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Abstract

We introduce the notion of gradually stabilizing algorithm as any self-stabilizing

algorithm achieving the following additional feature. If at most τ dynamic steps oc-

cur starting from a legitimate configuration, a gradually stabilizing algorithm first

quickly recover to a configuration from which a specification offering a minimum

quality of service is satisfied. It then gradually converges to specifications offer-

ing stronger and stronger safety guarantees until reaching a configuration (1) from

which its initial (strong) specification is satisfied again, and (2) where it is ready

to achieve gradual convergence again in case of up to τ new dynamic steps. By

definition, a gradually stabilizing algorithm is also self-stabilizing. So, it still recov-

ers within finite time (yet more slowly) after any other finite number of transient

faults, including for example more than τ dynamic steps or other failure patterns

such as memory corruptions, for example.

We illustrate this new property by considering three variants of a synchroniza-

tion problem respectively called strong, weak, and partial weak unison. We propose

a self-stabilizing algorithm which achieves gradual stabilization in the sense that

after one dynamic step from a configuration which is legitimate for the strong uni-

son, it immediately satisfies the specification of partial weak unison, then converges

to the specification of weak unison in at most one round, and finally retrieves, after

at most (µ+ 1)D1 + 1 additional rounds, a configuration (1) from which the spec-

ification of strong unison is satisfied, and (2) where it is ready to achieve gradual

convergence again in case of another dynamic step. D1 is the diameter of the net-

work after the dynamic step, and µ is a parameter satisfying µ ≥ n + #J , where

n is the initial number of processes and #J is an upper bound on the number of

processes that join the system during a dynamic step.

Keywords: Self-stabilization, synchronization problems, unison, gradual stabilization,

superstabilization, safe-convergence.
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1 Introduction

In 1974, Dijkstra [9] introduced self-stabilization, a general paradigm to enable the design

of distributed systems tolerating any finite number of transient faults.1 Consider the

first configuration after all transient faults cease. This configuration is arbitrary, but

no other transient faults will ever occur from this configuration. By abuse of language,

this configuration is referred to as arbitrary initial configuration of the system in the

literature. Then, a self-stabilizing algorithm (provided that faults have not corrupted

its code) guarantees that starting from an arbitrary initial configuration, the system

recovers within finite time, without any external intervention, to a so-called legitimate

configuration from which its specification is satisfied. Thus, self-stabilization makes no

hypotheses on the nature (e.g., memory corruptions or topological changes) or extent of

transient faults that could hit the system, and the system recovers from the effects of

those faults in a unified manner. Such versatility comes at a price, e.g., after transient

faults cease, there is a finite period of time, called the stabilization phase, during which the

safety properties of the system are violated. Hence, self-stabilizing algorithms are mainly

compared according to their stabilization time, the maximum duration of the stabilization

phase. For many problems, the stabilization time is significant, e.g., for synchronization

problems [2] and more generally for non-static problems [13] (such as token passing) the

lower bound is Ω(D) rounds, where D is the diameter of the network. By definition, the

stabilization time is impacted by worst case scenarios. Now, in most cases, transient faults

are sparse and their effect may be superficial. Recent research focuses on proposing self-

stabilizing algorithms that also ensure drastically smaller convergence times in favorable

cases.

Defining the number of faults hitting a network using some kind of Hamming distance

(the minimal number of processes whose state must be changed in order to recover a

legitimate configuration), variants of the self-stabilization paradigm have been defined,

e.g., a time-adaptive self-stabilizing algorithm [25] additionally guarantees a convergence

time in O(k) time-units when the initial configuration is at distance at most k from a

legitimate configuration.

The property of locality consists in avoiding situations in which a small number of

transient faults causes the entire system to be involved in a global convergence activity.

Locality is, for example, captured by fault containing self-stabilizing algorithms [14],

which ensure that when few faults hit the system, the faults are both spatially and

temporally contained. “Spatially” means that if only few faults occur, those faults cannot

be propagated further than a preset radius around the corrupted processes. “Temporally”

1Transient faults have low frequency and results in perturbing the state of the system.
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means quick stabilization when few faults occur.

Some other approaches consist in providing convergence times tailored by the type of

transient faults. For example, a superstabilizing algorithm [11] is self-stabilizing and has

two additional properties when transient faults are limited to a single topological change.

Indeed, after adding or removing one link or process in the network, a superstabilizing

algorithm recovers fast (typically O(1) rounds), and a safety predicate, called a passage

predicate, should be satisfied all along the stabilization phase.

Contribution. In this paper, we introduce a specialization of self-stabilization called

gradual stabilization. A gradually stabilizing algorithm is a self-stabilizing algorithm with

the following additional feature. If at most τ dynamic steps2 occur starting from a

legitimate configuration, a gradually stabilizing algorithm first quickly recovers to a con-

figuration from which a specification offering a minimum quality of service is satisfied.

It then gradually converges to specifications offering stronger and stronger safety guar-

antees until reaching a configuration (1) from which its initial (strong) specification is

satisfied again, and (2) where it is ready to achieve gradual convergence again in case of

up to τ new dynamic steps. Of course, the gradual stabilization makes sense only if the

convergence to every intermediate weaker specification is fast.

We illustrate this new property by considering three variants of a synchronization

problem respectively called strong, weak, and partial weak unison. In these problems,

each process should maintain a local clock. We restrict here our study to periodic clocks,

i.e., all local clocks are integer variables whose domain is {0, . . . , α − 1}, where α ≥ 2

is called the period. Each process should regularly increment its clock (modulo α) while

fulfilling some safety requirements. The safety of strong unison imposes that at most

two consecutive clock values exist in any configuration of the system. Weak unison

only requires that the difference between clocks of every two neighbors is at most one

increment. Finally, we defined partial weak unison as a property dedicated to dynamic

systems. It only enforces the difference between clocks of neighboring processes present

before the dynamic steps to remain at most one increment.

We propose a self-stabilizing strong unison algorithm which works with any period

α > 4 in any anonymous connected network. It assumes the knowledge of two values µ

and β, where µ is any upper bound on n, and β should divide α and be greater than µ2.

Our algorithm is designed in the locally shared memory model and assume the distributed

unfair daemon, the most general daemon of the model. Its stabilization time is at most

n+ (µ+ 1)D + 1 rounds, where n (resp. D) is the size (resp. diameter) of the network.

