Karine Altisen

Stéphane Devismes

Anaïs Durand

Franck Petit

Gradual Stabilization under τ -Dynamics

Keywords: Self-stabilization, synchronization problems, unison, gradual stabilization, superstabilization, safe-convergence

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

In 1974, Dijkstra [START_REF] Edsger | Self-stabilizing systems in spite of distributed control[END_REF] introduced self-stabilization, a general paradigm to enable the design of distributed systems tolerating any finite number of transient faults. 1 Consider the first configuration after all transient faults cease. This configuration is arbitrary, but no other transient faults will ever occur from this configuration. By abuse of language, this configuration is referred to as arbitrary initial configuration of the system in the literature. Then, a self-stabilizing algorithm (provided that faults have not corrupted its code) guarantees that starting from an arbitrary initial configuration, the system recovers within finite time, without any external intervention, to a so-called legitimate configuration from which its specification is satisfied. Thus, self-stabilization makes no hypotheses on the nature (e.g., memory corruptions or topological changes) or extent of transient faults that could hit the system, and the system recovers from the effects of those faults in a unified manner. Such versatility comes at a price, e.g., after transient faults cease, there is a finite period of time, called the stabilization phase, during which the safety properties of the system are violated. Hence, self-stabilizing algorithms are mainly compared according to their stabilization time, the maximum duration of the stabilization phase. For many problems, the stabilization time is significant, e.g., for synchronization problems [START_REF] Awerbuch | Time optimal self-stabilizing synchronization[END_REF] and more generally for non-static problems [START_REF] Genolini | A lower bound on dynamic kstabilization in asynchronous systems[END_REF] (such as token passing) the lower bound is Ω(D) rounds, where D is the diameter of the network. By definition, the stabilization time is impacted by worst case scenarios. Now, in most cases, transient faults are sparse and their effect may be superficial. Recent research focuses on proposing selfstabilizing algorithms that also ensure drastically smaller convergence times in favorable cases.

Defining the number of faults hitting a network using some kind of Hamming distance (the minimal number of processes whose state must be changed in order to recover a legitimate configuration), variants of the self-stabilization paradigm have been defined, e.g., a time-adaptive self-stabilizing algorithm [START_REF] Kutten | Stabilizing time-adaptive protocols[END_REF] additionally guarantees a convergence time in O(k) time-units when the initial configuration is at distance at most k from a legitimate configuration.

The property of locality consists in avoiding situations in which a small number of transient faults causes the entire system to be involved in a global convergence activity. Locality is, for example, captured by fault containing self-stabilizing algorithms [START_REF] Ghosh | Faultcontaining self-stabilizing distributed protocols[END_REF], which ensure that when few faults hit the system, the faults are both spatially and temporally contained. "Spatially" means that if only few faults occur, those faults cannot be propagated further than a preset radius around the corrupted processes. "Temporally" means quick stabilization when few faults occur. Some other approaches consist in providing convergence times tailored by the type of transient faults. For example, a superstabilizing algorithm [START_REF] Dolev | Superstabilizing protocols for dynamic distributed systems[END_REF] is self-stabilizing and has two additional properties when transient faults are limited to a single topological change. Indeed, after adding or removing one link or process in the network, a superstabilizing algorithm recovers fast (typically O(1) rounds), and a safety predicate, called a passage predicate, should be satisfied all along the stabilization phase.

Contribution. In this paper, we introduce a specialization of self-stabilization called gradual stabilization. A gradually stabilizing algorithm is a self-stabilizing algorithm with the following additional feature. If at most τ dynamic steps2 occur starting from a legitimate configuration, a gradually stabilizing algorithm first quickly recovers to a configuration from which a specification offering a minimum quality of service is satisfied. It then gradually converges to specifications offering stronger and stronger safety guarantees until reaching a configuration [START_REF] Arora | Maintaining digital clocks in step[END_REF] from which its initial (strong) specification is satisfied again, and [START_REF] Awerbuch | Time optimal self-stabilizing synchronization[END_REF] where it is ready to achieve gradual convergence again in case of up to τ new dynamic steps. Of course, the gradual stabilization makes sense only if the convergence to every intermediate weaker specification is fast.

We illustrate this new property by considering three variants of a synchronization problem respectively called strong, weak, and partial weak unison. In these problems, each process should maintain a local clock. We restrict here our study to periodic clocks, i.e., all local clocks are integer variables whose domain is {0, . . . , α -1}, where α ≥ 2 is called the period. Each process should regularly increment its clock modulo α (liveness) while fulfilling some safety requirements. The safety of strong unison imposes that at most two consecutive clock values exist in any configuration of the system. Weak unison only requires that the difference between clocks of every two neighbors is at most one increment. Finally, we defined partial weak unison as a property dedicated to dynamic systems. It only enforces the difference between clocks of neighboring processes present before the dynamic steps to remain at most one increment.

We propose a self-stabilizing strong unison algorithm which works with any period α > 4 in any anonymous connected network. It assumes the knowledge of two values µ and β, where µ is any upper bound on n -the (initial) number of processes, α should divide β, and β > µ 2 . Our algorithm is designed in the locally shared memory model and assume the distributed unfair daemon, the most general daemon of the model. Its stabilization time is at most n + (µ + 1)D + 1 rounds, where n (resp. D) is the size (resp. diameter) of the network.

We then slightly modify this algorithm to make it gradually stabilizing assuming at most one dynamic step. In particular, the parameter µ should now be greater than or equal to n + # J, where # J is an upper bound on the number of processes that join the system during a dynamic step. Notice that these slight modifications lead to increase the stabilization time by one round. This new version is gradually stabilizing because after one dynamic step from a configuration which is legitimate for the strong unison, it immediately satisfies the specification of partial weak unison, then converges to the specification of weak unison in at most one round, and finally retrieves, after at most (µ + 1)D 1 + 1 additional rounds (where D 1 is the diameter of the network after the dynamic step), a configuration (1) from which the specification of strong unison is satisfied, and (2) where it is ready to achieve gradual convergence again in case of another dynamic step. The dynamic step may contain several topological events, i.e., link and/or process additions and/or removals. However, we require that, after those topological changes, the network should stay connected and if α > 4, every process which joins the system should be linked to at least one process already in the system before the dynamic step. We show that this condition, called UnderLocalControl, is necessary to have the gradual convergence. However, the algorithm being self-stabilizing (by definition), it still converges to a legitimate configuration of the strong unison after the system suffers from arbitrary other kinds of transient fault including, for example, several dynamic steps that do not satisfy the UnderLocalControl condition. Now, in such cases, there is no safety guarantees during the stabilization phase. Related Work. Gradual stabilization is related to two other stronger forms of selfstabilization, namely, safe-converging self-stabilization [START_REF] Kakugawa | A self-stabilizing minimal dominating set algorithm with safe convergence[END_REF] and superstabilization [START_REF] Dolev | Superstabilizing protocols for dynamic distributed systems[END_REF]. The goal of a safely converging self-stabilizing algorithm is to first quickly (within O(1) rounds is the usual rule) converge from an arbitrary configuration to a feasible legitimate configuration, where a minimum quality of service is guaranteed. Once such a feasible legitimate configuration is reached, the system continues to converge to an optimal legitimate configuration, where more stringent conditions are required. Hence, the aim of safe-converging self-stabilization is also to ensure a gradual convergence, but only for two specifications. However, such a gradual convergence is stronger than ours as it should be ensured after any step of transient faults, 3 while the gradual convergence of our property applies after dynamic steps only. Safe convergence is especially interesting for selfstabilizing algorithms that compute optimized data structures, e.g., minimal dominating sets [START_REF] Kakugawa | A self-stabilizing minimal dominating set algorithm with safe convergence[END_REF], approximately minimum weakly connected dominating sets [START_REF] Kamei | A self-stabilizing approximation algorithm for the minimum weakly connected dominating set with safe convergence[END_REF], approximately minimum connected dominating sets [START_REF] Kamei | An asynchronous selfstabilizing approximation for the minimum connected dominating set with safe convergence in unit disk graphs[END_REF][START_REF] Kamei | A self-stabilizing 6-approximation for the minimum connected dominating set with safe convergence in unit disk graphs[END_REF], and minimal (f, g)-alliances [START_REF] Carrier | Self-stabilizing (f,g)-alliances with safe convergence[END_REF]. However, to the best of our knowledge, no safe-converging algorithm for non-static problems, such as unison for example, has been proposed until now.

In superstabilization, like in our approach, fast convergence and the passage predicate should be ensured only if the system was in a legitimate configuration before the topological change occurs. In contrast with our approach, superstabilization ensures fast convergence to the original specification. However, this strong property only considers one dynamic step consisting in only one topological event: the addition or removal of one link or process in the network. Again, superstabilization has been especially studied in the context of static problems, e.g., spanning tree construction [START_REF] Dolev | Superstabilizing protocols for dynamic distributed systems[END_REF]4,[START_REF] Blin | A super-stabilizing log(n)log(n)-approximation algorithm for dynamic steiner trees[END_REF], and coloring [START_REF] Dolev | Superstabilizing protocols for dynamic distributed systems[END_REF]. However, notice that there exist few superstabilizing algorithms for non-static problems, such as mutual exclusion [START_REF] Herman | Superstabilizing mutual exclusion[END_REF][START_REF] Katayama | A latency optimal superstabilizing mutual exclusion protocol in unidirectional rings[END_REF].

We use the general term unison to name several close problems also known in the literature as phase or barrier synchronization problems. There exist many self-stabilizing algorithms for the strong as well as weak unison problem, e.g., [START_REF] Boulinier | L'Unisson[END_REF][START_REF] Gouda | Stabilizing unison[END_REF][START_REF] Arora | Maintaining digital clocks in step[END_REF][START_REF] Huang | Four-state stabilizing phase clock for unidirectional rings of odd size[END_REF][START_REF] Nolot | Universal self-stabilizing phase clock protocol with bounded memory[END_REF][START_REF] Johnen | Optimal snap-stabilizing neighborhood synchronizer in tree networks[END_REF][START_REF] Boulinier | When graph theory helps self-stabilization[END_REF][START_REF] Tzeng | Size-independent selfstabilizing asynchronous phase synchronization in general graphs[END_REF]. However, to the best of our knowledge, until now, no self-stabilizing solution for such problems addresses specific convergence properties in case of topological changes (in particular, no superstabilizing ones). Self-stabilizing strong unison was first considered in synchronous anonymous networks. Particular topologies were considered in [START_REF] Huang | Four-state stabilizing phase clock for unidirectional rings of odd size[END_REF] (rings) and [START_REF] Nolot | Universal self-stabilizing phase clock protocol with bounded memory[END_REF] (trees). Gouda and Herman [START_REF] Gouda | Stabilizing unison[END_REF] proposed a self-stabilizing algorithm for strong unison working in anonymous synchronous systems of arbitrary connected topology. However, they considered unbounded clocks. A solution working with the same settings, yet implementing bounded clocks, is proposed in [START_REF] Arora | Maintaining digital clocks in step[END_REF]. In [START_REF] Tzeng | Size-independent selfstabilizing asynchronous phase synchronization in general graphs[END_REF], an asynchronous self-stabilizing strong unison algorithm is proposed for arbitrary connected rooted networks.

