (τ 1,0 > n) = 1 -φ •n (0) = (1 + nb) -1/θ ∼ (nb) -1/θ , P (τ i,0 > n) = 1 -φ •n (0) i ∼ i (nb) -1/θ , for large n with persistent heavy tails, non-geometric. The pgf of N n (1) conditioned on N n (1) > 0 is φ •n (z) -φ •n (0) 1 -φ •n (0) , therefore E (N n (1) | N n (1) > 0) = (1 + nb) 1/θ ∼ b 1/θ n 1/θ , E (N n (i) | N n (i) > 0) ∼ ib 1/θ n 1/θ , for large n
with slow algebraic growth of order n 1/θ in n. Because φ (1) = 2b < ∞ only when θ = 1, it holds [START_REF] Harris | The theory of branching processes[END_REF], [START_REF] Athreya | Branching Processes[END_REF] that, if θ = 1, E (N n (1) | N n (1) > 0) ∼ nb and

P N n (1) nb > x | N n (1) > 0 → n→∞ e -x , x > 0.
• Regular supercritical case with µ < ∞.

In the supercritical case (III) for which

µ = a -1/θ < ∞ (z c = 1, θ ∈ (0, 1], a ∈ (0, 1)), µ -n N n d → W where W ≥ 0 is a random variable with value in R + = [0, ∞) whose LSt φ W (λ) := E e -λW , λ ≥ 0, obeys the Poincaré functional equation φ W (µλ) = φ (φ W (λ)) . ( 17 
) Note φ (z) = φ W µφ -1 W (z) and thus φ •n (z) = φ W µ n φ -1 W (z) . With α = 1-a a+b-1 > 0 and β = b a+b-1 > 0 (β -α = 1), if z c = 1, we find the LSt of the asymptotic growth rate W of µ -n N n as φ W (λ) = 1 -λα 1/θ βλ θ + 1 -1/θ = ρ + ρ 1 -1 + β -1 λ -θ -1/θ (18) obeying φ W (∞) = ρ = 1 -α β 1/θ
, the extinction probability (W has an atom at r = 0 with mass ρ), φ W (0) = 1 and with mean µ W := -φ W (0) = α 1/θ . For general supercritical BGW processes, the limiting W given W > 0 is known to be infinitely divisible in some but not all cases [START_REF] Biggins | Some divisibility problems in branching processes[END_REF]. We don't know if W | W > 0 here in (18) is infinitely divisible or not.

If θ = 1, φ W (λ) = 1 -λα (βλ + 1) -1 = λ + 1 βλ + 1 = 1 β + 1 - 1 β 1 1 + βλ
is the LSt of an exponential random variable with an atom at 0 with mass ρ = 1/β and mean ρβ = 1-a a+b-1 = α. Thus P (W > r | W > 0) ∼ e -r/β , decays exponentially fast.

If θ ∈ (0, 1), φ W (λ) ∼ ρ + ρ 1 -β 1/θ λ as λ is close to 0, meaning exponential tails again, now with [START_REF] Feller | An introduction to probability theory and its applications[END_REF], p. 445).

P (W > r | W > 0) ∼ r→∞ e -r/β 1/θ . As λ is close to ∞, φ W (λ) ∼ ρ+ρ (βθ) -1 λ -θ , meaning heavy algebraic left tails P (W ≤ r | W > 0) ∼ r→0 (βθ) -1 r θ /Γ (1 + θ), (see

Limit laws (super-critical with infinite mean cases)

There are two different regimes, depending on µ = ∞ resulting or not from finite-time explosion:

• Regular case. If z c = 1, the infinite mean case µ = ∞ occurs when θ = 0, a ∈ (0, 1). In such a case, φ (z) = 1-(1 -ρ)

1-a (1 -z) a and φ (1) = 1 (no finite-time explosion). With E (1) a standard mean 1 exponential random variable

a n log (1 + N n (1)) a.s. → W = 0 with probability ρ E (1) with probability ρ , as n → ∞ (19)
and conditionally given N n (1) does not go extinct, N n (1) grows at double exponential speed. The pgf of N n (1) given explosion indeed is

φ •n ∞ (z) = 1 -(1 -z) a n
, and the above statement follows from the martingale proof of ( [START_REF] Hénard | The fixation line in the Lambda-coalescent[END_REF], proposition 3.8), adapted to the discrete time context. Similar regular models with infinite offspring mean were recently studied in [START_REF] Huillet | On Mittag-Leffler distributions and related stochastic processes[END_REF].