We then slightly modify this algorithm to make it gradually stabilizing assuming at

2N.b., a dynamic step is a step containing topological changes.
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most one dynamic step. In particular, the parameter µ should now be greater than or

equal to n + #J , where #J is an upper bound on the number of processes that join the

system during a dynamic step. Notice that these slight modifications lead to increase

the stabilization time by one round. This new version is gradually stabilizing because

after one dynamic step from a configuration which is legitimate for the strong unison,

it immediately satisfies the specification of partial weak unison, then converges to the

specification of weak unison in at most one round, and finally retrieves, after at most

(µ + 1)D1 + 1 additional rounds (where D1 is the diameter of the network after the dy-

namic step), a configuration (1) from which the specification of strong unison is satisfied,

and (2) where it is ready to achieve gradual convergence again in case of another dynamic

step. The dynamic step may contain several topological events, i.e., link and/or process

additions and/or removals. However, we require that, after those topological changes, the

network should stay connected and if α > 4, every process which joins the system should

be linked to at least one process already in the system before the dynamic step. We

show that this condition, called UnderLocalControl, is necessary to have the gradual con-

vergence. However, the algorithm being self-stabilizing (by definition), it still converges

to a legitimate configuration of the strong unison after the system suffers from arbitrary

other kinds of transient fault including, for example, several dynamic steps that do not

satisfy the UnderLocalControl condition. Now, in such cases, there is no safety guarantees

during the stabilization phase.

Related Work. Gradual stabilization is related to two other stronger forms of self-

stabilization, namely, safe-converging self-stabilization [19] and superstabilization [11].

The goal of a safely converging self-stabilizing algorithm is to first quickly (within O(1)

rounds is the usual rule) converge from an arbitrary configuration to a feasible legitimate

configuration, where a minimum quality of service is guaranteed. Once such a feasible

legitimate configuration is reached, the system continues to converge to an optimal le-

gitimate configuration, where more stringent conditions are required. Hence, the aim of

safe-converging self-stabilization is also to ensure a gradual convergence, but only for two

specifications. However, this gradual convergence is stronger than ours as it should be

ensured after any step of transient faults,3 while the gradual convergence of our prop-

erty applies after dynamic steps only. Safe convergence is especially interesting for self-

stabilizing algorithms that compute optimized data structures, e.g., minimal dominating

sets [19], approximately minimum weakly connected dominating sets [21], approximately

minimum connected dominating sets [20, 22], and minimal (f, g)-alliances [7]. However,

to the best of our knowledge, no safe-converging algorithm for non-static problems, such

3Such transient faults may include topological changes, but not only.
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as unison for example, has been proposed until now.

In superstabilization, like in our approach, fast convergence and the passage predi-

cate should be ensured only if the system was in a legitimate configuration before the

topological change occurs. In contrast with our approach, superstabilization ensures fast

convergence to the original specification. However, this strong property only considers

one dynamic step consisting in only one topological event: the addition or removal of

one link or process in the network. Again, superstabilization has been especially studied

in the context of static problems, e.g., spanning tree construction [11, 4, 3], and color-

ing [11]. However, notice that there exist few superstabilizing algorithms for non-static

problems, such as mutual exclusion [16, 23].

We use the general term unison to name several close problems also known in the lit-

erature as phase or barrier synchronization problems. There exists many self-stabilizing

algorithms for the strong as well as weak unison problem, e.g., [15, 1, 17, 27, 18, 6, 28].

However, to the best of our knowledge, until now, no self-stabilizing solution for such

problems addresses specific convergence properties in case of topological changes (in par-

ticular, no superstabilizing ones). Self-stabilizing strong unison was first considered in

synchronous anonymous networks. Particular topologies were considered in [17] (rings)

and [27] (trees). Gouda and Herman [15] proposed a self-stabilizing algorithm for strong

unison working in anonymous synchronous systems of arbitrary connected topology. How-

ever, they considered unbounded clocks. A solution working with the same settings, yet

implementing bounded clocks, is proposed in [1]. In [28], an asynchronous self-stabilizing

strong unison algorithm is proposed for arbitrary connected rooted networks.

Johnen et al. investigated asynchronous self-stabilizing weak unison in oriented trees

in [18]. The first self-stabilizing asynchronous weak unison for general graphs was pro-

posed by Couvreur et al. [8]. However, no complexity analysis was given. Another solution

which stabilizes in O(n) rounds has been proposed by Boulinier et al. in [6]. Finally,

Boulinier proposed in his PhD thesis a parametric solution which generalizes both the

solutions of [8] and [6]. In particular, the complexity analysis of this latter algorithm

reveals an upper bound in O(D.n) rounds on the stabilization time of the Couvreur et

al.’ algorithm.

Roadmap. The rest of the paper is organized as follows. In the next section, we

define the computational model used in this paper. In Section 3, we recall the formal

definition of self-stabilization, and introduce the notion of gradual stabilization. The

three variants of the unison problem considered in this paper are defined in Section 4. In

Section 5, we show that condition UnderLocalControl is necessary to obtain our gradually

stabilizing solution. We present our self-stabilizing strong unison algorithm in Section 6.
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The gradually stabilizing variant of this latter algorithm is proposed in Section 7. We

make concluding remarks in Section 8. Some useful results from [5] are recalled in the

appendix.

2 Preliminaries

We consider the locally shared memory model introduced by Dijkstra [9] enriched with

the notion of topological changes. Thereupon, we follow an approach similar to the one

used by Dolev in the context of superstabilization [10].

2.1 Processes

We consider distributed systems made of anonymous processes. The system initially

contains n > 0 processes and its topology is connected, however it may suffer from topo-

logical changes along the time. Each process p can directly communicate with a subset

p.N of other processes, called its neighbors. In our context, p.N can vary over time.

Communications are assumed to be bidirectional, i.e., for any two processes p and q,

q ∈ p.N ⇔ p ∈ q.N at any time. Communications are carried out by a finite set of

locally shared variables at each process: each process can read its own variables and

those of its (current) neighbors, but can only write into its own variables. The state of

a process is the vector of values of its variables. We denote by S the set of all possible

states of a process.

Each process updates its variables according to a local algorithm. The collection of

all local algorithms defines a distributed algorithm. In the distributed algorithm A, the

local algorithm of p consists of a finite set of actions of the following form:

〈 label 〉 :: 〈 guard 〉 → 〈 statement 〉

The labels are used to identify actions in the reasoning. The guard of an action is a

Boolean predicate involving variables of p and its neighbors. The statement is a sequence

of assignments on variables of p. If the guard of some action evaluates to true, then the

action is said to be enabled at p. By extension, if at least one action is enabled at p, p

is said to be enabled. An action can be executed only if it is enabled. In this case, the

execution of the action consists in executing its statement, atomically.