Johnen et al. investigated asynchronous self-stabilizing weak unison in oriented trees in [START_REF] Johnen | Optimal snap-stabilizing neighborhood synchronizer in tree networks[END_REF]. The first self-stabilizing asynchronous weak unison for general graphs was proposed by Couvreur et al. [START_REF] Couvreur | Asynchronous unison (extended abstract)[END_REF]. However, no complexity analysis was given. Another solution which stabilizes in O(n) rounds has been proposed by Boulinier et al. in [START_REF] Boulinier | When graph theory helps self-stabilization[END_REF]. Finally, Boulinier proposed in his PhD thesis a parametric solution which generalizes both the solutions of [START_REF] Couvreur | Asynchronous unison (extended abstract)[END_REF] and [START_REF] Boulinier | When graph theory helps self-stabilization[END_REF]. In particular, the complexity analysis of this latter algorithm reveals an upper bound in O(D.n) rounds on the stabilization time of the Couvreur et al.' algorithm.

Roadmap. The rest of the paper is organized as follows. In the next section, we define the computational model used in this paper. In Section 3, we recall the formal definition of self-stabilization, and introduce the notion of gradual stabilization. The three variants of the unison problem considered in this paper are defined in Section 4. In Section 5, we show that condition UnderLocalControl is necessary to obtain our gradually stabilizing solution. We present our self-stabilizing strong unison algorithm in Section 6. The gradually stabilizing variant of this latter algorithm is proposed in Section 7. We make concluding remarks in Section 8. Some useful results from [START_REF] Boulinier | L'Unisson[END_REF] are recalled in the appendix.

Preliminaries

We consider the locally shared memory model introduced by Dijkstra [START_REF] Edsger | Self-stabilizing systems in spite of distributed control[END_REF] enriched with the notion of topological changes. Thereupon, we follow an approach similar to the one used by Dolev in the context of superstabilization [START_REF] Dolev | Self-stabilization[END_REF].

Processes

We consider distributed systems made of anonymous processes. The system initially contains n > 0 processes and its topology is connected, however it may suffer from topological changes along the time. Each process p can directly communicate with a subset p.N of other processes, called its neighbors. In our context, p.N can vary over time. Communications are assumed to be bidirectional, i.e., for any two processes p and q, q ∈ p.N ⇔ p ∈ q.N at any time. Communications are carried out by a finite set of locally shared variables at each process: each process can read its own variables and those of its (current) neighbors, but can only write into its own variables. The state of a process is the vector of values of its variables. We denote by S the set of all possible states of a process.

Each process updates its variables according to a local algorithm. The collection of all local algorithms defines a distributed algorithm. In the distributed algorithm A, the local algorithm of p consists of a finite set of actions of the following form: label :: guard → statement The labels are used to identify actions in the reasoning. The guard of an action is a Boolean predicate involving variables of p and its neighbors. The statement is a sequence of assignments on variables of p. If the guard of some action evaluates to true, then the action is said to be enabled at p. By extension, if at least one action is enabled at p, p is said to be enabled. An action can be executed only if it is enabled. In this case, the execution of the action consists in executing its statement, atomically.

A configuration γ i of the system is a pair (G i , V i → S). G i = (V i , E i) is a simple undirected graph which represents the topology of the network in configuration γ i , i.e., V i is the set of processes that are in the system in γ i and E i ⊆ V i × V i represents the communication links between processes of V i in γ i : ∀p, q ∈ V i , {p, q} ∈ E i ⇔ p ∈ q.N in γ i . V i → S is a function which associates a state to any process of V i . For sake of simplicity, we denote by γ i (p) the state of process p ∈ V i in configuration γ i . Moreover, γ i (p).x denotes the value of the x-variable at process p in configuration γ i . We denote by C the set of all possible configurations.

Executions

The dynamicity and asynchronism of the system are materialized by an adversary, called daemon. To perform a step from a configuration γ i , the daemon can

• activate some processes (of V i) that are enabled in γ i -each activated process executes one of its enabled actions according to its own state and that of its neighbors in γ i , and/or

• modify the topology.

Activation of enabled processes and/or topology modifications are done atomically, leading to a new configuration γ i+1 . The set of all possible steps induces a binary relation over configurations noted → ⊆ C × C, in which we exclude empty steps of the form

γ i → γ i .
We distinguish two kinds of steps, i.e., → is partitioned into → s and → d . Relation → s define all possible static steps, i.e., all steps consisting in activations of enabled processes only. Relation → d define all possible dynamic steps, i.e., all steps containing topological changes (and possibly some process activations).

An execution is any sequence of configurations γ 0 , γ 1 , . . . such that G 0 is connected and ∀i ≥ 0, γ i → γ i+1 . For sake of simplicity, we note G 0 = G = (V, E); we also note D the diameter of G and we recall that |V | = n. Moreover, we define E τ the set of maximal executions which contain at most τ dynamic steps. The set of all possible executions is therefore equal to E = ∪ τ ≥0 E τ . Notice that ∀i, j ∈ N, i ≤ j implies E i ⊆ E j . For any subset of configurations X ⊆ C, we denote by E τ X the set of all executions in E τ that start from a configuration of X.

Static Steps

Let γ i be a configuration. The daemon can choose to make a static step from γ i only if there exists at least one enabled process. In this case, it first selects a non-empty subset S of enabled processes. Next, every process p ∈ S atomically executes one of its enabled actions, leading the system to a new configuration, say γ i+1 . In this case, γ i → s γ i+1 with, in particular, G i = G i+1 .

Dynamic Steps

Let γ i → d γ i+1 be a dynamic step. We have in particular that G i+1 = G i . Precisely, the step γ i → d γ i+1 contains a finite number of topological events and maybe some process activations (like in static steps). Each topological event is of the following types.

A process p can join the system. This event is denoted by join p and triggers the atomic execution of a specific action, called bootstrap, which initializes the variables of p to a particular state, called bootstate. This bootstrap is executed without any communication. We denote by N ew k the set of processes which are in bootstate in γ k . When p joins the system in γ i → d γ i+1 , we have p ∈ N ew i+1 , but p / ∈ N ew i . Moreover, until p executes its very first action, say in step γ x → γ x+1 , it is still in bootstate. Hence ∀j ∈ {i + 1, . . . , x}, p ∈ N ew j , but p / ∈ N ew x+1 . We assume that there are at most # J joins in the system during a dynamic step.

A process can also leave the system. Finally, some communication links can appear or disappear between two different processes.

Several joins, leaves, as well as link appearances and disappearances can be made in the same step γ i → d γ i+1 .

Daemon

As previously explained, executions are driven by a daemon. We assume the daemon is distributed and unfair. In a static step, a distributed daemon must select at least one enabled process (maybe more). In a dynamic step, a distributed daemon can select 0, 1, or several enabled processes. An unfair daemon has no fairness constraint, i.e., it might never select a process p during any step unless in the case of a static step from a configuration where p is the only enabled process. Moreover, at each configuration, an unfair daemon freely chooses between making a static or dynamic step, except if no more process is enabled; in this latter case, only a dynamic step containing no process activation can be chosen.

Functional Specification and Metrics

A distributed algorithm A is designed to ensure some functional properties called its specification. A specification SP is a predicate over E.

We measure the time complexity of our algorithms in terms of rounds [START_REF] Dolev | Uniform Dynamic Self-Stabilizing Leader Election[END_REF]. The first round of an execution e = (γ i) i≥0 is the minimal prefix e of e such that every enabled process in γ 0 either executes an action or is neutralized (defined below). Let γ j be the last configuration of e , the second round of e is the first round of e = (γ i) i≥j , and so forth.

Neutralized means that a process p is enabled in a configuration γ i but either p is no more in the system in the next configuration γ i+1 , or p is not enabled in γ i+1 but does not execute any action during the step γ i → γ i+1 .

Stabilization

Self-stabilization

Below we recall the definitions of some notions classically used in self-stabilization. Notice that all these notions are defined by only considering executions free of topological changes, yet starting from an arbitrary configuration. Indeed, self-stabilization considers the system immediately after the transient faults cease. So, the system is initially observed from an arbitrary configuration reached due to occurrence of transient faults (including some topological changes maybe), but from which no faults (in particular, no topological changes) will ever occur.

Let A be a distributed algorithm. Let X, Y ⊆ C be two subsets of configurations.

X is closed under A if and only if ∀γ, γ ∈ C, (γ ∈ X ∧ γ → s γ) ⇒ γ ∈ X. Y converges to X under A if and only if ∀e ∈ E 0 Y , ∃γ ∈ e such that γ ∈ X. A stabilizes from Y to a specification SP by X if and only if • X is closed under A, • Y converges to X under A,
• and ∀e ∈ E 0 X , SP (e).

Moreover, the convergence time in steps (resp. rounds) from Y to X is the maximal number of steps (or rounds, respectively) to reach a configuration of X in over every execution of E 0 Y . Self-stabilization has been defined by Dijkstra in 1974 [START_REF] Edsger | Self-stabilizing systems in spite of distributed control[END_REF] as follows: a distributed algorithm A is self-stabilizing for a specification SP if and only if ∃L ⊆ C, A stabilizes from C to SP by L.

L (resp. C \ L) is then said to be a set of legitimate configurations (resp. illegitimate configurations) w.r.t. SP . The stabilization time of A is then the convergence time from C to L.

Gradual Stabilization under τ -Dynamics

We now introduce a specialization of self-stabilization called gradual stabilization under τ -dynamics which requires that after at most τ dynamic steps from a legitimate config-uration, the system re-stabilizes gradually to stronger and stronger specifications, until reaching a configuration (1) from which its initial (strong) specification is satisfied again, and (2) where it is ready to achieve gradual convergence again in case of up to τ new dynamic steps. Of course, the gradual stabilization makes sense only if the convergence to every intermediate weaker specification is fast.

Let τ ≥ 0. For a given execution e = (γ i) i≥0 ∈ E τ , let f irst(e) be the integer such that γ f irst(e) is the first configuration of e after the last topological change. Formally, f irst(e) is the minimal index such that the suffix of e starting from f irst(e) contains no dynamic step: f irst(e) = min{i : (γ j) j≥i ∈ E 0 }. For any subset of executions E ⊆ E τ , let F C(E) = {γ f irst(e) : e = (γ i) i≥0 ∈ E} be the set of all configurations that can be reached after the last topological changes in executions of E (F C() stands for "First Configuration").