Remark: It can be checked that, with log a b = log b/ log a and

A (z) = 1 - log 1-ρ (1 -z), z < 1, φ (z) = A -1 (aA (z)) , so that φ •n (z) = A -1 (a n A (z)) . ( 20 
)
This is an alternative way to see that such a branching model is 'integrable'.

• Explosive case. If (i) z c > 1 and θ ∈ (-1, 1], a ∈ (0, 1), b = (1 -a) (z c -ρ) -θ
with ρ ∈ (0, 1) or (ii) if z c = 1 and θ ∈ (-1, 0), a ∈ (0, 1) and b = (1 -a) (1 -ρ) -θ , where ρ ∈ (0, 1), then N n (1) can be infinite even in the first iteration step (finite time explosion). What only matters in this context is the time τ 1,∞ to explosion and also τ 1 = τ 1,0 ∧ τ 1,∞ , as well as τ i .

(i) When θ ∈ (-1, 1], z c > 1, a ∈ (0, 1), b = (1 -a) (z c -ρ)
-θ with ρ ∈ (0, 1), leading to µ = ∞, we have for instance

P (n < τ 1 < ∞) = φ •n (1) -φ •n (0) ∼ n→∞ 1 -a b 1+1/θ (z c -1) θ -z θ c a n ,
showing that τ 1 is tail equivalent to a geometric random variable. Similarly

P (n < τ i < ∞) = φ •n (1) i -φ •n (0) i ∼ n→∞ i 1 -a b 1+i/θ (z c -1) θ -z θ c a n . (ii) If z c = 1 and θ ∈ (-1, 0), a ∈ (0, 1) and b = (1 -a) (1 -ρ) -θ
, where ρ ∈ (0, 1), we have

P (n < τ i < ∞) = φ •n (1) i -φ •n (0) i ∼ n→∞ -i (1 -ρ) -(1+i/θ) θ a n ,
still with the tail equivalence to a geometric random variable.

Powers of the θ-process transition matrix obtained by iteration

So far we dealt with this θ-family of pgfs for the reproduction law. It remains to compute the probability system to which they are associated. A related question is to compute the stochastic transition matrix of the θ-branching processes together with its powers in time. We shall now address these points. We shall start with the cases θ ∈ (-1, 1) \ {0} before addressing the special cases θ ∈ {-1, 0, 1}.

5.1

The case θ ∈ (-1, 1) \ {0}

• We start with the reproduction law.

Let φ (z) = z c -a (z c -z) -θ + b -1/θ
be a θ-pgf with φ (z) ≤ 1. We first wish to compute the associate probability system:

π (k) = z k φ (z). Introduce φ c (z) := z -1 c φ (z c z), so with φ c (z) = 1 - a (1 -z) -θ + bz θ c -1/θ (this operation is meaningful of course only if z c > 1). φ c (z) is a new pgf because φ c (1) = z -1 c φ (z c ) ≤ 1. We have π c (k) = z k φ c (z) = z k-1 c π (k)
, so one can work with φ c as well. We also have φ

c (z) = f • g (z) with g (z) = 1 -(1 -z)
-θ and f (z) = 1 -a + bz θ c -az -1/θ . This allows to compute π (k) by Faa di Bruno formula for the composition of Taylor series. First we have

π (0) = z c 1 -a + bz θ c -1/θ . Next, by Faa di Bruno formula ([4], Tome 1, p. 149), π (k) = 1 k!z k-1 c k l=1 f l B k,l (g • ) , k ≥ 1 ( 21 
)
where f l are the Taylor coefficients of f (z) and B k,l (g • ) the Bell polynomials in the indeterminate g • := (g 1 , g 2 , ...), the g k s being the Taylor coefficients of g (z). The Bell polynomials are defined by