A configuration γi of the system is a pair (Gi, Vi → S). Gi = (Vi, Ei) is a simple

undirected graph which represents the topology of the network in configuration γi, i.e.,

Vi is the set of processes that are in the system in γi and Ei ⊆ Vi × Vi represents the

communication links between processes of Vi in γi: ∀p, q ∈ Vi, {p, q} ∈ Ei ⇔ p ∈ q.N
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in γi. Vi → S is a function which associates a state to any process of Vi. For sake of

simplicity, we denote by γi(p) the state of process p ∈ Vi in configuration γi. Moreover,

γi(p).x denotes the value of the x-variable at process p in configuration γi. We denote by

C the set of all possible configurations.

2.2 Executions

The dynamicity and asynchronism of the system are materialized by an adversary, called

daemon. To perform a step from a configuration γi, the daemon can

• activate some processes (of Vi) that are enabled in γi — each activated process

executes one of its enabled action according to its own state and that of its neighbors

in γi, and/or

• modify the topology.

Activation of enabled processes and/or topology modifications are done atomically, lead-

ing to a new configuration γi+1. The set of all possible steps induces a binary relation

over configurations noted 7→ ⊆ C × C, in which we exclude empty steps of the form

γi 7→ γi.

We distinguish two kinds of steps, i.e., 7→ is partitioned into 7→s and 7→d. Relation 7→s

define all possible static steps, i.e., all steps consisting in activations of enabled processes

only. Relation 7→d define all possible dynamic steps, i.e., all steps containing topological

changes (and possibly some process activations).

An execution is any sequence of configurations γ0, γ1, . . . such that G0 is connected

and ∀i ≥ 0, γi 7→ γi+1. For sake of simplicity, we note G0 = G = (V,E); we also note D
the diameter of G and we recall that |V | = n. Moreover, we define Eτ the set of maximal

executions which contain at most τ dynamic steps. The set of all possible executions is

therefore equal to E = ∪τ≥0Eτ . Notice that ∀i, j ∈ N, i ≤ j implies E i ⊆ E j. For any

subset of configurations X ⊆ C, we denote by EτX the set of all executions in Eτ that start

from a configuration of X.

2.3 Static Steps

Let γi be a configuration. The daemon can choose to make a static step from γi only if

there exists at least one enabled process. In this case, it first selects a non-empty subset

S of enabled processes. Next, every process p ∈ S atomically executes one of its enabled

actions, leading the system to a new configuration, say γi+1. In this case, γi 7→s γi+1

with, in particular, Gi = Gi+1.
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2.4 Dynamic Steps

Let γi 7→d γi+1 be a dynamic step. We have in particular that Gi+1 6= Gi. Precisely, the

step γi 7→d γi+1 contains a finite number of topological events and maybe some process

activations (like in static steps). Each topological event is of the following types.

A process p can join the system. This event is denoted by joinp and triggers the atomic

execution of a specific action, called bootstrap, which initializes the variables of p to a

particular state, called bootstate. This bootstrap is executed without any communication.

We denote by Newk the set of processes which are in bootstate in γk. When p joins

the system in γi 7→d γi+1, we have p ∈ Newi+1, but p /∈ Newi. Moreover, until p

executes its very first action, say in step γx 7→ γx+1, it is still in bootstate. Hence

∀j ∈ {i + 1, . . . , x}, p ∈ Newj, but p /∈ Newx+1. We assume that there are at most #J

joins in the system during a dynamic step.

A process can also leave the system. Finally, some communication links can appear

or disappear between two different processes.

Several joins, leaves, as well as link appearances and disappearances can be made in

the same step γi 7→d γi+1.

2.5 Daemon

As previously explained, executions are driven by a daemon. We assume the daemon is

distributed and unfair. In a static step, a distributed daemon must select at least one

enabled process (maybe more). In a dynamic step, a distributed daemon can select 0,

1, or several enabled processes. An unfair daemon has no fairness constraint, i.e., it

might never select a process p during any step unless in the case of a static step from

a configuration where p is the only enabled process. Moreover, at each configuration,

an unfair daemon freely chooses between making a static or dynamic step, except if no

more process is enabled; in this latter case, only a dynamic step containing no process

activation can be chosen.

2.6 Functional Specification and Performances

A distributed algorithm A is designed to ensure some functional properties called its

specification. A specification SP is a predicate over E .

We measure the time complexity of our algorithms in terms of rounds [12]. The first

round of an execution e = (γi)i≥0 is the minimal prefix e′ of e such that every enabled

process in γ0 either executes an action or is neutralized (defined below). Let γj be the

last configuration of e′, the second round of e is the first round of e′′ = (γi)i≥j, and so

forth.
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Neutralized means that a process p is enabled in a configuration γi but either p is no

more in the system in the next configuration γi+1, or p is not enabled in γi+1 but does

not execute any action during the step γi 7→ γi+1.

3 Stabilization

3.1 Self-stabilization

Below we recall the definitions of some notions classically used in self-stabilization. No-

tice that all these notions are defined by only considering executions free of topological

changes, yet starting from an arbitrary configuration. Indeed, self-stabilization consid-

ers the system immediately after the transient faults cease. So, the system is initially

observed from an arbitrary configuration reached due to occurrence of transient faults

(including some topological changes maybe), but from which no faults (in particular, no

topological changes) will ever occur.

Let A be a distributed algorithm. Let X, Y ⊆ C be two subsets of configurations. X

is closed under A if and only if ∀γ, γ′ ∈ C, (γ ∈ X ∧ γ 7→s γ
′) ⇒ γ′ ∈ X. Y converges

to X under A if and only if ∀e ∈ E0Y ,∃γ ∈ e such that γ ∈ X. A stabilizes from Y to a

specification SP by X if and only if

• X is closed under A,

• Y converges to X under A,

• and ∀e ∈ E0X , SP (e).

Moreover, the convergence time in steps (resp. rounds) from Y to X is the maximal

number of steps (or rounds, respectively) to reach a configuration of X in over every

execution of E0Y .

Self-stabilization has been defined by Dijkstra in 1974 [9] as follows: a distributed

algorithm A is self-stabilizing for a specification SP if and only if ∃L ⊆ C, A stabilizes

from C to SP by L.

L (resp. C \ L) is then said to be a set of legitimate configurations (resp. illegitimate

configurations) w.r.t. SP . The stabilization time of A is then the convergence time from

C to L.