Let SP 1 , SP 2 , . . . , SP k , be an ordered sequence of specifications. Let B 1 , B 2 , . . . , B k be (asymptotic) complexity bounds such that

B 1 ≤ B 2 ≤ • • • ≤ B k .
A distributed algorithm A is gradually stabilizing under τ -dynamics for (SP

1 •B 1 , SP 2 • B 2 , . . . , SP k • B k) if and only if ∃L 1 , . . . L k ⊆ C such that 1. A stabilizes from C to SP k by L k , i.e., A is self-stabilizing for SP k .
2. Starting from a legitimate configuration, after at most τ dynamic steps, A gradually converges to every L i with i ∈ {1, . . . , k}, i.e., ∀i ∈ {1, . . . , k}, we have

• A stabilizes from F C(E τ L k) to SP i by L i , and • the convergence time in rounds from F C(E τ L k) to L i is bounded by B i .
Notice that, by definition, any gradually stabilizing algorithm is also a self-stabilizing algorithm for SP k . Hence, the performances of any gradually stabilizing algorithm can be also evaluated at the light of its stabilization time. Gradual stabilization is related to two other stronger forms of self-stabilization: safeconverging self-stabilization [START_REF] Kakugawa | A self-stabilizing minimal dominating set algorithm with safe convergence[END_REF] and superstabilization [START_REF] Dolev | Superstabilizing protocols for dynamic distributed systems[END_REF].

The goal of a safely converging self-stabilizing algorithm is to first quickly (within O(1) rounds is the usual rule) converge from any arbitrary configuration to a feasible legitimate configuration, where a minimum quality of service is guaranteed. Once such a feasible legitimate configuration is reached, the system continues to converge to an optimal legitimate configuration, where more stringent conditions are required. Hence, the aim of safe-converging self-stabilization is also to ensure a gradual convergence, but for two specifications. However, this gradual convergence should be ensured after any step of transient faults (such transient faults can include topological changes, but not only), while the gradual convergence of our property applies after dynamic steps only.

A superstabilizing algorithm is self-stabilizing and has two additional properties. In presence of a single topological change (adding or removing one link or process in the network), it recovers fast (typically O(1)), and a safety predicate, called a passage predicate, should be satisfied along the stabilization phase. Like in our approach, fast convergence, captured by the notion of superstabilization time, and the passage predicate should be ensured only if the system was in a legitimate configuration before the topological change occurs. In contrast with our approach, superstabilization only considers one dynamic step consisting in only one topological event: the addition or removal of one link or process in the network. A superstabilizing algorithm for a specification SP 1 can be seen as an algorithm which is gradually stabilizing under 1-dynamics for (SP 0 •0, SP 1 •f) where SP 0 is the passage predicate, f is the superstabilization time and the dynamic step consists of adding or removing one link or process in the network only.

Notice also that the bound B k captures a complexity similar to the fault gap in faultcontaining algorithms [START_REF] Ghosh | Faultcontaining self-stabilizing distributed protocols[END_REF]: let P 1 be a period of at most τ dynamic steps such that P 1 starts in a legitimate configuration; B k represents the necessary fault-free interval after P 1 and before the next period of at most τ dynamic steps P 2 so that the system becomes ready again to achieve gradual convergence after P 2.

Unison

We consider several close synchronization problems included here under the general term of unison. In these problems, each process should maintain a local clock. We restrict here our study to periodic clocks, i.e., all local clocks are integer variables whose domain is {0, . . . , α -1}, where α ≥ 2 is called the period. Each process should regularly increment its clock (modulo α) while fulfilling some safety requirements. Below we define three versions of the problem respectively named strong, weak, and partial weak unison.

Strong unison defined below is also known as the phase or barrier synchronization problem [START_REF] Misra | Phase synchronization[END_REF][START_REF] Sandeep | Multitolerant barrier synchronization[END_REF]. In the definition, we use the following notation: for every configuration • Every process increments its clock infinitely often in e, i.e., ∀γ i ∈ e, ∀p ∈ V i , ∃j > i,

γ i = (G i , V i → S), let CV (γ i) = {γ i (p).clock, p ∈ V i }
(∀k ∈ {i + 1...j -1}, p ∈ V k ∧ γ k (p).clock = γ i (p).clock) ∧ (p ∈ V j ∧ γ j (p).clock = (γ i (p).clock + 1) mod α)). (Liveness)
The definition of weak unison below appeared first in [START_REF] Couvreur | Asynchronous unison (extended abstract)[END_REF] under the name of asynchronous unison. Specification 2 (Weak Unison). An execution e = (γ i) i≥0 satisfies the specification SP WU of weak unison if and only if • In any configuration γ i ∈ e, the clocks of every two neighboring processes differ from at most one increment (modulo α), i.e.,

∀γ i ∈ e, ∀p ∈ V i , ∀q ∈ γ i (p).N , γ i (p).clock = (γ i (q).clock + 1) mod α ∨ γ i (q).clock = (γ i (p).clock + 1) mod α. (Safety)
• Every process increments its clock infinitely often in e, i.e., ∀γ i ∈ e, ∀p ∈ V i , ∃j > i,

(∀k ∈ {i + 1...j -1}, p ∈ V k ∧ γ k (p).clock = γ i (p).clock) ∧ (p ∈ V j ∧ γ j (p).clock = (γ i (p).clock + 1) mod α)). (Liveness)
Finally, in the context of dynamic systems, a straightforward variant of the weak unison is the following.

Specification 3 (Partial Weak Unison).

An execution e = (γ i) i≥0 satisfies the specification SP PU of partial weak unison if and only if • In any configuration γ i ∈ e, the clocks of any two neighbors which are not in N ew i differ from at most one increment (modulo α), i.e., ∀γ i ∈ e, ∀p ∈ V i \ N ew i , ∀q ∈ γ i (p).N \ N ew i , γ i (p).clock = (γ i (q).clock + 1) mod α ∨ γ i (q).clock = (γ i (p).clock + 1) mod α. (Safety)

• Every process increments its clock infinitely often in e, i.e., ∀γ i ∈ e, ∀p ∈ V i , ∃j > i,

(∀k ∈ {i + 1...j -1}, p ∈ V k ∧ γ k (p).clock = γ i (p).clock) ∧ (p ∈ V j ∧ γ j (p).clock = (γ i (p).clock + 1) mod α)). (Liveness)
The property below sum up the straightforward relationship between the three variants of unison.

Property 1. SP SU ⇒ SP WU ⇒ SP PU .

Necessary Condition

Through out this section, we assume the existence of a deterministic algorithm A which is gradually stabilizing under 1-dynamics for (SP PU • 0, SP WU • 1, SP SU • B) in any arbitrary anonymous network under the distributed unfair daemon, with B ≥ 1 be any (asymptotic) complexity bound. Let L A SU be the legitimate configurations of A w.r.t. specification SP SU .

The property given below states that, when α > 3 and once a legitimate configuration of strong unison is reached, the system necessarily goes through a configuration where all clocks have the same value between any two increments at the same process.

Property 2. Assume α > 3. For every (γ i) i≥0 ∈ E 0 L A SU
, for every process p, for every k ∈ {0, ..., α -1}, for every i ≥ 0, if p increments its clock from k to (k + 1) mod α in γ i → γ i+1 and ∃j > i such that γ j (p).clock = (k + 2) mod α, then there exists x ∈ {i + 1, ..., j -1}, such that all clocks have value

(k + 1) mod α in γ x . Proof. Let (γ i) i≥0 ∈ E 0 L A

SU

be an execution and p be a process. Let k ∈ {0, ..., α -1} and i ≥ 0 such that p increments its clock from k to (k + 1) mod α in γ i → γ i+1 and ∃j > i such that γ j (p).clock = (k + 2) mod α.

Assume that there is a process q such that γ i (q).clock = (k -1) mod α. As the execution satisfies SP SU , there exists a step after γ i in which p increments, due to liveness; but due to safety, q necessarily increments at the same step. Now, because of the distributed unfair daemon, we can now build a possible step where p moves, but not q leading to a configuration where q.clock = (k -1) mod α and p.clock = (k +1) mod α. Hence, there exists an execution starting from a configuration of L A SU which does not satisfy SP SU , a contradiction.

Hence, ∀q ∈ V, γ i (q).clock ∈ {k, (k + 1) mod α}, by the safety of SP SU . Similarly to the previous case, while there are processes whose clock value is k, no process (in particular p) can increment its clock from (k + 1) mod α to (k + 2) mod α. Hence, between γ i and γ j there exists a configuration where all processes have clock value (k + 1) mod α.

In the following, we will establish that the property UnderLocalControl given below is a necessary condition for A. The definition of UnderLocalControl uses the notion of dominating set: a dominating set of the graph G = (V, E) is any subset D of V such that every node not in D is adjacent to at least one member of D. UnderLocalControl captures a condition on the network dynamics which is necessary to prevent a notable desynchronization of clocks. Namely, the network should stay connected and if α > 4, every process that joins during the dynamic step γ → d γ should be "under the control of" (that is, linked to) at least one process which exists in both γ and γ .

(c+3) mod α (c+2) mod α (a) γ T (c+3) mod α (c+2) mod α r 2 r 1 p q (b) γ T +1 (c+3) mod α (c+2) mod α r 2 r 1 c p q (c) γ T +2
cution e = (γ i) i≥0 ∈ E 1 L A SU , 1. G f irst(e) is connected, and 2. if α > 4, then V f irst(e) \ N ew f irst(e) is a dominating set of G f irst(e) .
Lemma 1. For every execution e ∈ E 1

L A SU , G f irst(e) is connected.
Proof. Assume, by the contradiction, that there is an execution e = (γ i) i≥0 ∈ E 1

L A SU such that G f irst(e)
is disconnected. Let A and B be two connected components of G f irst(e) . By definition, there exists j ≥ f irst(e) such that γ j ∈ L A SU and A and B are defined in all configurations (γ i) i≥j . From γ j , all processes regularly increment their clocks in both A and B by the liveness property of strong unison. Now, as no process of B is linked to any process of A, the behavior of processes in B has no impact on processes in A and vice versa. So, liveness implies, in particular, that there always exists enabled processes in A. Consequently, there exists a possible execution of E 1 L A SU prefixed by γ 0 . . . γ j where the distributed unfair daemon only selects processes in A from γ j , hence violating the liveness property of strong unison, a contradiction. Lemma 2. If α > 4, then for every execution e ∈ E 1

L A SU , V f irst(e) \ N ew f irst(e) is a domi- nating set.
Proof. We illustrate the following proof with Figure 1. Let e ∈ (γ i) i≥0 ∈ E 1 L A

SU

. Let x = f irst(e). Assume, by the contradiction, that α > 4 and G x is connected, but V x \ N ew x is not a dominating set. This implies that ∃p ∈ N ew x such that ∀q ∈ γ x (p).N , q ∈ N ew x .

First, notice that every process among p and its neighbors are enabled in γ x to take a clock value in {0, . . . , α -1}. Indeed, assume that the daemon makes a synchronous step from γ x , then the step γ x → s γ x+1 actually corresponds to a complete round (by definition) and so γ x+1 should be a legitimate configuration of weak unison. Let c be the clock value taken by p if p moves in γ x → s γ x+1 .