B k,l (g • ) = k! l! z k g (z) l ,
with the boundary conditions

B k,0 (g • ) = B 0,l (g • ) = 0, k, l ≥ 1 and B 0,0 (g • ) := 1, and B k,1 (g • ) = g k and B k,k (g • ) = g k 1 .
Recall also [START_REF] Comtet | Analyse combinatoire. Tomes 1 et 2[END_REF],

B k,l (x • ) = k! * j≥1 1 c j ! x j j! cj ,
the latter star summations running over the integers c j obeying j≥1 c j = l and j≥1 jc j = k ≥ l. We note now that, with [a] l = a (a + 1) ... (a + l -1) the ascending factorial

with [a] 0 := 1, C = a + bz θ c -1/θ and D = a + bz θ c /a = C -θ /a, f (z) = 1 - C (1 -z/D)
-1/θ with Taylor coefficients

f 0 = 1 -C and f l = - C θ [1 + 1/θ] l-1 D -l = -CD -l [1/θ] l , l ≥ 1. ( 22 
)
For the case

g (z) = 1 -(1 -z) -θ , it holds g • = -θ [1 + θ] •-1 = -[θ] • . Because g 1 = -θ and g m+1 = g m (m + θ), m ≥ 1, it follows that the Bell coefficients B k,l (g • )
for this function g obey a simple 3-term recursion

B k+1,l (g • ) = -θB k,l-1 (g • ) + (k + lθ) B k,l (g • ) , k, l ≥ 1. ( 23 
) For instance B 1,1 (g • ) = -θ leading to π (1) = f 1 B 1,1 (g • ) = CD -1 , B 2,1 (g • ) = (1 + θ) B 1,1 (g • ) = -θ (1 + θ), leading to π (2) = 1 2zc (f 1 B 2,1 (g • ) + f 2 B 2,2 (g • )) = 1 2zc (1 + θ) CD -2 (D -1),.
..The formulae (21), ( 22) and ( 23) completely characterize the π (k)s,2 . The B k,l (g • ) constitute generalized Stirling numbers studied in [START_REF] Charalambides | A review of the Stirling numbers, their generalizations and statistical applications[END_REF].

Remark: If θ = -1/L where L > 1 is an integer, f (z) = 1 -C (1 -z/D)
L is a polynomial of degree L in z so f l = 0 if l > L which largely simplifies (21). Furthermore, in this case,

g k = L -k k-1 l=1 (lL -1). If L = 2, g k = 2 -2(k-1) (2k -3)!/ (k -2)!.
• The transition matrix and its powers. We now first wish to compute P a,b (i, j) = z j φ (z) i = z i-j c z j φ c (z) i , the transition matrix of the θ-branching process, where it has been emphasized its dependence on the parameters (a, b). We have φ c (z

) i = f i • g (z) still with g (z) = 1 -(1 -z) -θ and now with f i (z) := 1 -a + bz θ c -az -1/θ i
. So with f i,k , k ≥ 1, the Taylor coefficients of f i (z), we similarly get

P a,b (i, j) = z i-j c j! j k=1 f i,k B j,k (g • ) . (24) 
We note that

f i (z) = h i (f (z)) where h i (z) = (1 -C + Cz) i and f (z) := 1 - (1 -z/D) -1/θ so that with h i,l = i! (i-l)! (1 -C) i-l C l (= 0 if l > i) and with f • given from (22) as f l = -[1/θ] l D -l , l ≥ 1, by Faa di Bruno formula again f i,0 = (1 -C) i and f i,k = k∧i l=1 h i,l B k,l (f • ) . ( 25 
)
Note π (j) = P a,b (1, j) as required.

To obtain now P n a,b (i, j), the (i, j)-entry of the n-th power of P a,b , we just need to substitute a n = a n , b n = b 1 + a + ... + a n-1 to (a, b), so it simply holds

P n a,b (i, j) = P an,bn (i, j) , (26) 
taking advantage of the invariance under iteration of the θ-family when θ ∈ (-1, 1) \ {0}.

