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A numerical study of the evolution of the blast wave shape in rectangular tunnels

When the explosion of condensed materials occurs in square or circular cross-section tunnel, the subsequent blast wave reveals two patterns: threedimensional close to the explosive charge and one-dimensional far from the explosion. Pressure decays for these two patterns have been thoroughly studied. However, when the explosion occurs in rectangular cross-section tunnel, which is the most regular geometry for underground networks, the blast wave exhibits a third, two-dimensional, patterns. In order to assess the range of these three patterns, several numerical simulation of blast waves were carried out varying the width and the height of the rectangular cross-section as well as the mass of the charge. Laws are presented to localize the transition zones between the 3D and the 2D patterns, and between the 2D and the 1D patterns, as functions of non-dimensional width and height. The numerical results of the overpressure are compared to existing 3D and 1D

laws. An overpressure decay law is proposed to represent the 2D pattern.

Knowing the two transition zones and the overpressure decays within these

zones, an algorithm is presented to efficiently predict an overpressure map. This algorithm is validated by comparison with experimental data. Blast wave is a topical research subject as shown by the several recent works [START_REF] Igra | Review of methods to attenuate shock/blast waves[END_REF][START_REF] Langlet | Transient response of a plate-liquid system under an aerial detonation: Simulations and experiments[END_REF][START_REF] Kim | Effect of propagation behaviour of expanding spherical flames on the blast wave generated during unconfined gas explosions[END_REF], and in particular confined blast wave [START_REF] Song | Dynamic response of composite shell under axial explosion impact load in tunnel[END_REF][START_REF] Buonsanti | 3-D simulation of tunnel structures under blast loading[END_REF]. One of the application of the confined domain is the underground network. Underground The first pattern cited above, ie. the free-field pattern, is indubitably the most studied. From these studies, scaling laws were derived, as the laws from Baker, Cox, Westine, Kulesz and Strehlow [START_REF] Baker | Fundamental studies in engineering[END_REF], [START_REF] Mills | The design of concrete structures to resist explosions and weapons effects[END_REF], [START_REF] Brode | Blast waves from a spherical charge[END_REF] or [START_REF] Henrych | The dynamics of explosion and its use[END_REF] relating the maximum overpressure peak to the distance from the explosive charge.

In fact, [START_REF] Henrych | The dynamics of explosion and its use[END_REF] proposed one of the most common free-field decay law, which is expressed as:

             ∆P max P ref Henrych = 14.072 Z + 5.54 Z 2 - 0.357 Z 3 + 0.00625 Z 4 if 0.05 ≤ Z ≤ 0.3 ∆P max P ref Henrych = 6.194 Z - 0.326 Z 2 + 2.132 Z 3 if 0.3 ≤ Z ≤ 1 ∆P max P ref Henrych = 0.662 Z + 4.05 Z 2 + 3.288 Z 3 if 1 ≤ Z . (1) 
The third propagation pattern is the case of a confined explosion, which considers that the blast wave propagates inside a confined space that is strong enough to withstand the explosive charge impulse (e.g., a tunnel). Among the few reported experiments investigating air detonation in underground environments, some gave overpressure decays laws during this third pattern. [START_REF] Curran | Underground storage of ammunition -experiments concerning accidental detonation in an underground chamber[END_REF] proposed the following pressure-distance law for various explosives weights:

∆p p 0 = M Φ 2 x 0.8 . (2) 
[17] determined the following overpressure-distance decay relationship:

∆p p 0 = 7.028 M A r 0.514 . (3) 
Applying the energy concentration concept (ECF), which is detailed in section 2.3, [START_REF] Silvestrini | Energy concentration factor. A simple concept for the prediction of blast propagation in partially confined geometries[END_REF] the very similar law: The objective of this paper is to determine the position of both the 3D-2D and the 2D-1D transition zones and to predict the overpressure occurring in these three zones. To accomplish this, the detonation of different quantities of TNT explosives inside a perfectly rigid tunnel was simulated.

∆p p 0 = 7.43538 M A r 0.51 . (4) 
The following section presents the geometrical configuration, the numerical methodology and the ECF method. Moreover, scaling laws that eliminates the solution's parametric dependence on the explosive energy, the weight of the explosives and the real tunnel cross-sectional size are provided. These scaling laws transform the infinite number of solutions into a single solution that demonstrates a monotonic transition from one wave pattern to another pattern. Afterwards, the numerical results are brought in section 3. These numerical results consisted of overpressure history for different widths and heights of the cross-section, and of different detonation mass. In section 4, fitting power law are proposed to estimate the locations of both transition zones. Furthermore, an algorithm giving the complete map of the overpressure pattern is introduced. This algorithm is validated by comparison with previous experimental data.