Consider now another execution e in E 0

L A

SU

(with no topological change) on a graph of at least two nodes which contains neither p nor its neighbors γ x (p).N . Strong unison is satisfied in e and, as α > 4, by Property 2, there is a configuration γ S in e where every clock equals (c + 2) mod α. From γ S , there is eventually a step in which at least one process increments its clock to (c + 3) mod α. Assume not all processes are activated by the distributed unfair daemon during this step. Then, this step leads to a configuration γ T where there is exactly two values of clock: (c + 2) mod α and (c + 3) mod α, see Figure 1a.

Consider now another execution e having a prefix common to e until γ T . Assume that the daemon introduces a dynamic step at configuration γ T . Assume that this step contains no process activation, but consists in adding p with the same neighborhood as well as two links from q, a neighbor of p, and two already existing nodes r 1 and r 2 , such that the clock of r 1 (resp. r 2) equals (c + 2) mod α (resp. (c + 3) mod α) in γ T , see Figure 1b. By definition, since strong unison is satisfied in γ T (by assumption), the partial weak unison necessarily holds all along the suffix of e starting at γ T +1 .

Process p and its neighbors are in a situation similar to the one in γ x , so they are enabled to take a clock value in {0, . . . , α -1}, in particular p is enabled to take value c. Assume that the daemon exactly selects p and its neighbors in the next step γ T +1 → γ T +2 . In γ T +2 (Figure 1c), the clock of r 1 and r 2 are respectively equal to (c + 2) mod α and (c + 3) mod α, since they did not move; moreover, the clock of p is equal to c. Now, q also chooses a clock value in γ T +1 → s γ T +2 and that clock value should differ of at most one increment (mod α) from the clocks of p, r 1 , and r 2 since partial weak unison holds in γ T +1 and all subsequent configurations. As α > 3, if the clock of q equals: • c or (c + 1) mod α, the difference between the clocks of q and r 2 is at least 2 increments (mod α),

• (c + 2) mod α or (c + 3) mod α, the difference between the clocks of q and p is at least 2 increments (mod α),

• any value in {0, ..., α -1} \ {c, (c + 1) mod α, (c + 2) mod α, (c + 3) mod α}, the difference between the clocks of q and r 1 is at least 2 increments (mod α).

Hence, the safety of partial weak unison is necessarily violated in the configuration γ T +2 of e , a contradiction.

By Lemmas 1 and 2, follows:

Theorem 1.

Self-Stabilizing Strong Unison

In this section, we propose an algorithm which is self-stabilizing for the strong unison problem in any arbitrary connected anonymous network. This algorithm works for any period α > 4 and is based on an algorithm previously proposed by Boulinier in [START_REF] Boulinier | L'Unisson[END_REF], this latter is self-stabilizing for the weak unison problem and works for any period β > n 2 , where n is the number of processes. We first recall the algorithm of Boulinier, called here Algorithm WU, in Subsection 6.1. Notice that the notation used in this algorithm will be also applicable to our algorithms. We give our self-stabilizing algorithm for the strong unison, Algorithm SU, and its proof of correctness in Subsection 6.2.

Algorithm WU

Algorithm WU, see Algorithm 1 for its formal code, has been proposed by Boulinier in his PhD thesis [START_REF] Boulinier | L'Unisson[END_REF]. Actually, it is a generalization of the self-stabilizing weak unison algorithm proposed by Couvreur et al. [START_REF] Couvreur | Asynchronous unison (extended abstract)[END_REF]. This algorithm being simply self-stabilizing, it only considers executions without any topological change, yet starting from arbitrary configurations. The topology of the network then consists in a connected graph G = (V, E) of n nodes which is fixed all along the execution. Remind that D is the diameter of G.

In Algorithm WU, each process p is endowed with a clock variable p.t ∈ {0, . . . , β -1}, where β is its period. β should be greater than n 2 . The algorithm also uses another constant, noted µ, which should satisfy n ≤ µ ≤ β 2 . The algorithm uses the following notations.

Notations. We define the delay between two integer values x and y by the function d β x, y = min (x -y) mod β, (y -x) mod β . Then, let β,µ be the relation such that for every two integer values x and y, x β,µ y ≡ (y -x) mod β ≤ µ.

The Algorithm. Two actions are used to maintain the clock p.t at each process p.

When the delay between p.t and the clocks of some neighbors is greater than one, but the maximum delay is not too big (that is, does not exceed µ), then it is possible to "normally" converge, using Action WU-N , to a configuration where the delay between those clocks is at most one by making increment the clocks of the most behind processes among p and its neighbors. Moreover, once legitimacy is achieved, p can "normally" increment its clock still using Action WU-N when it is on time or one increment late with all its neighbors. In contrast, if the delay is too big (that is, the delay between the clocks of p and one of its neighbors is more than µ) and the clock of p is not yet reset, then p should reset its clock to 0 using Action WU-R.

L WU = {γ ∈ C : ∀p ∈ V, ∀q ∈ γ(p).N , d β γ(p).t, γ(q).t ≤ 1}
in an arbitrary connected network assuming a distributed unfair daemon.

Its stabilization time is at most n + µD rounds, where n (resp. D) is the size (resp. diameter) of the network and µ is a parameter satisfying n ≤ µ ≤ β 2 .

By definition, D < n, consequently we have:

Remark 1.
Once Algorithm WU has stabilized, the delay between t-clocks of any two arbitrary far processes is at most n -1, the size of the network.

Complexity Analysis. Let C µ be the set of configurations where the delay between two neighboring clocks is at most µ. Below, we prove in Lemma 3 (resp. Lemma 4) a bound on the time required to ensure that all t-variables have incremented k times which holds since the system has reached a configuration of C µ (resp. L WU).

Lemma 3. ∀k ≥ 1, ∀e ∈ E 0 Cµ , every process p increments p.t executing WU-N at least k times every µD + k rounds, where D is the diameter of the network.

Proof. Let k ≥ 1. Let e = (γ i) i≥0 ∈ E 0
Cµ . Using Lemma 30, ∀i ≥ 0, there is a function f on processes such that ∀p ∈ V, f (γ i , p) mod β = γ i (p).t and ∀p ∈ V , ∀q ∈ p.N ,

d β γ i (p).t, γ i (q).t ≤ µ. Hence, ∀p, q ∈ V , |f (γ i , p) -f (γ i , q)| ≤ µD.
For every i ≥ 0, we note f min

γ i = min{f (γ i , x) : x ∈ V }.
Action WU-N is enabled in γ i at every process x ∈ V for which γ i (x).t = f (γ i , x) = f min γ i . So, after one round, every such a process x has incremented its t-variable (executing action WU-N) at least once. Let γ j be the first configuration after one round. Then, f min

γ j ≥ f min γ i + 1.
We now consider γ d to be the first configuration after µD + k rounds, starting from γ i . Using the same arguments as for γ j inductively, we have f min γ d ≥ f min γ i + µD + k (*). Let p be a process in V . By definitions of f and f min γ i , we have that f min

γ i ≤ f (γ i , p) ≤ f min γ i + µD (* *)
. Assume now that p increments incr < k times p.t between γ i and γ d . Then Proof. The proof of this lemma is exactly the same as the one of Lemma 3, yet replacing C µ by L WU and µD by D. Some other useful results from [START_REF] Boulinier | L'Unisson[END_REF] about Algorithm WU are recalled in Appendix A.

f (γ d , p) = f (γ i , p) + incr < f (γ i , p) + k (assumption on #incr) ≤ f min γ i + µD + k, by (* *) ≤ f min

Algorithm SU

In this subsection, we still assume a non-dynamic context (no topological change) and we use the notations defined in Subsection 6.1. Algorithm SU is a straightforward adaptation of Algorithm WU. More precisely, Algorithm SU maintains two clocks at each process p. The first one, p.t ∈ {0, . . . , β -1}, is called the internal clock and is maintained exactly as in Algorithm WU. Then, p.t is used as an internal pulse machine to increment a second, yet actual, clock of Algorithm SU p.c ∈ {0, . . . , α -1}, also referred to as external clock.

Algorithm SU (see Algorithm 2), is designed for any period α > 4. Its actions SU-N and SU-R are identical to actions WU-N and WU-R of Algorithm WU, except that we add the computation of the external c-clock in their respective statement.

We already know that Algorithm WU stabilizes to a configuration from which tclocks regularly increment while preserving a bounded delay of at most one between two neighboring processes, and so of at most n -1 between any two processes (see Remark 1). Algorithm SU implements the same mechanism to maintain p.t at each process p and computes p.c from p.t as a normalization operation from clock values in {0, . . . , β -1} to {0, . . . , α -1}: each time the value of p.t is modified, p.c is updated to α β p.t . Hence, we can set β in such way that K = β α is greater than or equal to n (here, we chose K > µ ≥ n for sake of simplicity) to ensure that, when the delay between any two t-clocks is at most n -1, the delay between any two c-clocks is at most one, see Figure 2. Furthermore, the liveness of WU ensures that every t-clock increments infinitely often, hence so do c-clocks. Theorem 3 below states that Algorithm SU is self-stabilizing for the strong unison problem. We detail the proof of this intuitive result in the sequel. Theorem 3. Algorithm SU is self-stabilizing for SP SU (the specification of the strong unison) in any arbitrary connected anonymous network assuming a distributed unfair daemon. Its stabilization time is at most n + (µ + 1)D + 1 rounds, where n (resp. D) is the size (resp. diameter) of the network and µ is a parameter satisfying µ ≥ n. starts from a legitimate configuration. For all these lemmas, we assume that α, β, K are positive numbers that satisfies the constraint declared on the Parameters section of Algorithm SU, namely β = Kα.

1 x α-1 0 1 β α -1 β α 2 β α -1 x β α (x + 1) β α -1 (α-1) β α β-1 c t n-1
Lemma 7. Let x ∈ {0, . . . , α -1} and ξ ∈ {0, . . . , β α -1}. The following equality holds:

α β x β α + ξ = x. Proof. Let x ∈ {0, . . . , α -1} and ξ ∈ {0, . . . , β α -1}. As α β x β α + ξ = x + α β ξ = x + α
β ξ and ξ ∈ {0, . . . , β α -1}, we have that 0 ≤ α β ξ < 1 and therefore α β ξ = 0.

We apply Lemma 7 by instantiating the value of the internal clock t with x β α +ξ. Since the value of the external clock c is computed as α β t in Algorithm 2, we have c = x. Now, if we chose β (period of internal clocks) such that it can be written as β = Kα with K a positive integer, the value of c = α β t is always a non negative integer which evolves according to t = c β α + ξ as shown in Figure 2.