We note that the dependence on n in P an,bn (i, j) is only in the coefficients f i,k in (24), through C and D. To emphasize this point, we shall also write

P n a,b (i, j) = P an,bn (i, j) = z i-j c j! j k=1 f (n) i,k B j,k (g • ) , (27) 
where f It remains to discuss the special integral cases for θ.

(n) i,k is obtained from f i,

5.2

The case θ = 0

Recall φ (z) = z c -λ (z c -z) a where λ = (z c -ρ) 1-a and ρ obeying φ (ρ) = ρ. With φ c (z) = 1 -λz a-1 c (1 -z) a and π c (k) = z k φ c (z), π (k) = π c (k) /z k-1 c with π c (k) = -λz a-1 c [-a] k /k!. Next, with λ c := λz a-1 c φ c (z) i = (1 -λ c (1 -z) a ) i = (1 -λ c + λ c (1 -(1 -z) a )) i = h i • g (z) with g (z) = 1 -(1 -z) a and h i (z) = (1 -λ c + λ c z) i . With g • = -[-a] • and h i,k = i! (i-k)! (1 -λ c ) i-k λ k c , we thus get similarly P a,λ (i, j) = z i-j c j! j k=1
h i,k B j,k (g • ) and P n a,λ (i, j) = P an,λn (i, j) ,

where a n = a n (a ∈ (0, 1)) and λ n = λ (1-a n )/ (1-a) . The B j,k (g • ) also obey a three terms recursion of the type (23) with -a substituted to θ. Note π (j) = P a,λ (1, j) as required.

The case

θ = 1 With φ (z) = z c -a (z c -z) -1 + b -1
we wish to compute π (k) = z k φ (z) with

π (0) = z c (a + b -1) / (a + b) in the first place. Introduce φ c (z) = z -1 c φ (z c z), so with φ c (z) = 1 -a (1 -z) -1 + bz c -1 . We have φ c (z) = f • g (z) with g (z) := (1 -z) -1 -1 and f (z) = 1 -(a + bz c + az) -1 = 1 -C (1 + z/D) -1
where C = (a + bz c ) -1 and D = (a + bz c ) /a. Let f l be the Taylor coefficients of f (z) and g k the Taylor coefficients of g (z). By Faa di Bruno formula

π (k) = 1 k!z k-1 c k l=1 f l B k,l (g • ) , k ≥ 1, with g k = k! and f 0 = 1 -C and f l = (-1) l-1 CD -l l!, l ≥ 1. We have B k,l (•!) = k-1 l-1 k! l! , so π (k) = C z k-1 c k l=1 k -1 l -1 (-1) l-1 D -l = CD -1 1 -D -1 z c k-1 , k ≥ 1. (29) 
Next,

P a,b (i, j) = z i-j c z j φ c (z) i .
We have φ c (z

) i = f i • g (z) still with g (z) = (1 -z) -1 -1 and now with f i (z) = 1 -C (1 + z/D) -1 i
. So with f i,k , k ≥ 1, the Taylor coefficients of f i (z) and with

B j,k (•!) = j-1 k-1 j!
k! , we get similarly

P a,b (i, j) = z i-j c j! j k=1 f i,k B j,k (g • ) . ( 30 
)
It remains to compute the f i,k s. We note that

f i (z) = h i (f (z)) where h i (z) = (1 -C -Cz) i and f (z) = (1 + z/D) -1 -1 so that with h i,l = i! (i-l)! (1 -C) i-l (-C) l
and with f • given by f l = (-D) -l l!, l ≥ 1, by Faa di Bruno formula again

f i,0 = (1 -C) i and f i,k = k∧i l=1 h i,l B k,l (f • ) . Now, B k,l (f • ) = (-D) -k B k,l (•!) = (-D) -k k-1 l-1 k! l! and f i,k = k! (1 -C) i D -k k∧i l=1 (-1) k-l i l k -1 l -1 C 1 -C l . ( 31 
)
Exchanging the summation over k and l in (30) and applying the binomial identity (recall that D -1 = aC)