3.2 Gradual Stabilization under τ-Dynamics

We now introduce a specialization of self-stabilization called gradual stabilization under

τ -dynamics which requires that after at most τ dynamic steps from a legitimate config-
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uration, the system re-stabilizes gradually to stronger and stronger specifications, until

reaching a configuration (1) from which its initial (strong) specification is satisfied again,

and (2) where it is ready to achieve gradual convergence again in case of up to τ new

dynamic steps. Of course, the gradual stabilization makes sense only if the convergence

to every intermediate weaker specification is fast.

Let τ ≥ 0. For a given execution e = (γi)i≥0 ∈ Eτ , let first(e) be the integer such

that γfirst(e) is the first configuration of e after the last topological change. Formally,

first(e) is the minimal index such that the suffix of e starting from first(e) contains no

dynamic step: first(e) = min{i : (γj)j≥i ∈ E0}. For any subset of executions E ⊆ Eτ ,
let FC(E) = {γfirst(e) : e = (γi)i≥0 ∈ E} be the set of all configurations that can be

reached after the last topological changes in executions of E (FC() stands for “First

Configuration”).

Let SP1, SP2, . . . , SPk, be an ordered sequence of specifications. Let B1, B2, . . . , Bk

be (asymptotic) complexity bounds such that B1 < B2 < · · · < Bk.

A distributed algorithmA is gradually stabilizing under τ -dynamics for (SP1•B1, SP2•
B2, . . . , SPk •Bk) if and only if ∃L1, . . .Lk ⊆ C such that

1. A stabilizes from C to SPk by Lk, i.e., A is self-stabilizing for SPk.

2. Starting from a legitimate configuration, after at most τ dynamic steps, A gradually

converges to every Li with i ∈ {1, . . . , k}, i.e., ∀i ∈ {1, . . . , k}, we have

• A stabilizes from FC(EτLk) to SPi by Li, and

• the convergence time in rounds from FC(EτLk) to Li is bounded by Bi.

Notice that, by definition, any gradually stabilizing algorithm is also a self-stabilizing

algorithm for SPk. Hence, the performances of any gradually stabilizing algorithm can

be also evaluated at the light of its stabilization time.

Gradual stabilization is related to two other stronger forms of self-stabilization: safe-

converging self-stabilization [19] and superstabilization [11].

The goal of a safely converging self-stabilizing algorithm is to first quickly (within

O(1) rounds is the usual rule) converge from any arbitrary configuration to a feasible

legitimate configuration, where a minimum quality of service is guaranteed. Once such

a feasible legitimate configuration is reached, the system continues to converge to an

optimal legitimate configuration, where more stringent conditions are required. Hence,

the aim of safe-converging self-stabilization is also to ensure a gradual convergence, but

for two specifications. However, this gradual convergence should be ensured after any

step of transient faults (such transient faults can include topological changes, but not

only), while the gradual convergence of our property applies after dynamic steps only.
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A superstabilizing algorithm is self-stabilizing and has two additional properties. In

presence of a single topological change (adding or removing one link or process in the net-

work), it recovers fast (typically O(1)), and a safety predicate, called a passage predicate,

should be satisfied along the stabilization phase. Like in our approach, fast convergence,

captured by the notion of superstabilization time, and the passage predicate should be

ensured only if the system was in a legitimate configuration before the topological change

occurs. In contrast with our approach, superstabilization only considers one dynamic step

consisting in only one topological event: the addition or removal of one link or process

in the network. A superstabilizing algorithm for a specification SP1 can be seen as an

algorithm which is gradually stabilizing under 1-dynamics for (SP0•0, SP1•f) where SP0

is the passage predicate, f is the superstabilization time and the dynamic step consists

of adding or removing one link or process in the network only.

Notice also that the bound Bk captures a complexity similar to the fault gap in fault-

containing algorithms [14]: let P1 be a period of at most τ dynamic steps such that P1

starts in a legitimate configuration; Bk represents the necessary fault-free interval after

P1 and before the next period of at most τ dynamic steps P2 so that the system becomes

ready again to achieve gradual convergence after P2.

4 Unison

We consider several close synchronization problems included here under the general term

of unison. In these problems, each process should maintain a local clock. We restrict here

our study to periodic clocks, i.e., all local clocks are integer variables whose domain is

{0, . . . , α− 1}, where α ≥ 2 is called the period. Each process should regularly increment

its clock (modulo α) while fulfilling some safety requirements. Below we define three

versions of the problem respectively named strong, weak, and partial weak unison.

Strong unison defined below is also known as the phase or barrier synchronization

problem [26, 24]. In the definition, we use the following notation: for every configuration

γi = (Gi, Vi → S), let CV (γi) = {γi(p).clock, p ∈ Vi} be the set of clock values present in

configuration γi.

Specification 1 (Strong Unison). An execution e = (γi)i≥0 satisfies the specification

SPSU of strong unison if and only if

• In any configuration γi ∈ e, there exists at most two different clock values, and if so,

these two values are consecutive (modulo α), i.e., ∀γi ∈ e, |CV (γi)| ≤ 2∧(CV (γi) =

{x, y} ⇒ x = (y + 1) mod α ∨ y = (x+ 1) mod α). (Safety)
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• Every process increments its clock infinitely often in e, i.e., ∀γi ∈ e,∀p ∈ Vi, ∃j > i,

(∀k ∈ {i+ 1...j − 1}, p ∈ Vk ∧ γk(p).clock = γi(p).clock) ∧ (p ∈ Vj ∧ γj(p).clock =

(γi(p).clock + 1) mod α)). (Liveness)

The definition of weak unison below appeared first in [8] under the name of asyn-

chronous unison.

Specification 2 (Weak Unison). An execution e = (γi)i≥0 satisfies the specification SPWU

of weak unison if and only if

• In any configuration γi ∈ e, the clocks of every two neighboring processes differ

from at most one increment (modulo α), i.e., ∀γi ∈ e,∀p ∈ Vi,∀q ∈ γi(p).N ,

γi(p).clock = (γi(q).clock + 1) mod α ∨ γi(q).clock = (γi(p).clock + 1) mod α.

(Safety)

• Every process increments its clock infinitely often in e, i.e., ∀γi ∈ e, ∀p ∈ Vi, ∃j > i,

(∀k ∈ {i+ 1...j − 1}, p ∈ Vk ∧ γk(p).clock = γi(p).clock) ∧ (p ∈ Vj ∧ γj(p).clock =

(γi(p).clock + 1) mod α)). (Liveness)

Finally, in the context of dynamic systems, a straightforward variant of the weak

unison is the following.