Lemma 8. Let x 1 , x 2 ∈ {0, . . . , α-1} and ξ 1 , ξ 2 ∈ {0, . . . , β α -1}. The following assertion holds:

x 1 β α + ξ 1 ≤ x 2 β α + ξ 2 ⇒ x 1 ≤ x 2 Proof. Let x 1 , x 2 ∈ {0, . . . , α -1} and ξ 1 , ξ 2 ∈ {0, . . . , β α -1}. If x 1 β α + ξ 1 ≤ x 2 β α + ξ 2 , then we have that x 1 -x 2 ≤ (ξ 1 -ξ 2)/K. As ξ 1 , ξ 2 ∈ {0, . . . , K -1}, we have (ξ 2 -ξ 1)/K ≤ 1 -1/K. By transitivity, we obtain that x 1 -x 2 ≤ 1 -1/K < 1.
As x 1 and x 2 are natural integers, so is their difference; this proves that x 1 -x 2 ≤ 0 Again, Lemma 8 will be used with the internal clock t = c β α + ξ: this establishes the monotonic relation between internal and external clocks. Lemma 9. Let t 1 , t 2 ∈ {0, ..., β -1}. The following assertion holds:

∀d < K, d β t 1 , t 2 ≤ d ⇒ d α α β t 1 , α β t 2 ≤ 1 Proof. Let
(x 1 -x 2) mod α, (x 2 -x 1) mod α > 1. This implies that both (x 1 -x 2) mod α > 1 and (x 2 -x 1) mod α > 1. As d β t 1 , t 2 ≤ d, min (t 1 -t 2) mod β, (t 2 -t 1) mod β ≤ d.
Without loss of generality, assume that (t 1 -t 2) mod β ≤ d. There are two cases:

1. If t 1 ≥ t 2 , then (t 1 -t 2) mod β = t 1 -t 2 . So, t 1 -t 2 ≤ d. Now, as t 1 ≥ t 2 , x 1 ≥ x 2 by Lemma 8. Hence x 1 -x 2 = (x 1 -x 2) mod α > 1.
As x 1 and x 2 are natural numbers, this implies that x 1 -x 2 ≥ 2. We rewrite the inequality as

x 1 K + ξ 1 -x 2 K -ξ 2 ≥ 2K + ξ 1 -ξ 2 . Since ξ 1 , ξ 2 ∈ {0, . . . , K -1}, we have -K < ξ 1 -ξ 2 < K and therefore x 1 K + ξ 1 -x 2 K -ξ 2 > K > d. Hence, t 1 -t 2 > d, a contradiction. 2. If t 1 < t 2 , then (t 1 -t 2) mod β = β + t 1 -t 2 . So, β + t 1 -t 2 ≤ d. Now, as t 1 < t 2 , x 1 ≤ x 2 by Lemma 8. Hence (x 1 -x 2) mod α = α + x 1 -x 2 > 1.
As x 1 and x 2 are natural numbers, this implies that α + x 1 -x 2 ≥ 2. We rewrite the inequality as

β + x 1 K + ξ 1 -x 2 K -ξ 2 ≥ 2K + ξ 1 -ξ 2 . Since ξ 1 , ξ 2 ∈ {0, . . . , K -1}, we have -K < ξ 1 -ξ 2 < K and therefore β + x 1 K + ξ 1 -x 2 K -ξ 2 > K > d. Hence, β + t 1 -t 2 > d, a contradiction.
As previous lemmas, Lemma 9 will be used with the internal clock t = c β α + ξ: it expresses that once internal clocks have stabilized at a delay smaller than d, external clocks are at delay smaller than 1. We now prove that Algorithm 2 achieves the safety and liveness properties of SP SU in any execution starting from a legitimate configuration.

Lemma 10 (Safety). Every execution e ∈ E 0

L SU satisfies the safety of SP SU .

Proof. Let γ ∈ L SU : the delay (β) between any two internal clocks t in γ is upper bounded by n -1 and for any process, p ∈ V , γ(p).c = α β γ(p).t . Hence, using Lemma 9 with d = n -1 < K, we have ∀p, q ∈ V , d α γ(p).c, γ(q).c ≤ 1. As α > 4, this proves that the variables c in γ have at most two different consecutive values. Finally, as the set L SU is closed (Lemma 5), we are done.

Lemma 11 (Liveness). Every execution e ∈ E 0

L SU satisfies the liveness of SP SU .

Proof. Let e = (γ i) i≥0 ∈ E 0 L SU . Let p be a process. γ 0 is a legitimate configuration of WU so p increments infinitely often p.t using Action SU-N (by Theorem 2 and Remark 3). So p.t goes through each integer value between 0 and β -1 infinitely often (in increasing order). Hence, by Lemma 7, p.c is incremented infinitely often and goes through each integer value between 0 and α -1 (in increasing order).

Proof of Theorem 3. Lemma 5 (closure), Lemma 6 (convergence), Lemmas 10 and 11 (correctness) prove that Algorithm SU is self-stabilizing for SP SU in any arbitrary connected anonymous network assuming a distributed unfair daemon. 2

Complexity Analysis

We now give some complexity results about Algorithm SU. Precisely, a bound on the stabilization time of SU is given in Theorem 4. Then, a delay between any two consecutive clocks increments, which holds once SU has stabilized, is given in Theorem 5. Proof. Let (γ i) i≥0 ∈ E 0 . The behavior of the t-variables in SU is similar to that of WU (Remark 3), which stabilizes in at most n + µD rounds (see Theorems 11 and 12) to weak unison. So, in n + µD rounds, the delay between the t-clocks of any two arbitrary far processes is at most n -1 (Remark 1). If c-variables are well-calculated according to t-variables, i.e., if c = α β t , then the delay between the c-clocks of any two arbitrary far processes is at most 1 (Lemma 9). In at most D + 1 additional rounds, each process executes SU-N (Lemma 4) and updates its c-variable according to its t-variable. Hence, in at most n + (µ + 1)D + 1 rounds, the system reaches a legitimate configuration.

Theorem 5. After convergence of SU to L SU , each process p increments its clock p.c at least once every D + β α rounds, where D is the diameter of the network.

Proof. If DSU converged to L d SU , by Remark 3 and Lemma 4, after D + β α rounds, p increments p.t at least β α times. Now, by Lemma 7, if a t-variable is incremented β α times, then its corresponding c-variable is incremented once.

Gradual Stabilization under 1-Dynamics for Strong Unison

We now propose Algorithm DSU (Algorithm 3), a variant of Algorithm SU. DSU is still self-stabilizing for strong unison and achieves a gradual convergence after one dynamic step. Precisely, after any dynamic step which fulfills condition UnderLocalControl (n.b., this step may include several topological events), DSU maintains clocks almost synchronized during the convergence to strong unison since it immediately satisfies partial weak unison, then converges in at most one round to weak unison, and finally re-stabilizes to strong unison.

Notice that, after one dynamic step, the graph contains at most n + # J processes, by definition. Moreover, we denote by D 1 the diameter of the new graph.

Algorithm DSU

Our solution withstands one dynamic step, which may include several topological events (i.e. link or process additions or removals). However, according to Theorem 1, such a dynamic step should satisfy Condition UnderLocalControl. Namely, the graph should stay connected and, as α > 4, every process that joins during the dynamic step γ → d γ should be linked to at least one process which exists in both γ and γ .

The following theorem allows to simplify proofs and explanations.

Theorem 6. Let X be a closed set of configurations. If UnderLocalControl holds, then

∀γ i ∈ C, (∃γ j ∈ X | γ j → d γ i) ⇔ (∃γ k ∈ X | γ k → d only γ i)
where → d only is the set of all dynamic steps containing no process activation.

Proof. Let γ i ∈ C such that γ j → d γ i with γ j ∈ X. If γ j → d only γ i , we are done. Otherwise, let A be the non-empty subset of processes that are activated in γ j → d γ i . There exists Since, by definition, L d SU is closed, the previous theorem applies: the set of configurations reachable from L d SU after one dynamic step (which may also include process 0 0 activations) is the same as the one reachable from L d SU after one dynamic step made of topological events only. At the light of this result, we only consider this latter kind of dynamic steps in the following explanations.

γ j → s γ u , where A is activated. As X is closed, γ u ∈ X. Moreover, ∀x ∈ G j ∩ G i , x ∈ G u (since G u = G j) and γ u (x) = γ i (x). Let γ u → d only γ k such that G k = G i . ∀x ∈ G j ∩ G i , x ∈ G k (since G k = G i) and γ k (x) = γ u (x) = γ i (x). Moreover, ∀x ∈ G i \ G j , x ∈ G k (since G k = G i) and γ k (x) = γ i (x) because in both cases, x is in bootstate. Hence, γ k = γ i ,
p 0 0 1 p 1 0 2 p 2 . . . 0 n-2 p n-2 0 n-1 p n-1
Consider first link additions only. Adding a link can break the safety of weak unison on internal clocks, see for example Figure 3. Indeed, adding a link may create a delay between two (new) neighboring t-clocks greater than one. Nevertheless, the delay between any two t-clocks remains bounded by n -1 and, consequently, no process will reset its t-clock (Figure 3 shows a worst case). Moreover, c-clocks still satisfy strong unison immediately after the link addition. Besides, since increments are constrained by neighboring clocks, adding links only reinforces those constraints. Thus, the delay between internal clocks of arbitrary far processes remains bounded by n -1, and so strong unison remains satisfied in all subsequent steps in this case. Consider again the example in Figure 3: before the dynamic step, p n-1 had only to wait until p n-2 increments p n-2 .t in order to be able to increment its own t-clock; yet after the step, it also has to wait for p 0 .

Assume now a dynamic step containing only process and link removals. Due to Condition UnderLocalControl, the network remains connected. Hence, constraints between (still existing) neighbors are maintained: the delay between t-clocks of two neighbors remains bounded by one, see example on Figure 4. So, weak unison on t-clocks remains satisfied and so is strong unison on c-clocks. Consider now a more complex scenario, where the dynamic step contains link additions as well as process and/or link removals. Figure 5 shows an example of such a scenario, where safety of strong unison is violated. As above, the addition of link {p 1 , p 6 } in Figure 5b leads to a delay between t-clocks of these two (new) neighbors which is greater than one (here 5). However, the removal of link {p 1 , p 2 } relaxes the neighborhood constraint on p 2 : p 2 can now increment without waiting for p 1 . Consequently, executing Algorithm SU does not ensure that the delay between t-clocks of any two arbitrary far processes remains bounded by n -1, e.g., in Figure 5c, the delay between p 1 and p 2 is 9 while n -1 = 5. Since c-clock values are computed from t-clock values, we also cannot guarantee that there is at most two consecutive c-clock values in the system, see in Figure 5c p Again, in the worst case scenario, after a dynamic step, the delay between two neighboring t-clocks is bounded by n -1. Moreover, t-clocks being computed like in Algorithm WU, we can use two of its useful properties (see [START_REF] Boulinier | L'Unisson[END_REF]): [START_REF] Arora | Maintaining digital clocks in step[END_REF] when the delay between every pair of neighboring t-clocks is at most µ with µ ≥ n, the delay between these clocks remains bounded by µ because processes never reset; (2) furthermore, from such configurations, the system converges to a configuration from which the delay between the t-clocks of every two neighbors is at most one. So, keeping µ ≥ n, processes will not reset after one dynamic step and the delay between any two neighboring t-clocks will monotonically decrease from at most n -1 to at most one. Consequently, the delay between any two neighboring c-clocks (which are computed from t-clocks) will stay less than or equal to one, i.e., weak unison will be satisfied, all along the convergence to strong unison.