Configurations, numerical details and ECF method

Calculation domains and non-dimensional numbers

The calculation domains are presented in figure 1. They consist on rectangular cross-sectional tunnel of length L = 25 m. The cross-sectional widths and heights ranged from 3 to 7 meters and 2 to 5 meters respectively. Especially, a square cross-sectional tunnel of 3 m 2 area was considered to verify results from [START_REF] Benselama | A numerical study of the evolution of the blast wave shape in tunnels[END_REF]. In order to study the effect of the width, four additional configurations with 3 m height and width ranging from 4 to 7 m are investigated. A 6 m width and 2 m height domain is considered because it yields the same hydraulic diameter as the 3 m side square section. Then, two additional configurations with 6 m width and respectively 4 and 5 m height are studied to evaluate the effect of the height. Furthermore, TNT charge ranging from 1.000 to 10.000 kg are investigated.

It can be anticipated that the first reflection modifying the 3D shape of the blast wave in a 2D shape depends on the height of the domain H.

Therefore a first parameter α H , inspired by the work of [START_REF] Benselama | A numerical study of the evolution of the blast wave shape in tunnels[END_REF] is considered: α H = 100

d c H . (6) 
In the same way, the difference between the second and the first reflection modifying the 2D shape of the bast wave in a 1D shape depends on difference between the width, W , and the height of the domain. Thus, a second parameter is:

α W -H = 100 d c W -H . (7) 
The parameter α W based on the width of the domain will also be used for convenience.

The numerical results are highlighted by the pressure coefficient defined as:

C p = p -p 0 p 0 . (8) 

Numerical details

1D calculation was performed as long as the incident blast wave did not encounter any obstacle. This strategy obviously yield a faster and more accurate computations. During this 1D calculation, the TNT gases, composed of hot detonation products, obey the Jones-Wilkins-Lee law, which is expressed by [START_REF] Mader | Numerical modeling of explosives and propellants[END_REF]:

p = A 1 - ω R 1 ρ ρ c exp(-R 1 ρ c /ρ) + B 1 - ω R 2 ρ ρ c exp(-R 2 ρ c /ρ) + ωρe, (9) 
where the parameters A, B, R 1 , R 2 , ω and ρ c depend on the explosive material. Table [START_REF] Baker | Fundamental studies in engineering[END_REF] provides these parameters. Details of the 1D solver, as well as the 1D-3D transfer method are available in [START_REF] Benselama | A 1D-3D mixed method for the numerical simulation of blast waves in confined geometries[END_REF]. The same 1D calculation was used for all configurations.

The initial condition for the 3D calculation, thus the result of the 1D calculation, was located in the center of the cross-section, see figure 1, using a symmetry condition in the longitudinal axis. which were solved by a proprietary software [START_REF] Benselama | A 1D-3D mixed method for the numerical simulation of blast waves in confined geometries[END_REF]. The numerical method on which this software's solver is based is a unstructured finite-volume cellcentered approach using the traditional upwind scheme and a two-stage explicit time integration technique, yielding a second-order accuracy in both space and time. In order to prevent numerical oscillations, which may occur in regions with strong gradients, the Total Variation Diminishing (TVD) minmod scheme is used [START_REF] Van Leer | Towards the ultimate conservative scheme, V. A second-order sequel to Godunov's method[END_REF]. The spatial discretization is performed with an automatic Cartesian grid generator [START_REF] Deister | Selforganizing hybrid cartesian grid generation and application to external and internal flows, numerical flow simulation III[END_REF]. In addition, the Courant-Friedrichs-Lewy (CFL) condition has to be satisfied in order to guarantee the stability of the time integration technique. The successive gauges, also centered into the cross-section, were located 0.2 m from each other knowing that the first one was 1 m from the explosive charge.

The initial computational domains are split into 0.5 m cube elements and a dynamic adaptive mesh method was applied to finely catch the incident wave: the refinement criterion was based on the density value. A fine mesh was kept after the incident wave passage to guarantee an accurate prediction of the complex waves pattern following the incident wave. The averaged number of elements was ranged from 4 × 10 6 for the smallest domain to 10 7

for the largest one. The smallest refined elements were 1.5 × 10 -2 m ensuring a mesh wave number λ of 67, 106, 128 and 144 for the TNT charges of 1.000, 4.000, 7.000 and 10.000 kg, respectively. The mesh wave number has to satisfy in the ideal case λ > 100 [START_REF] Benselama | A 1D-3D mixed method for the numerical simulation of blast waves in confined geometries[END_REF].