Specification 3 (Partial Weak Unison). An execution e = (γi)i≥0 satisfies the specifica-

tion SPPU of partial weak unison if and only if

• In any configuration γi ∈ e, the clocks of any two neighbors which are not in Newi

differ from at most one increment (modulo α), i.e., ∀γi ∈ e,∀p ∈ Vi \ Newi,∀q ∈
γi(p).N \Newi, γi(p).clock = (γi(q).clock+1) mod α∨γi(q).clock = (γi(p).clock+

1) mod α. (Safety)

• Every process increments its clock infinitely often in e, i.e., ∀γi ∈ e, ∀p ∈ Vi, ∃j > i,

(∀k ∈ {i+ 1...j − 1}, p ∈ Vk ∧ γk(p).clock = γi(p).clock) ∧ (p ∈ Vj ∧ γj(p).clock =

(γi(p).clock + 1) mod α)). (Liveness)

The property below sum up the straightforward relationship between the three vari-

ants of unison.

Property 1. SPSU ⇒ SPWU ⇒ SPPU.
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5 Necessary Condition

Through out this section, we assume the existence of a deterministic algorithm A which is

gradually stabilizing under 1-dynamics for (SPPU •0, SPWU •1, SPSU •B) in any arbitrary

anonymous network under the distributed unfair daemon, withB > 1 be any (asymptotic)

complexity bound. Let LASU be the legitimate configurations of A w.r.t. specification

SPSU.

The property given below states that, when α > 3 and once a legitimate configuration

of strong unison is reached, the system necessarily goes through a configuration where

all clocks have the same value between any two increments at the same process.

Property 2. Assume α > 3. For every (γi)i≥0 ∈ E0LASU, for every process p, for every

k ∈ {0, ..., α − 1}, for every i ≥ 0, if p increments its clock from k to (k + 1) mod α

in γi 7→ γi+1 and ∃j > i such that γj(p).clock = (k + 2) mod α, then there exists

x ∈ {i+ 1, ..., j − 1}, such that all clocks have value (k + 1) mod α in γx.

Proof. Let (γi)i≥0 ∈ E0LASU be an execution and p be a process. Let k ∈ {0, ..., α − 1} and

i ≥ 0 such that p increments its clock from k to (k + 1) mod α in γi 7→ γi+1 and ∃j > i

such that γj(p).clock = (k + 2) mod α.

Assume that there is a process q such that γi(q).clock = (k−1) mod α. As the execu-

tion satisfies SPSU, there exists a step after γi in which p increments, due to liveness; but

due to safety, q necessarily increments at the same step. Now, because of the distributed

unfair daemon, we can now build a possible step where p moves, but not q leading to a

configuration where q.clock = (k−1) mod α and p.clock = (k+1) mod α. Hence, there

exists an execution starting from a configuration of LASU which does not satisfy SPSU, a

contradiction.

Hence, ∀q ∈ V, γi(q).clock ∈ {k, (k + 1) mod α}, by the safety of SPSU. Similarly

to the previous case, while there are processes whose clock value is k, no process (in

particular p) can increment its clock from (k + 1) mod α to (k + 2) mod α. Hence,

between γi and γj there exists a configuration where all processes have clock value (k+1)

mod α.

In the following, we will establish that the property UnderLocalControl given below

is a necessary condition for A. The definition of UnderLocalControl uses the notion of

dominating set: a dominating set of the graph G = (V,E) is any subset D of V such

that every node not in D is adjacent to at least one member of D. UnderLocalControl

captures a condition on the network dynamics which is necessary to prevent a notable

desynchronization of clocks. Namely, the network should stay connected and if α > 4,

every process that joins during the dynamic step γ 7→d γ
′ should be “under the control

of” (that is, linked to) at least one process which exists in both γ and γ′.

14
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Figure 1: Execution e′′ in the proof of Theorem 1. The hachured nodes are in bootstate.

Definition 1 (UnderLocalControl). UnderLocalControl holds if and only if for every exe-

cution e = (γi)i≥0 ∈ E1LASU,

1. Gfirst(e) is connected, and

2. if α > 4, then Vfirst(e) \Newfirst(e) is a dominating set.

Lemma 1. For every execution e ∈ E1LASU, Gfirst(e) is connected.

Proof. Assume, by the contradiction, that there is an execution e = (γi)i≥0 ∈ E1LASU such

that Gfirst(e) is disconnected. Let A and B be two connected components of Gfirst(e). By

definition, there exists j ≥ first(e) such that γj ∈ LASU and A and B are defined in all

configurations (γi)i≥j. From γj, all processes regularly increment their clocks in both A

and B by the liveness property of strong unison. Now, as no process of B is linked to

any process of A, the behavior of processes in B has no impact on processes in A and

vice versa. So, liveness implies, in particular, that there always exists enabled processes

in A. Consequently, there exists a possible execution of E1LASU prefixed by γ0 . . . γj where

the distributed unfair daemon only selects processes in A from γj, hence violating the

liveness property of strong unison, a contradiction.

Lemma 2. If α > 4, then for every execution e ∈ E1LASU, Vfirst(e) \ Newfirst(e) is a domi-

nating set.

Proof. We illustrate the following proof with Figure 1. Let e ∈ (γi)i≥0 ∈ E1LASU . Let

x = first(e). Assume, by the contradiction, that α > 4 and Gx is connected, but
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Vx \Newx is not a dominating set. This implies that ∃p ∈ Newx such that ∀q ∈ γx(p).N ,

q ∈ Newx.
First, notice that every process among p and its neighbors are enabled in γx to take

a clock value in {0, . . . , α − 1}. Indeed, assume that the daemon makes a synchronous

step from γx, then the step γx 7→s γx+1 actually corresponds to a complete round (by

definition) and so γx+1 should be a legitimate configuration of weak unison. Let c be the

clock value taken by p if p moves in γx 7→s γx+1.

Consider now another execution e′ in E0LASU (with no topological change) on a graph of

at least two nodes which contains neither p nor its neighbors γx(p).N . Strong unison is

satisfied in e′ and, as α > 4, by Property 2, there is a configuration γS in e′ where every

clock equals (c + 2) mod α. From γS, there is eventually a step in which at least one

process increments its clock to (c+ 3) mod α. Assume not all processes are activated by

the distributed unfair daemon during this step. Then, this step leads to a configuration

γT where there is exactly two values of clock: (c + 2) mod α and (c + 3) mod α, see

Figure 1a.