P a,b (i, j) = z i-j c (1 -C) i 1 -D -1 j i∧j l=1 i l j -1 l -1 C 1 -C D -1 1 -D -1 l . (32) 
To obtain now P n a,b (i, j), the (i, j)-entry of the n-th power of P a,b , we just need to substitute (a n = a n , b n = b (1 + a + ... + a n -1)) to (a, b) in (C, D), so it simply holds P n a,b (i, j) = P an,bn (i, j) , where P a,b (i, j) is given by (32). The resulting expression generalizes Proposition 2.2 of [START_REF] Klebaner | Transformations of Galton-Watson processes and linear fractional reproduction[END_REF].

The case

θ = -1 (Greenwood model) Here φ (z) = az + z c (1 -a) -b. We get π (1) = a, π (0) = z c (1 -a) -b ≤ 1 -π (1).
We have

P (i, j) = z j φ (z) i = i j π (0) i-j π (1) j and P n (i, j) = z j φ •n (z) i = i j π n (0) i-j π n (1) j ,
where π n (1) = π (1) n and π n (0) = π (0) 1-π(1) n 1-π(1) . Both P and P n have binomial entries with P n (i, i) = π (1)

ni . If π (0)+π (1) = 1 (the regular case), π n (0)+π n (1) = 1 and P n is stochastic. If π (0) + π (1) < 1 (the explosive case), π n (0) + π n (1) < 1 and P n is sub-stochastic. To make it stochastic, we can add state {∞} to the statespace and assume that it is absorbing. We can thus complete P to make it stochastic while considering P (i, ∞) = 1 -

i j=0 i j π (0) i-j π (1) j = 1 -(π (0) + π (1)) i and P (∞, ∞) = 1. If φ (1) = 1
, such regular pure death process was recently considered by [START_REF] Möhle | On hitting probabilities for the Greenwood model[END_REF], revisiting the Greenwood model of infectiousness, [START_REF] Greenwood | On the statistical measure of infectiousness[END_REF].

Resolvent of the θ-linear fractional processes

For j, i ≥ 1, we also obtain the resolvent of N n (i) as

g i,j (z) := δ i,j + n≥1 z n P n (i, j) . (33) 
In particular,

g i,i (z) = 1 + n≥1 z n P n (i, i) .
Note g i,j (1) = δ i,j + E n≥1 1 {Nn(i)=j} , the expected value of the time spent on state j starting from i, is the Green kernel.

Using (27), with

F i,k (z) := n≥1 z n f (n)
i,k , we get the following tricky expression for the resolvent

g i,j (z) := δ i,j + n≥1 z n P an,bn (i, j) = δ i,j + z i-j c j! j k=1 F i,k (z) B j,k (g • ) . (34) 
These quantities are fundamental to compute pgfs of important quantities such as passage times. It holds for example that E (z τ i,j ) = g i,j (z) /g j,j (z) where

τ i,j = inf (n ≥ 1 : N n (i) = j) (35) 
is the first passage time to state j = i of N n given N 0 = i, [START_REF] Norris | Markov chains[END_REF], [START_REF] Woess | Denumerable Markov chains. Generating functions, boundary theory, random walks on trees[END_REF]. In particular P (τ i,j < ∞) = g i,j (1) /g j,j (1) are the hitting probabilities of state j starting from i. Furthermore, with

τ * i,i = inf (n ≥ 1 : N n (i) = i) , (36) 
the first return time to state i of N n (i), it holds by renewal arguments that E z τ * i,i = 1 -1/g i,i (z), [START_REF] Norris | Markov chains[END_REF]. In particular P τ * i,i < ∞ = 1 -1/g i,i (1). Therefore for example, the mean return time to state i given τ

* i,i < ∞ is E τ * i,i | τ * i,i < ∞ = g i,i (1) g i,i (1) (g i,i (1) -1) , (37) 
whenever this quantity exists.