The concept of Energy Concentration Factor

The concept of energy concentration factor introduced by Silvestrini et al.

[16] is adapted in the present paper. The idea is to scale the abscissa of freefield decay law, for instance Henrych's law [START_REF] Baker | Fundamental studies in engineering[END_REF], by geometrical consideration.

As shown in figure 2, for the same volume the cylinder shape blast wave (2D) has a radius R ′ defined as R ′ = 4R 3 /3W where R is the radius of the equivalent spherical shape blast wave (3D). Then, the new scale distance is:

Z ′ = R ′ M 1/3 c = 4Z 3 M 1/3 c 3W .
It has to be noted that the ECF method was essentially developed and validated for 3D to 1D transition. Therefore, one objective of the present paper is to see whether the ECF method is available for 3D to 2D transition.

Results and discussion

3.1. Effects of the width, α H = 3.55, M c = 1.000 kg However, the 2D pattern of the configuration α H = 5.33 seems to go towards the 2D pattern of the configuration α H = 3.55 before Z = 7 m/kg 1/3 . In the same way, the 2D pattern of the configuration α H = 3.55 seems to go towards the 2D pattern of the configuration α H = 2.66. These two observations yield the conclusion that the overpressure peak does not depend on the height. The 1D law developed from ECF method well predicts the 1D pattern of α H = 11.15. However, figure 5 shows the disability of the ECF method to predict the overpressure peak during the 2D behavior of the wave when the first reflection is occurring quickly, e.g. for a low value of Z.

Effects of the charge of the mass

Z (m/kg The results of the previous sections have shown the ECF method is particularly accurate for the 1D pattern of blast waves. It has been also shown that this method is not suitable for the 2D pattern especially for high value of α H . However, it has been proved that the 2D pattern of the incident blast wave is the same for every configurations. Therefore, a polynomial interpolation, as the one of equation ( 1) can be proposed. Finally, knowing the transition locations, Z H and Z W , the complete incident wave pattern can be deduced.

Figure 6 shows the distributions of the discontinuity locations Z H and Z W -H = Z W -Z H versus α H and α W -H , respectively. It is shown both discontinuity locations depend linearly on the parameter α. Using the leastsquare algorithm, best correlations are gave by:

Z H = 0.07992 (α H /100) 1.317 , (10) 
and

Z W -H = 0.07994 (α W -H /100) 1.351 . (11) 
The first fit has a correlation coefficient of 0.999, while the second one has a correlation factor of 0.971. Actually, it even sounds possible to use a common power fit for both discontinuity locations. Finally, it has to be said that these laws are close to the law giving the transitional zone 3D-1D (5)

found in [START_REF] Benselama | A numerical study of the evolution of the blast wave shape in tunnels[END_REF] for square sections.

Interpolating the clearest points of 2D patterns superimposition gives the 2D law:

(C p ) 2D = 33.78 Z 3 + 3.74 Z 2 + 1.52 Z . (12) 
Finally the algorithm of calculation of the overpressure peak can, then, be written as:

1. calculate Z H = 0.07992 (α H /100) 2. for Z ≤ Z H , the pressure is given by (1), 3. calculate Z W = Z H + 0.07994 (α W -H /100) 1.351 , 4. for Z H < Z ≤ Z W , the pressure is given by (12),

for

Z > Z W , Z ′ = 3ZW H 2π 1/3 , 6 
. for Z ′ , the pressure is given by (1).

Validation of the algorithm

Validation is done by comparison with experimental data from a series Based on the maximum pressure effect [START_REF] Formby | Blast characteristic and TNT equivalence values for some commercial explosives detonated at ground level[END_REF][START_REF] Wharton | Air blast TNT equivalence for a range of commercial blasting explosives[END_REF], the TNT equivalence factor was found to be 1.18. In the experimental setup, 5 sensors located every 2 m from the charge were considered.

Figure 7 shows the peak of overpressure of the incident wave for the experimental data and the predicted map done by the algorithm. It is shown the predicted pressure is in good convenience with experimental data. The transition zones are correctly determined by the algorithm. Moreover, the values of experimental pressure peak are well fitted by the predicted pressure.

Conclusion

Numerical computations are carried out to predict the locations of the 3D-2D transition and the 2D-1D transition of a blast wave in a rectangular cross-sectional tunnel. In order to avoid any lack of generality, different width and height domains as well as different charge of mass were investigated. The numerical results were compared to free-field law and to the ECF method for the 2D and the 1D patterns.