Consider now another execution e′′ having a prefix common to e′ until γT . Assume

that the daemon introduces a dynamic step at configuration γT . Assume that this step

contains no process activation, but consists in adding p with the same neighborhood as

well as two links from q, a neighbor of p, and two already existing nodes r1 and r2,

such that the clock of r1 (resp. r2) equals (c + 2) mod α (resp. (c + 3) mod α) in γT ,

see Figure 1b. By definition, since strong unison is satisfied in γT (by assumption), the

partial weak unison necessarily holds all along the suffix of e′′ starting at γT+1.

Process p and its neighbors are in a situation similar to the one in γx, so they are

enabled to take a clock value in {0, . . . , α− 1}, in particular p is enabled to take value c.

Assume that the daemon exactly selects p and its neighbors in the next step γT+1 7→ γT+2.

In γT+2 (Figure 1c), the clock of r1 and r2 are respectively equal to (c + 2) mod α and

(c + 3) mod α, since they did not move; moreover, the clock of p is equal to c. Now, q

also chooses a clock value in γT+1 7→s γT+2 and that clock value should differ of at most

one increment (mod α) from the clocks of p, r1, and r2 since partial weak unison holds

in γT+1 and all subsequent configurations. As α > 3, if the clock of q equals:

• c or (c + 1) mod α, the difference between the clocks of q and r2 is at least 2

increments (mod α),

• (c+ 2) mod α or (c+ 3) mod α, the difference between the clocks of q and p is at

least 2 increments (mod α),

• any value in {0, ..., α− 1} \ {c, (c+ 1) mod α, (c+ 2) mod α, (c+ 3) mod α}, the

difference between the clocks of q and r1 is at least 2 increments (mod α).
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Hence, the safety of partial weak unison is necessarily violated in the configuration γT+2

of e′′, a contradiction.

By Lemmas 1 and 2, follows:

Theorem 1. An algorithm A is gradually stabilizing under 1-dynamics for (SPPU •
0, SPWU • 1, SPSU • B) in arbitrary anonymous networks under the distributed unfair

daemon with a set of legitimate configurations w.r.t. specification SPSU noted LASU only if

UnderLocalControl holds.

6 Self-Stabilizing Strong Unison

In this section, we propose an algorithm which is self-stabilizing for the strong unison

problem in any arbitrary connected anonymous network. This algorithm works for any

period α > 4 and is based on an algorithm previously proposed by Boulinier in [5], this

latter is self-stabilizing for the weak unison problem and works for any period β > n2,

where n is the number of processes. We first recall the algorithm of Boulinier, called here

Algorithm WU , in Subsection 6.1. Notice that the notation used in this algorithm will

be also applicable to our algorithms. We give our self-stabilizing algorithm for the strong

unison, Algorithm SU , and its proof of correctness in Subsection 6.2.

6.1 Algorithm WU

Algorithm WU , see Algorithm 1 for its formal code, has been proposed by Boulinier

in his PhD thesis [5]. Actually, it is a generalization of the self-stabilizing weak unison

algorithm proposed by Couvreur et al. [8]. This algorithm being simply self-stabilizing,

it only considers executions without any topological change, yet starting from arbitrary

configuration. The topology of the network then consists in a connected graph G = (V,E)

of n nodes which is fixed all along the execution. Remind that D is the diameter of G.

In AlgorithmWU , each process p is endowed with a clock variable p.t ∈ {0, . . . , β−1},
where β is its period. β should be greater than n2. The algorithm also uses another

constant, noted µ, which should satisfy n ≤ µ ≤ β
2
. The algorithm uses the following

notations.

Notations. We define the delay between two integer values x and y by the function

dβ
(
x, y
)

= min
(
(x − y) mod β, (y − x) mod β

)
. Then, let �β,µ be the relation such

that for every two integer values x and y, x �β,µ y ≡
(
(y − x) mod β

)
≤ µ.
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The Algorithm. Two actions are used to maintain the clock p.t at each process p.

When the delay between p.t and the clocks of some neighbors is greater than one, but

the maximum delay is not too big (that is, does not exceed µ), then it is possible to

“normally” converge, using Action WU -N , to a configuration where the delay between

those clocks is at most one by making increment the clocks of the most behind processes

among p and its neighbors. Moreover, once legitimacy is achieved, p can “normally”

increment its clock still using Action WU -N when it is on time or one increment late

with all its neighbors. In contrast, if the delay is too big (that is, the delay between the

clocks of p and one of its neighbors is more than µ) and the clock of p is not yet reset,

then p should reset its clock to 0 using Action WU -R.

Algorithm 1 WU , for every process p
Parameters:

β: any positive integer such that β > n2

µ: any positive integer such that n ≤ µ ≤ β
2

Variable:
p.t ∈ {0, . . . , β − 1}

Actions:
WU -N :: ∀q ∈ p.N , p.t �β,µ q.t → p.t← (p.t+ 1) mod β
WU -R :: ∃q ∈ p.N , dβ

(
p.t, q.t

)
> µ ∧ p.t 6= 0 → p.t← 0

From [5], we have the following theorem.

Theorem 2. Algorithm WU is self-stabilizing for SPWU (specification of weak unison)

by the set of legitimate configurations

LWU = {γ ∈ C : ∀p ∈ V, ∀q ∈ γ(p).N , dβ
(
γ(p).t, γ(q).t

)
≤ 1}

in an arbitrary connected network assuming a distributed unfair daemon.

Its stabilization time is at most n + µD rounds, where n (resp. D) is the size (resp.

diameter) of the network and µ is a parameter satisfying n ≤ µ ≤ β
2
.

By definition, D < n, consequently we have:

Remark 1. Once Algorithm WU has stabilized, the delay between t-clocks of any two

arbitrary far processes is at most n− 1, the size of the network.

Complexity Analysis. Let Cµ be the set of configurations where the delay between

two neighboring clocks is at most µ. Below, we prove in Lemma 3 (resp. Lemma 4) a

bound on the time required to ensure that all t-variables have incremented k times which

holds since the system has reached a configuration of Cµ (resp. LWU).
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Lemma 3. ∀k ≥ 1, ∀e ∈ E0Cµ, every process p increments p.t executing WU-N at least k

times every µD + k rounds, where D is the diameter of the network.