Let us briefly sketch what this says for the simplest Greenwood model example when θ = -1:

Firstly P n (i, i) = π n (1) j leading to g i,i (z) = 1 + n≥1 z n π (1) ni = 1/ 1 -zπ (1) i . Therefore E z τ * i,i = zπ (1)
i , translating the fact that τ * i,i = 1 with probability π (1)

i , = ∞ with probability 1 -π (1) i (the no return to i event if in the first step one of the i founders moved to one of the absorbing states, 0 or ∞). In addition, in the regular case π (0) = 1 -π (1), P (τ i,j < ∞) = g i,j (1) /g j,j (1) = 1 -π (1)

j   1 + n≥1 i j (1 -π (1) n ) i-j π (1) nj   ,
which, upon developing (1 -π (1) n ) i-j and summing over n is Proposition 1.1 and Theorem 1.2 of [START_REF] Möhle | On hitting probabilities for the Greenwood model[END_REF].

One illustrative example

As an illustrative application of the previous results, let us look for the value of n for which a supercritical process as in (III) will nearly never (with large probability c) go extinct as soon as N n (i) > 0. It is given by ( 6)

c = 1 -ρ i 1 -φ •n (0) i =: 1 -.
When is small, it leads to

ρ -φ •n (0) ≈ • 1 -ρ i iρ i-1 . ( 38 
)
The condition for this Taylor expansion to be valid is given3 by ρ-φ •n (0) ρ/(i-1) or alternatively ρ i 1 -ρ i .

The relation (38) shows that for small , having i founders amounts simply to multiply by a factor that only depends on the value of the fixed point ρ and the number i. Let us now use the explicit form of the supercritical θ-linear fractional pgfs. In that case, it holds that

a n = (z c -φ •n (z)) -θ -(z c -ρ) -θ (z c -z) -θ -(z c -ρ) -θ
.

A Taylor expansion of (z c -φ •n (z)) -θ for small ρ -φ •n (0) yields

-θ ρ -φ •n (z) ρ -z c ≈ a n 1 - z c -z z c -ρ -θ
, the Taylor expansion validity condition being |ρ -φ •n (z)| |(z c -ρ)/θ|. Combined with the previous result, we get

a n ≈ • 1 -ρ i iρ i • (-θ) 1 -α 1 -α -θ
with α := z c /(z c -ρ) > 1; the validity conditions are

ρ i 1 -ρ i and iρ i |θ| (α -1) . ( 39 
)
This shows that the searched value of n for which a supercritical process as in (III) will nearly never go extinct is approximately the sum of three terms:

• one, related to the required accuracy, that is the logarithm of in base a. In particular, to have a result 10 times more precise, one has to wait |log a (10)| more steps,

• one, related to the number i of founders, which also depends on the parameters a and ρ,

• one, related to the model parameters only, which depends on a, θ, and z c and ρ through α.

For instance, taking a = 0.63 (so that a 5 ≈ 0.1), ρ = 0.7, z c = 1, we get:

• when θ = +1 and i = 1, 9 generations are needed if the population is to survive with a probability 1 -10 -2 . 5 more generations will increase this probability to 1 -10 -3 , and another 5 to 1 -10 -4 .

• when θ = +1, with an uncertainty = 10 -4 and eight founders, the time to wait decreases to 16 generations. With thirteen founders, it decreases further to 13 generations. Note that ρ 19 ≈ 0.001, so one has to be careful not to get out of the range of (39).

• with one founder and an uncertainty 10 -4 , 19 generations are needed for θ = 1, 20 generations for the limit θ = 0 and 21 for θ = -1.

In all these special cases, we conclude that if extinction is to occur, it occurs rapidly or nearly never.

  k in (25) while substituting a n = a n , b n = b 1 + a + ... + a n-1 to (a, b) in the expressions of C = a + bz θ c -1/θ and D = a + bz θ c /a.

Throughout, a pgf will therefore be a function φ which is absolutely monotone on (0, 1) with all nonnegative derivatives of any order there, obeying φ (1) ≤ 1.

Our computations of π (k) are in agreement with Proposition 4 of Sagitov and Lindo but our representation, inspired from Faa di Bruno formulae and Bell polynomials, is different.

It is assumed here that i > 1. If i = 1, the condition on ρ -φ •n (0) is no longer valid, but the one on still is.
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