Consider now a process p that joins the system. The event join p occurs and triggers the specific action bootstrap that sets both the clocks p.t and p.c to a specific bootstate value, noted ⊥. Note that by definition and from the previous discussion, the system immediately satisfies partial weak unison since it only depends on processes that were in the system before the dynamic step. Now, to ensure that weak unison holds within a round, we add the action DSU-J which is enabled as soon as the process is in bootstate. This action initializes the two clocks of p according to the clock values in its neighborhood. Precisely, the value of p.t can be chosen among the non-⊥ values in its neighborhood, and such values exist by Condition UnderLocalControl. We choose to set p.t to the minimum non-⊥ t-clock value in its neighborhood, using the function M inT ime p given below.

M inT ime p = 0 if ∀q ∈ p.N , q.t = ⊥; min{q.t : q ∈ p.N ∧ q.t = ⊥} otherwise.

The value of p.c is then computed according to the value of p.t. Notice that M inT ime p returns 0 when p and all its neighbors have their respective t-clock equal to ⊥. This ensures that Algorithm DSU remains self-stabilizing (in particular, if the system starts in a configuration where all t-clocks are equal to ⊥).

To prevent the unfair daemon from blocking the convergence to a configuration containing no ⊥ values, we should also forbid processes with non-⊥ t-clock values to increment while there are t-clock with ⊥-values in their neighborhood. So, we define the predicate Locked which holds for a given process p when either p.t = ⊥, or at least one of its neighbors q satisfies q.t = ⊥. We then enforce the guard of both normal and reset actions, so that no Locked-process can execute them. See actions DSU-N and DSU-R. This will ensure that t-clocks are initialized first by Action DSU-J, before any value in their neighborhood increments.

Finally, notice that all the previous explanation relies on the fact that, once the system recovers from process additions (i.e., once no ⊥ value remains), the algorithm behaves exactly the same as Algorithm SU. Hence, it has to match the assumptions made for SU. In particular, the assumptions on α and β remain the same. But the constraint on µ has to be adapted, since µ should be greater than or equal to the actual number of processes in the network and this number may increase. Now, the number of processes added in a dynamic step is bounded by # J. So, we require µ to be greater than or equal to n + # J. We now consider the example execution of Algorithm DSU given in Figure 6. This execution starts in a configuration satisfying strong unison, see Figure 6a. Then, one dynamic step happens (step (a) →(b)), where a process p 6 joins the system. We now try to delay as long as possible the execution of DSU-J by p 6 . In configuration (b), p 3 and p 5 , the new neighbors of p 6 , are locked. They will remain disabled until p 6 executes DSU-J. p 1 and p 4 execute DSU-N in (b) →(c). Then, p 4 is disabled because of p 5 and p 1 executes DSU-N in (c) →(d). In configuration (d), p 1 is from now on disabled: p 1 must wait until p 2 and p 4 get t-clock value 7. p 6 is the only enabled process, so the distributed unfair Proof. Let γ ∈ L d SU be a legitimate configuration of DSU and let γ → s γ be a static step of DSU, from configuration γ. By Remark 6, γ is also in L SU . From Remark 5, the step γ → s γ is also a step under SU since γ contains no ⊥-value and Lemma 5 applies (L SU is closed under SU). Therefore, γ is also in L SU and in L d SU as well, using again Remark 6.

• ∀p ∈ V , γ(p).t = ⊥ • ∀p ∈ V , ∀q ∈ γ(p).N , d β γ(p).t, γ(q).t ≤ 1 • ∀p ∈ V , γ(p).c = α β γ(p
Lemma 13. For any execution (γ i) i≥0 ∈ E 0 under DSU, ∃j ≥ 0 such that ∀k ≥ j,

∀p ∈ V , γ k (p).t = ⊥.
Proof. Let e = (γ i) i≥0 ∈ E 0 . For any i ≥ 0, we note Bottom(γ i) = {p ∈ V : γ i (p).t = ⊥}. As actions DSU-N , DSU-R and DSU-J do not create ⊥ values, ∀i > 0, Bottom(γ i) ⊆ Bottom(γ i-1). Now, assume by contradiction that ∃p ∈ V such that ∀i ≥ 0, p ∈ Bottom(γ i). There is a configuration γ s , s ≥ 0, from which no ⊥-value disappears anymore, i.e., ∀p ∈ V , p ∈ Bottom(γ s) ⇒ ∀i ≥ s, p ∈ Bottom(γ i).

If Bottom(γ s) = V , every process is enabled for action DSU-J. So, the unfair daemon selects at least one process to execute action DSU-J and sets its t-variable to a value different from ⊥, a contradiction with the definition of γ s .

Hence there is at least one process that is not in Bottom(γ s). Again, if the only enabled processes are in Bottom(γ s), then the unfair daemon has no other choice but selecting one of them, a contradiction. So, ∀i ≥ s, there exists a process that is enabled in γ i but which is not in Bottom(γ i). Remark that this implies in particular that e is an infinite execution (no terminal configuration reached). Now, let consider the subgraph G of G induced by V \Bottom(γ s). G is composed of a finite number of connected components and, as e is infinite, there is an infinite number of actions of e executed in (at least) one of these components. Let G = (V , E) be such a connected component.

Let e = (γ i) i≥0 be the projection of e on G and t-variable: ∀i ≥ 0, ∀x ∈ V , γ i (x).t = γ i (x).t. We construct e = (γ j) j≥0 from e by removing duplicate configurations with the following inductive schema:

• γ 0 = γ 0 ,
• and, ∀j > 0, if γ 0 . . . γ j represents γ 0 . . . γ k without duplicate configurations, γ j+1 = γ next , where next = min{l > k : γ l = γ k }. (Notice that next is always defined as there is an infinite number of actions executed in G .)

Let L = {p ∈ V : ∃q ∈ Bottom(γ s), {p, q} ∈ E} be the set of processes that are neighbors of a Bottom(γ s) process in G. As G is connected, L is not empty. Furthermore, during the execution e, Locked holds forever for processes in L, hence are disabled. As a consequence, in execution e , no process in L can execute a static step. Now, from Remark 3 and 5, and since γ 0 contains no ⊥ value, e is also an execution of WU in graph G . The fact that existing processes (from the non-empty set L) never increment their clocks during an infinite execution e of WU is a contradiction with the liveness of unison (Specification 2) and Theorem 2 which states that WU is self-stabilizing for unison under an unfair daemon. Proof. Let (γ i) i≥0 ∈ E 0 . If there are some processes p such that γ 0 (p).t = ⊥, DSU-J is continuously enabled at p. So, after at most one round p.t = ⊥. Afterwards, the behavior of the algorithm is similar to the one of SU, which stabilizes in at most n + (µ + 1)D + 1 rounds (see Theorem 4). Hence, in at most n + (µ + 1)D + 2 rounds, the system reaches a legitimate configuration. Proof. Let γ ∈ L d PU be a legitimate configuration of DSU and let γ → s γ be a computation step of DSU, from configuration γ. In γ, action DSU-R is disabled for all processes: a process can only execute action DSU-N or DSU-J depending whether its clock is ⊥ or not. a. Let p ∈ V such that γ (p).t = ⊥. As no action can set p.t to ⊥, γ(p).t = ⊥ and by Definition 4, ∃q ∈ γ(p).N such that γ(q).t = ⊥. Locked q holds in γ (because of p). Hence, q is disabled in γ and γ(q).t = γ (q).t = ⊥.

. ∀p ∈ V , γ(p).t = ⊥ ⇒ ∃q ∈ γ(p).N , γ(q).t = ⊥ . b. ∀p ∈ V, ∀q ∈ γ(p).N , γ(p).t = ⊥ ∧ γ(q).t = ⊥ ⇒ d β γ(p).t, γ(q).t ≤ µ . c. ∀p, q ∈ V , γ(p).t = ⊥ ∧ (∃x ∈ γ(p).N , γ(x).t = ⊥)∧ γ(q).t = ⊥ ∧ (∃y ∈ γ(q).N , γ(y).t = ⊥) ⇒ d β γ(p).t, γ(q).t ≤ µ . d. ∀p ∈ V , γ(p).t = ⊥ ⇒ γ(p).c = α β γ(p
b. Let p ∈ V and q ∈ γ(p).N such that γ (p).t = ⊥ and γ (q).t = ⊥.

1. If γ(p).t = ⊥ and γ(q).t = ⊥, as γ ∈ L d PU , d β γ(p).t, γ(q).t ≤ µ. Now, p and q can only execute action DSU-N during γ → s γ . If both p and q, or none of them, execute action DSU-N , the delay between p.t and q.t remains the same. If only one of them, say p, executes action DSU-N , p.t β,µ q.t holds in γ. So, either γ(p).t = γ(q).t and d β γ (p).t, γ (q).t = 1 ≤ µ, or the increment of p.t decreases the delay between p.t and q.t and again we have

d β γ (p).t, γ (q).t ≤ µ. 2. If γ(p).t = ⊥ and γ(q).t = ⊥, as γ ∈ L d PU , ∃x ∈ γ(p)
.N such that γ(x).t = ⊥. We choose x as such a neighbor of p, with minimum value for t, i.e., γ(x).t = M inT ime p in γ. Hence, d β γ(x).t, γ(q).t ≤ µ because of Definition 4.c: q and x have a (common) neighbor p whose t-variable equals ⊥. q is disabled in γ because of p (Locked q holds in γ), hence γ(q).t = γ (q).t. As γ (p).t = γ(x).t (since p executes action DSU-J), d β γ (p).t, γ (q).t ≤ µ.

As no action can set variable t to ⊥, γ(x).t = ⊥ and γ(y).t = ⊥.

1. If γ(p).t = ⊥ and γ(q).t = ⊥, as γ ∈ L d PU , d β γ(p).t, γ (
q).t ≤ µ. Now, p and q are disabled in γ (Locked p , Locked q) because of x and y, respectively. Hence, d β γ (p).t, γ (q).t ≤ µ.

2. If γ(p).t = ⊥ and γ(q).t = ⊥, as γ ∈ L d PU , ∃x ∈ γ(p).N such that γ(x).t = M inT ime p = ⊥ in γ. Hence, d β γ(x).t, γ(q).t ≤ µ because they have neighbors whose t-variables equal ⊥ (p and y, respectively). q is disabled in γ (Locked q) because of y: γ(q).t = γ (q).t. And γ (p).t = γ(x).t since p executes action DSU-J. So d β γ (p).t, γ (q).t ≤ µ.

If γ(p)

.t = ⊥ and γ(q).t = ⊥, similar to case 2.