Proof. Let k ≥ 1. Let e = (γi)i≥0 ∈ E0Cµ . Using Lemma 30, ∀i ≥ 0, there is a function

f on processes such that ∀p ∈ V, f(γi, p) mod β = γi(p).t and ∀p ∈ V , ∀q ∈ p.N ,

dβ
(
γi(p).t, γi(q).t

)
≤ µ. Hence, ∀p, q ∈ V , |f(γi, p)− f(γi, q)| ≤ µD.

For every i ≥ 0, we note fmin
γi

= min{f(γi, x) : x ∈ V }. Action WU -N is enabled

in γi at every process x ∈ V for which γi(x).t = f(γi, x) = fmin
γi

. So, after one round,

every such a process x has incremented its t-variable (executing action WU -N) at least

once. Let γj be the first configuration after one round. Then, fmin
γj
≥ fmin

γi
+ 1. We now

consider γd to be the first configuration after µD+ k rounds, starting from γi. Using the

same arguments as for γj inductively, we have fmin
γd
≥ fmin

γi
+ µD + k (∗).

Let p be a process in V . By definitions of f and fmin
γi

, we have that fmin
γi
≤ f(γi, p) ≤

fmin
γi

+ µD (∗∗). Assume now that p increments ]incr < k times p.t between γi and γd.

Then

f(γd, p) = f(γi, p) + ]incr < f(γi, p) + k (assumption on #incr)

≤ fmin
γi

+ µD + k, by (∗∗)

≤ fmin
γd

, by (∗)

So, p satisfies f(γd, p) < fmin
γd

, a contradiction.

Lemma 4. ∀k ≥ 1, ∀e ∈ E0LWU
, every process p increments its clock p.t executing action

WU-N at least k times every D + k rounds, where D is the diameter of the network.

Proof. The proof of this lemma is exactly the same as the one of Lemma 3, yet replacing

Cµ by LWU and µD by D.

Some other useful results from [5] about Algorithm WU are recalled in Appendix A.

6.2 Algorithm SU

In this subsection, we still assume a non-dynamic context (no topological change) and we

use the notations defined in Subsection 6.1. Algorithm SU is a straightforward adaptation

of AlgorithmWU . More precisely, Algorithm SU maintains two clocks at each process p.

The first one, p.t ∈ {0, . . . , β−1}, is called the internal clock and is maintained exactly as

in Algorithm WU . Then, p.t is used as an internal pulse machine to increment a second,

yet actual, clock of Algorithm SU p.c ∈ {0, . . . , α− 1}, also referred to as external clock.
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Algorithm SU (see Algorithm 2), is designed for any period α > 4. Its actions SU -N

and SU -R are identical to actions WU -N and WU -R of Algorithm WU , except that we

add the computation of the external c-clock in their respective statement.

We already know that Algorithm WU stabilizes to a configuration from which t-

clocks regularly increment while preserving a bounded delay of at most one between two

neighboring processes, and so of at most n−1 between any two processes (see Remark 1).

Algorithm SU implements the same mechanism to maintain p.t at each process p and

computes p.c from p.t as a normalization operation from clock values in {0, . . . , β− 1} to

{0, . . . , α−1}: each time the value of p.t is modified, p.c is updated to
⌊
α
β
p.t
⌋
. Hence, we

can set β in such way that K = β
α

is greater than or equal to n (here, we chose K > µ ≥ n

for sake of simplicity) to ensure that, when the delay between any two t-clocks is at most

n − 1, the delay between any two c-clocks is at most one, see Figure 2. Furthermore,

the liveness of WU ensures that every t-clock increments infinitely often, hence so do

c-clocks.

Algorithm 2 SU , for every process p
Parameters:

α: any positive integer such that α > 4
µ: any positive integer such that µ ≥ n
β: any positive integer such that β > µ2 and ∃K such that K > µ and β = Kα

Variables:
p.c ∈ {0, . . . , α− 1}
p.t ∈ {0, . . . , β − 1}

Actions:
SU -N :: ∀q ∈ p.N , p.t �β,µ q.t → p.t← (p.t+ 1) mod β

p.c←
⌊
α
β
p.t
⌋

SU -R :: ∃q ∈ p.N , dβ
(
p.t, q.t

)
> µ → p.t← 0

∧ p.t 6= 0 p.c← 0

Remark 2. Notice that β > µ2, so β ≥ 2µ when µ ≥ 2. Moreover, α > 4 and β is a

multiple of α, so β ≥ 5. Thus, β ≥ 2µ also holds if µ = 1.

Remark 3. By construction and from Remark 2, all results on t-clocks in AlgorithmWU
also holds for t-clocks in Algorithm SU .

Theorem 3 below states that Algorithm SU is self-stabilizing for the strong unison

problem. We detail the proof of this intuitive result in the sequel.

Theorem 3. Algorithm SU is self-stabilizing for SPSU (the specification of the strong

unison) in any arbitrary connected anonymous network assuming a distributed unfair

daemon. Its stabilization time is at most n+ (µ+ 1)D + 1 rounds, where n (resp. D) is

the size (resp. diameter) of the network and µ is a parameter satisfying µ ≥ n.
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6.2.1 Correctness Proof

We first define a set of legitimate configurations w.r.t. specification SPSU (Definition 2).

Then, we prove the closure and convergence w.r.t. those legitimate configurations (see

Lemmas 5 and 6). Afterwards, we prove the correctness w.r.t. specification SPSU in any

execution starting in a legitimate configuration, namely, safety is shown in Lemma 10

and liveness is proven in Lemma 11.

Definition 2 (Legitimate Configurations of SUw.r.t. SPSU). A configuration γ of SU is

legitimate w.r.t. SPSU if and only if

1. ∀p ∈ V , ∀q ∈ γ(p).N , dβ
(
γ(p).t, γ(q).t

)
≤ 1.

2. ∀p ∈ V , γ(p).c =
⌊
α
β
γ(p).t

⌋
.

We denote by LSU the set of legitimate configurations of SU w.r.t. SPSU.

By definition, µ ≥ n > 0, hence from Definition 2, follows.

Remark 4. In any legitimate configuration γ ∈ LSU, ∀p, q ∈ V , dβ
(
γ(p).t, γ(q).t

)
≤ µ.

Lemma 5 (Closure). LSU is closed under SU .

Proof. First, from Theorem 2, note that the set of legitimate configurations defined for

WU is also closed for SU . Hence we only have to check closure for the second constraint

of Definition 2, the one on c-variables .