The main results of this work are:

• the 3D-2D transition is only a function of α H

• as soon as the wave became 2D, the transition to the 1D pattern is only a function of α W -H

• the ECF method is suitable to predict the overpressure of the 2D pattern for the lower value of α H

• a polynomial function is proposed to predict the overpressure peak of the 2D pattern to provide the lacks of the ECF method for high value of α H

• the ECF method is suitable to predict the overpressure of the 1D pattern An algorithm has been proposed to efficiently predict the overpressure pattern. This algorithm has been validated by comparison with experimental data. This algorithm may be very helpful to efficiently drawing up the blast wave damages.
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  networks such as subway station have rectangular cross-section. Typically, the height is smaller than the width. Therefore, blast waves occurring in such a domain exhibit three patterns: (a) a free-field pattern, known to yield fast overpressure decay, while the blast wave does not reach any obstacle; (b) a two-dimensional (2D) pattern after the first reflection (vertical: in the direction of the height) and (c) a one-dimensional (1D) pattern after the second reflection (transversal: in the direction of the width). 2D and 1D patterns obviously induced lower overpressure decays involving more dramatical damages not only for the structures but also for the peoples. The knowledge of the global behavior of blast waves in such a confined domain is thus decisive for safety reasons.

[ 3 ]

 3 have investigated the position of the transition zone between the three-dimensional (3D) and the 1D patterns for a square cross-sectional tunnel. They performed detonations of charges ranging between 0.150 kg and 15.000 kg of trinitrotoluene (TNT) in a 5 m 2 cross-sectional tunnel. Defining the ratio size α = 100d c /d h , where d c was the charge diameter and d h was the hydraulic diameter of the tunnel. They shown the transition zone is located at : square cross-sectional tunnel the four Mach reflections (upper and lower in both transversal and vertical coordinates) occur at the same time producing a large pressure increase when the Mach reflections catch up the incident wave. The shape of the blast wave looks totally different in rectangular cross-sectional tunnel where transversal and vertical reflections do not occur simultaneously.
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 1 Figure 1: Calculation domains.
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 3 Figure 3 shows the distribution of the overpressure peak of the incident wave for α H = 3.55 (typically H = 3 m and M c =1.000 kg). The square

Figure 2 :

 2 Figure 2: Scaling used for the ECF method.

Figure 3 :

 3 Figure 3: Distribution of the maximum pressure over the axial gauges for different domain height, α H = 3.55, M c =1.000 kg. 2D and 1D laws were calculated on α W -H = ∞.

Figure 5

 5 Figure5shows the distribution of the overpressure peak of the incident wave for mass of the charge ranging from 1.000 kg to 10.000 kg. Every calculation were done on the same domain, W = 6 m and H = 2 m. The numerical results are compared with 3D law, and 2D and 1D laws calculated with the ECF method on α H = 11.15 and α W -H = 5.73, ie. for a charge of 10.000 kg.The main information in figure5is that 2D patterns are the same for every mass. Configurations α H = 11.15, α H = 10.19 and α H = 8.45 clearly have overpressure peaks superimposed between both jumps. Furthermore, the 2D pattern of α H = 5.33 seems to be the continuity of the three configurations

Figure 4 :

 4 Figure 4: Distribution of the maximum pressure over the axial gauges for different domain height, α W = 1.77, M c = 11.000 kg. 2D and 1D laws were calculated on α H = 5.33.

Figure 5 :

 5 Figure 5: Distribution of the maximum pressure over the axial gauges for different mass of the charge. 2D and 1D laws were calculated with α H = 11.15 and α W -H = 5.73.
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 4 Determination of Z H , Z W and the overpressure peak value in 2D and 1D

  of trials carried out by INERIS (French Institute of Industrial Environment and Risks) and already presented in[START_REF] Benselama | A numerical study of the evolution of the blast wave shape in tunnels[END_REF]. The trial used in the present pa-

Figure 7 :

 7 Figure 7: Comparison between experimental data and predicted value of pressure peak.

Table 1 :

 1 Parameters used for the JWL law describing the T.N.T. explosive material

	Specific	Density,	A	B	R 1	R 2	ω
	energy, e c	ρ c					
	kJ/kg	kg/m 3	10 11 P a 10 9 P a	-	-	-
	4870	1580	3.73	3.74	4.15	0.90	0.35
	Blast wave propagation is governed by the unsteady Euler equations,

  1.317 ,

		Z H =f( H ) numerical results Z H =0.0799/( H /100) 1.317
		Z W-H =f( W-H ) numerical results Z W-H =0.0799/( W-H /100) 1.351
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Figure 6: Discontinuity locations Z H and Z W -H as functions of α H and α W -H .
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