4. If γ(p).t = ⊥ and γ(q).t = ⊥, as γ ∈ L d PU , ∃x ∈ γ(p).N such that γ(x).t = M inT ime p = ⊥ in γ and ∃y ∈ γ(p).N such that γ(y).t = M inT ime q = ⊥ in γ. Hence, d β γ(x).t, γ(y).t ≤ µ because they have neighbors whose tvariables equal ⊥ (p and q, respectively). γ (p).t = γ(x).t and γ (q).t = γ(y).t since p and q execute action DSU-J. So d β γ (p).t, γ (q).t ≤ µ. Let p be a process. γ 0 is a legitimate configuration of WU so p increments infinitely often p.t executing DSU-N (see Lemma 27). Furthermore, actions DSU-R and DSU-J are disabled. So p.t goes through each integer value between 0 and β -1 infinitely often (in increasing order). Hence, by Lemma 7, p.c is incremented infinitely often and goes through each integer value between 0 and α -1 (in increasing order).

Gradual stabilization after one dynamic step. We now consider executions in E 1 Proof. Let γ i → d γ i+1 be a dynamic step such that γ i ∈ L d SU and ∀p ∈ V i+1 , γ i+1 (p).t = ⊥ ⇒ (∃q ∈ γ i+1 (p).N , γ i+1 (q).t = ⊥). By Theorem 6 and as L d SU is closed (Lemma 12), the set of reachable configurations from L d SU after one dynamic step satisfying Under-LocalControl is the same than after one dynamic step satisfying UnderLocalControl without process activations. Hence, we consider here that γ i → d γ i+1 contains no process activations.

By Definition 3, ∀p ∈ V i , γ i (p).t = ⊥, γ i (p).c = α β γ i (p).t , and ∀q ∈ γ i (p).N , d β γ i (p).t, γ i (q).t ≤ 1. Hence ∀p, q ∈ V i , d β γ i (p).t, γ i (q).t ≤ µ. Now, after the dynamic step, in γ i+1 , the state of processes that are in V i ∩ V i+1 remains the same. So, ∀p ∈ V i+1 , ∀q ∈ γ i+1 (p).N , if γ i+1 (p).t = ⊥ and γ i+1 (q).t = ⊥, then p, q ∈ V i ∩ V i+1 . As d β γ i (p).t, γ i (q).t ≤ µ (Remark 4), d β γ i+1 (p).t, γ i+1 (q).t ≤ µ.

WU

. The behavior of the algorithm is similar to the one of WU (Remarks 3 and 5). Furthermore, ∀p ∈ V , ∀q ∈ p.N , d β γ 0 (p).t, γ 0 (q).t ≤ µ, so γ 0 ∈ C µ . By Lemma 29, in a finite time, ∀p ∈ V , ∀q ∈ p.N , d β γ 0 (p).t, γ 0 (q).t ≤ 1. This convergence lasts at most µD 1 rounds (Theorem 12).

The liveness of weak unison is ensured in e (Lemma 22), so each process eventually increments its clock executing DSU-N and updates its c-variable. By Lemma 4, the cvariables are well computed according to t-variables in at most D 1 + 1 additional rounds. Hence, in at most (µ + 1)D 1 + 1 rounds, the system reaches a L d SU .

Since UnderLocalControl imposes that the system remains connected after one dynamic step, we can use Theorem 7 and Lemmas 20-19 to establish the following theorem: Theorem 9. If UnderLocalControl is satisfied then DSU is gradually stabilizing under 1-dynamics for (SP PU • 0, SP WU • 1, SP SU • (µ + 1)D 1 + 2) , where D 1 (resp. n + # J) is the diameter (resp. an upper bound on the size) of the network after the dynamic step and µ is a parameter satisfying µ ≥ n + # J.

Theorem 10 establish a bound on how many rounds are necessary to ensure that a given process increments its c-clock after the convergence to legitimate configurations w.r.

Conclusion

The apparent seldomness of superstabilizing solutions for non-static problems, such as unison, may suggest the difficulty of obtaining such a strong property and if so, make our notion of gradual stabilization very attractive compared to merely self-stabilizing solutions. For example, in our unison solution, gradual stabilization ensures that processes remain "almost" synchronized during the convergence phase started after one dynamic step. Hence, it is worth investigating whether this new paradigm can be applied to other, in particular non-static, problems.

 be the set of clock values present in configuration γ i . Specification 1 (Strong Unison). An execution e = (γ i) i≥0 satisfies the specification SP SU of strong unison if and only if • In any configuration γ i ∈ e, there exists at most two different clock values, and if so, these two values are consecutive (modulo α), i.e., ∀γ i ∈ e, |CV (γ i)| ≤ 2∧(CV (γ i) = {x, y} ⇒ x = (y + 1) mod α ∨ y = (x + 1) mod α). (Safety)

Figure 1 :

 1 Figure 1: Execution e in the proof of Theorem 1. The hachured nodes are in bootstate.

 γ d , by (*) So, p satisfies f (γ d , p) < f min γ d , a contradiction. Lemma 4. ∀k ≥ 1, ∀e ∈ E 0 L WU , every process p increments its clock p.t executing action WU-N at least k times every D + k rounds, where D is the diameter of the network.

 0

Figure 2 :

 2 Figure 2: Relationship between variables t and c.

Theorem 4 .

 4 The stabilization time of SU to L SU is at most n + (µ + 1)D + 1 rounds, where n (resp. D) is the size (resp. diameter) of the network.

 and we are done. The second part of the assertion is trivial since, by definition, → d only ⊆ → d .

Figure 3 : 4 (

 34 Figure 3: Delay between neighboring t-clocks may become greater than one after adding a link (e.g., the dashed one). The value of c-(resp. t-) variable is in the upper (resp. lower) part of the node.

Figure 4 :

 4 Figure 4: Delay between neighboring t-clocks remains bounded by one after removing processes and/or links.

6 (c)

 6c Some steps later, strong unison is violated.

Figure 5 :

 5 Figure 5: Example of execution where one link is added and another is removed: µ = 6, α = 7, and β = 42.

 1 .c = 1, p 6 .c = 2, and p 2 .c = 3.

Figure 6 :

 6 Figure 6: Example of execution where the daemon delays the first step of a new process: µ = 6, α = 6, and β = 42.

7. 2

 2 Proof of Correctness Self-stabilization w.r.t. SP SU . Remark 5. In DSU, if all t-variables have values different from ⊥, predicates JoinStep and Locked are false. Furthermore, no action can assign ⊥ to t. Consequently, • when all t-variables have values different from ⊥, • as far as no topological change occurs, Algorithms DSU and SU are syntactically identical. This implies in particular, that the set of executions E 0 of SU and the set of executions E 0 nobot of DSU, where nobot = {γ ∈ C : ∀p ∈ V, γ(p.t) = ⊥}, are identical too. Definition 3 (Legitimate Configurations of DSU w.r.t. SP SU). A configuration γ of DSU is legitimate w.r.t. SP SU if and only if

Proof. From Remark 5 ,Theorem 8 .

 58 every execution in E 0 L d SU under DSU is also an execution in E 0 L SU under SU. Therefore, the correctness is proven in Lemmas 10 and 11. Using Lemmas 12, 14 and 15, we can deduce the following theorem: Theorem 7 (Self-stabilization of DSU w.r.t. strong unison). Algorithm DSU is selfstabilizing for SP SU in any arbitrary connected anonymous network assuming a distributed unfair daemon. Theorem 8 states the stabilization time of DSU. The stabilization time of DSU to L d SU is at most n + (µ + 1)D + 2, where n (resp. D) is the size (resp. diameter) of the network, and µ is a parameter satisfying µ ≥ n.

d

 . Let p ∈ V such that γ (p).t = ⊥. Two cases are possible: either p executes no action and the constraint between p.t and p.c is preserved, or p executes an action DSU-N . In the latter case, the assignment of the action ensures the constraint.Lemma 17 (Safety of SP PU in E 0 L d PU). Every execution e ∈ E 0 L d PU satisfies the safety of SP PU . Proof. Let γ ∈ L d PU . By Definition 4, ∀p ∈ V , ∀q ∈ γ(p).N , γ(p).t = ⊥ ∧ γ(q).t = ⊥ ⇒ d β γ(p).t, γ(q).t ≤ µ. Furthermore, ∀p ∈ V , γ(p).t = ⊥ ⇒ γ(p).c = α β γ(p).t . Hence, using Lemma 9 with d = µ < K, ∀p ∈ V , ∀q ∈ γ(p).N , γ(p).t = ⊥ ∧ γ(q).t = ⊥ ⇒ d α γ(p).c, γ(q).c ≤ 1.Finally, as the set L d PU is closed (Lemma 16), we are done. Lemma 21 (Safety of SP WU in E 0 L d WU). Every execution e ∈ E 0 L d WU satisfies the safety of SP WU . Proof. Let γ ∈ L d WU , p ∈ V , and q ∈ γ(p).N . We have that d β γ(p).t, γ(q).t ≤ µ. and γ(p).c = α β γ(p).t . Using Lemma 9 with d = µ < K, we obtain that d α γ(p).c, γ(q).c ≤ 1. Finally, as the set L d WU is closed (Lemma 20), we are done. Lemma 22 (Liveness of SP WU in E 0 L d WU). Every execution e ∈ E 0 L d WU satisfies the liveness of SP WU . Proof. Let e = (γ i) i≥0 ∈ E 0 L d WU .

Lemma 23 .

 23 Let γ i ∈ L d SU be a legitimate configuration under DSU, γ i → d γ i+1 be a dynamic step, such that ∀p ∈ V i+1 , γ i+1 (p).t = ⊥ ⇒ (∃q ∈ γ i+1 (p).N , γ i+1 (q).t = ⊥), then γ i+1 ∈ L d PU .

Finally,

 ∀p ∈ V i+1 , if γ i+1 (p).t = ⊥, p ∈ V i ∩ V i+1 so γ i+1 (p).c = γ i (p).c = α β γ i (p).t = α β γ i+1 (p).t . Hence, γ i+1 ∈ L d PU .Lemma 24. DSU converges from L d WU to L d SU in a finite time. The convergence time is at most (µ + 1)D 1 + 1 rounds.Proof. Let e = (γ i) i≥0 ∈ E 0 L d

 An algorithm A is gradually stabilizing under 1-dynamics for (SP PU • 0, SP WU • 1, SP SU • B) in arbitrary anonymous networks under the distributed unfair daemon with a set of legitimate configurations w.r.t. specification SP SU noted L A SU only if UnderLocalControl holds.

 Algorithm 1 WU, for every process pParameters:

	From [5], we have the following theorem.
	Theorem 2. Algorithm WU is self-stabilizing for SP WU (specification of weak unison)
	by the set of legitimate configurations

β: any positive integer such that β > n 2 µ: any positive integer such that n ≤ µ ≤ β 2 Variable: p.t ∈ {0, . . . , β -1} Actions: WU-N :: ∀q ∈ p.N , p.t β,µ q.t → p.t ← (p.t + 1) mod β WU-R :: ∃q ∈ p.N , d β p.t, q.t > µ ∧ p.t = 0 → p.t ← 0

 t 1 , t 2 ∈ {0, ..., β -1} such that d β t 1 , t 2 ≤ d. We write t 1 and t 2 as t 1 = x 1 K + ξ 1 and t 2 = x 2 K + ξ 2 where x 1 , x 2 ∈ {0, . . . , α -1} (resp. ξ 1 , ξ 2 ∈ {0, . . . , K -1}) are the quotients (resp. remainders) of the Euclidean division of t 1 , t 2 by K. From Lemma 7, we have that t 1 /K = x 1 and t 2 /K = x 2 .Assume, by contradiction, that d α x 1 , x 2 > 1. By definition, this means that min

 After one dynamic step: link {p 1 , p 2 } disappears and link {p 1 , p 6 } is created.

	2	p 2	2	p 3	2	p 4	2	p 2	2	p 3	2	p 4
	12		13		14		12		13		14	
	1	p 1	2	p 6	2	p 5	1	p 1	2	p 6	2	p 5
	11		16		15		11		16		15	
	(a) Initial configuration satisfy-	(b)					
	ing strong unison.								

 Algorithm 3 DSU, for every process p Parameters: α: any positive integer such that α > 4 µ: any positive integer such that µ ≥ n + # J β: any positive integer such that β > µ 2 , and ∃K such that K > µ and β = Kα Variables: p.c ∈ {0, . . . , α -1} ∪ {⊥} p.t ∈ {0, . . . , β -1} ∪ {⊥} Predicates: Locked p ≡ p.t = ⊥ ∨ ∃q ∈ p.N , q.t = ⊥ N ormalStep p ≡ ¬Locked p ∧ ∀q ∈ p.N , p.t β,µ q.t ResetStep p ≡ ¬Locked p ∧ ∃q ∈ p.N , d β p.t, q.t > µ ∧ p.t = 0

	0	p 1	0	p 2	1	p 3	0	p 1	0	p 2	1	p 3	0	p 1	0	p 2	1	p 3	0	p 1	0	p 2	1	p 3	0	p 1	0	p 2	1	p 3
	5		6		7		5		6		7		6		6		7		7		6		7		7		6		7	
	0	p 4	0	p 5			0	p 4	0	p 5	⊥	p 6	0	p 4	0	p 5	⊥	p 6	0	p 4	0	p 5	⊥	p 6	0	p 4	0	p 5	0	p 6
	5		5				5		5		⊥		6		5		⊥		6		5		⊥		6		5		5	
	(a) Initial config-	(b) After the dy-	(c) p 4 is disabled.	(d) Now, p 1 is dis-	(e) p 6 executes
	uration satisfying	namic step where	DSU-N is enabled	abled because of p 2	DSU-J				and
	strong unison.		process p 6 joins, p 3	at p 1 .					and p 4 . p 6 is the	initializes		its
							and p 5 are locked.							only enabled pro-	clocks.				
							p 1 and p 4 are en-							cess.										
							abled to execute																		
							DSU-N .																					
			JoinStep p		≡ p.t = ⊥																		
	Actions:																									
			DSU-N	:: N ormalStep p → p.t ← (p.t + 1) mod β								
															p.c ← α β p.t												
			DSU-R	:: ResetStep p	→ p.t ← 0													
															p.c ← 0													
			DSU-J	:: JoinStep p	→ p.t ← M inT ime p										
															p.c ← α β p.t												
			bootstrap :: join p			→ p.t ← ⊥												
															p.c ← ⊥												

).t . We denote by L d SU the set of legitimate configurations of DSU w.r.t. SP SU . Remark 6. As L d SU restricts the values of t to non-⊥ values, we trivially have the equivalence between L d SU and L SU : for every configuration γ, we have γ ∈ L d SU ⇔ γ ∈ L SU . Lemma 12 (Closure of L d SU under DSU). The set of configurations L d SU is closed under DSU.

 Lemma 14 (Convergence to L d SU). C (the set of all possible configurations) converges under DSU to the set of legitimate configurations L d SU .Proof. Let (γ i) i≥0 ∈ E 0 under DSU. Using Lemma 13, ∃j ≥ 0 such that ∀k ≥ j, ∀p ∈ V , γ k (p).t = ⊥. After γ j , the execution of the system, (γ k) k≥j , is also a possible execution of SU (seeRemark 5). Hence, it converges to a configuration γ k (k ≥ j) in L SU (Lemma 6). So, using Remark 6, γ k ∈ L d SU .

Lemma 15 (Correctness of SP SU under DSU). For every execution e ∈ E 0 L d SU under DSU, SP SU (e).

 Immediate stabilization to SP PU after one dynamic step. Definition 4 (Legitimate Configurations of DSU w.r.t. SP PU). A configuration γ of DSU is legitimate w.r.t. SP PU if and only if a

).t . We denote by L d PU the set of legitimate configurations of DSU w.r.t. SP PU . Lemma 16 (Closure of L d PU under DSU). The set of configurations L d PU is closed under DSU.

 t. SP SU (resp. SP WU). Theorem 10. After convergence of DSU to L d WU (resp. L d SU), each process p increments its clock p.c at least once every µD 1 + β α rounds (resp. D 1 + β α rounds). Proof. By Remarks 3 and 5, we can use results on WU for DSU. If DSU converged to a configuration γ ∈ L d WU , then γ ∈ C µ . So, by Lemma 3, after µD 1 + β α rounds, p increments p.t at least β α times. Now, by Lemma 7, if t-variable is incremented β α times, c-variable is incremented once. If DSU converged to L d SU , the result of Theorem 5 can be applied (Remark 5). So, after D 1 + β α rounds, p increments p.c at least once.

Transient faults have low frequency and results in perturbing the state of the system.

N.b., a dynamic step is a step containing topological changes.

Such transient faults may include topological changes, but not only.

* This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01).

Correctness Proof

We first define a set of legitimate configurations w.r.t. specification SP SU (Definition 2). Then, we prove the closure and convergence w.r.t. those legitimate configurations (see Lemmas 5 and 6). Afterwards, we prove the correctness w.r.t. specification SP SU in any execution starting in a legitimate configuration, namely, safety is shown in Lemma Proof. From Theorem 2, the set of legitimate configurations for WU is also reached in a finite number of steps for SU. Hence, we only have to check that the second constraint (the one on c-variables) is also achievable within a finite number of steps. Again using Theorem 2, liveness of Specification SP WU is ensured by WU and therefore by SU. Hence, after stabilization, each process p updates its internal clock p.t within a finite time; meanwhile p.c is also updated to α β p.t .

Lemmas 7, 8 and 9 are technical results on the values of t-and c-variables that will be used to prove that the safety of Specification SP SU is achieved in any execution that

PU are closed (Lemma 16), so γ i is a legitimate configuration w.r.t. SP PU and is also a legitimate configuration of WU so p increments infinitely often p.t executing action DSU-N (Lemma 27). Furthermore, actions DSU-R and DSU-J are disabled. So p.t goes through each integer value between 0 and β -1 infinitely often (in increasing order). Hence, by Lemma 7, p.c is incremented infinitely often and goes through each integer value between 0 and α -1 (in increasing order).

PU

. ∀p ∈ V , such that γ 0 (p).t = ⊥, action DSU-J is continuously enabled at p. By Lemma 13, ∃i > 0, such that ∀j ≥ i, ∀p ∈ V , γ j (p).t = ⊥. Hence, ∃j ∈ {1, . . . , i} such that p executes action DSU-J during γ j-1 → γ j .

So, in at most one round, the system reaches a configuration

Stabilization to SP WU in at most one round after one dynamic step. Proof. Notice that the first and third constraints of Definition 5 are closed, as for L d SU . As, (1) for every configuration γ, we have that γ Lemma 25) and (3) every static step of DSU from L d WU is also a static step for WU (see Remarks 3 and 5), the second constraint is also closed under DSU.

Concerning our unison algorithm, the graceful recovery after one dynamic step comes at the price of slowing down the clock increments. The question of limiting this drawback remains open.

Finally, it would be interesting to address in future work gradual stabilization for non-static problems in context of more complex dynamic patterns.

A Results from [START_REF] Boulinier | L'Unisson[END_REF] In this section, we recall some useful technical results from [START_REF] Boulinier | L'Unisson[END_REF] about Algorithm WU. Algorithm WU is an instance of the parametric algorithm GAU in [START_REF] Boulinier | L'Unisson[END_REF]: WU = GAU (β, 0, µ).

The following five lemmas (25-29) are used to establish the self-stabilization of WU for SP WU by the set of legitimate configurations L WU such that γ ∈ L WU if and only if ∀p ∈ V , ∀q ∈ γ(p).N , d β γ(p).t, γ(q).t ≤ 1.

The proof of self-stabilization is divided into several steps. The first step (Lemma 26) consists in showing the convergence of WU from C to C µ , where C µ is the set of configurations where the delay between the clocks of two neighbors is at most µ, i.e., Lemma 25 (Property 8 in [START_REF] Boulinier | L'Unisson[END_REF]). C µ is closed under WU.

Lemma 26 (Theorem 56 in [START_REF] Boulinier | L'Unisson[END_REF]). If n ≤ µ < β 2 , then ∀e ∈ E 0 , ∃γ ∈ e such that γ ∈ C µ .

Lemma 27 (Theorem 21 in [START_REF] Boulinier | L'Unisson[END_REF]). If β > n 2 , then ∀e ∈ E 0 Cµ , e satisfies the liveness part of SP WU .

Then, the second step consists of showing closure of L WU under WU (Lemma 28) and the convergence from C µ to L WU (Lemma 29). Regarding the correctness, the safety part of SP WU (two neighboring clocks differ from at most 1) is ensured by definition of L WU , whereas the liveness part is already ensured by Lemma 27. Precisely: Lemma 28 (Property 2 in [START_REF] Boulinier | L'Unisson[END_REF]). L WU is closed under WU.

Lemma 29 (Theorems 29 in [START_REF] Boulinier | L'Unisson[END_REF]). If β > n 2 and µ < β 2 , then ∀e ∈ E 0 Cµ , ∃γ ∈ e such that γ ∈ L WU . Some performances of Algorithm WU are already recalled in Theorems 11 and 12 (page 42).

Theorem 11 (Theorem 61 in [START_REF] Boulinier | L'Unisson[END_REF]). If n ≤ µ < β 2 , the convergence time of WU from C to C µ is at most n rounds.

Theorem 12 (Theorems 20 and 28 in [START_REF] Boulinier | L'Unisson[END_REF]). If β > n 2 and µ < β 2 , the convergence time of WU from C µ to L WU is at most µD rounds.

Finally, Lemma 30 below is a technical result about the values of t-variables.

Lemma 30 (Theorem 20, Property 27, and Lemma 22 in [START_REF] Boulinier | L'Unisson[END_REF]). If β > n 2 and β > 2µ, then ∀e = (γ i) i≥0 ∈ E 0 Cµ , there exists a function f on processes such that

• ∀i ≥ 0, ∀p ∈ V , f (γ i , p) mod β = γ i (p).t,

• and ∀i ≥ 0, ∀p, q ∈ V , |f (γ i , p) -f (γ i , q)| = d β γ i (p).t, γ i (q).t .