Let γ ∈ LSU be a legitimate configuration of SU and let γ 7→s γ
′ be a static step

of SU . Let p ∈ V . As γ ∈ LSU, γ(p).c =
⌊
α
β
γ(p).t

⌋
. Either p does not execute any

action during step γ 7→s γ
′, or p executes SU -N or SU -R. These two actions update p.c

according to the new value of p.t. Hence γ′(p).c =
⌊
α
β
γ′(p).t

⌋
.

Lemma 6 (Convergence). C (the set of all possible configurations) converges to LSU

under SU .

Proof. From Theorem 2, the set of legitimate configurations for WU is also reached in a

finite number of steps for SU . Hence, we only have to check that the second constraint

(the one on c-variables) is also achievable within a finite number of steps.

Again using Theorem 2, liveness of Specification SPWU is ensured byWU and therefore

by SU . Hence, after stabilization, each process p updates its internal clock p.t within a

finite time; meanwhile p.c is also updated to
⌊
α
β
p.t
⌋
.

Lemmas 7, 8 and 9 are technical results on the values of t- and c- variables that will

be used to prove that the safety of Specification SPSU is achieved in any execution that
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Figure 2: Relationship between variables t and c.

starts from a legitimate configuration. For all these lemmas, we assume that α, β, K

are positive numbers that satisfies the constraint declared on the Parameters section of

Algorithm SU , namely β = Kα.

Lemma 7. Let x ∈ {0, . . . , α− 1} and ξ ∈ {0, . . . , β
α
− 1}. The following equality holds:⌊

α
β

(
xβ
α

+ ξ
)⌋

= x.

Proof. Let x ∈ {0, . . . , α − 1} and ξ ∈ {0, . . . , β
α
− 1}. As

⌊
α
β

(
xβ
α

+ ξ
)⌋

=
⌊
x+ α

β
ξ
⌋

=

x+
⌊
α
β
ξ
⌋

and ξ ∈ {0, . . . , β
α
− 1}, we have that 0 ≤ α

β
ξ < 1 and therefore

⌊
α
β
ξ
⌋

= 0.

We apply Lemma 7 by instantiating the value of the internal clock t with xβ
α

+ξ. Since

the value of the external clock c is computed as
⌊
α
β
t
⌋

in Algorithm 2, we have c = x.

Now, if we chose β (period of internal clocks) such that it can be written as β = Kα

with K a positive integer, the value of c =
⌊
α
β
t
⌋

is always a non negative integer which

evolves according to t = cβ
α

+ ξ as shown in Figure 2.

Lemma 8. Let x1, x2 ∈ {0, . . . , α−1} and ξ1, ξ2 ∈ {0, . . . , βα−1}. The following assertion

holds: x1
β
α

+ ξ1 ≤ x2
β
α

+ ξ2 ⇒ x1 ≤ x2

Proof. Let x1, x2 ∈ {0, . . . , α−1} and ξ1, ξ2 ∈ {0, . . . , βα−1}. If x1
β
α

+ξ1 ≤ x2
β
α

+ξ2, then

we have that x1 − x2 ≤ (ξ1 − ξ2)/K. As ξ1, ξ2 ∈ {0, . . . , K − 1}, we have (ξ2 − ξ1)/K ≤
1−1/K. By transitivity, we obtain that x1−x2 ≤ 1−1/K < 1. As x1 and x2 are natural

integers, so is their difference; this proves that x1 − x2 ≤ 0

Again, Lemma 8 will be used with the internal clock t = cβ
α

+ ξ: this establishes the

monotonic relation between internal and external clocks.
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Lemma 9. Let t1, t2 ∈ {0, ..., β − 1}. The following assertion holds:

∀d < K, dβ
(
t1, t2

)
≤ d⇒ dα

( ⌊α
β
t1

⌋
,

⌊
α

β
t2

⌋ )
≤ 1

Proof. Let t1, t2 ∈ {0, ..., β − 1} such that dβ
(
t1, t2

)
≤ d. We write t1 and t2 as t1 =

x1K + ξ1 and t2 = x2K + ξ2 where x1, x2 ∈ {0, . . . , α− 1} (resp. ξ1, ξ2 ∈ {0, . . . , K − 1})
are the quotients (resp. remainders) of the Euclidean division of t1, t2 by K. From

Lemma 7, we have that bt1/Kc = x1 and bt2/Kc = x2.

Assume, by contradiction, that dα
(
x1, x2

)
> 1. By definition, this means that

min
(
(x1−x2) mod α, (x2−x1) mod α

)
> 1. This implies that both (x1−x2) mod α >

1 and (x2−x1) mod α > 1. As dβ
(
t1, t2

)
≤ d, min

(
(t1− t2) mod β, (t2− t1) mod β

)
≤

d. Without loss of generality, assume that (t1 − t2) mod β ≤ d. There are two cases:

1. If t1 ≥ t2, then (t1 − t2) mod β = t1 − t2. So, t1 − t2 ≤ d.

Now, as t1 ≥ t2, x1 ≥ x2 by Lemma 8. Hence x1 − x2 = (x1 − x2) mod α > 1.

As x1 and x2 are natural numbers, this implies that x1 − x2 ≥ 2. We rewrite the

inequality as x1K + ξ1 − x2K − ξ2 ≥ 2K + ξ1 − ξ2. Since ξ1, ξ2 ∈ {0, . . . , K − 1},
we have −K < ξ1 − ξ2 < K and therefore x1K + ξ1 − x2K − ξ2 > K > d. Hence,

t1 − t2 > d, a contradiction.

2. If t1 < t2, then (t1 − t2) mod β = β + t1 − t2. So, β + t1 − t2 ≤ d.

Now, as t1 < t2, x1 ≤ x2 by Lemma 8. Hence (x1 − x2) mod α = α+ x1 − x2 > 1.

As x1 and x2 are natural numbers, this implies that α+x1−x2 ≥ 2. We rewrite the

inequality as β+x1K+ ξ1−x2K− ξ2 ≥ 2K+ ξ1− ξ2. Since ξ1, ξ2 ∈ {0, . . . , K−1},
we have −K < ξ1−ξ2 < K and therefore β+x1K+ξ1−x2K−ξ2 > K > d. Hence,

β + t1 − t2 > d, a contradiction.

As previous lemmas, Lemma 9 will be used with the internal clock t = cβ
α

+ ξ: it

expresses that once internal clocks have stabilized at a delay smaller than d, external

clocks are at delay smaller than 1. We now prove that Algorithm 2 achieves the safety

and liveness properties of SPSU in any execution starting from a legitimate configuration.

Lemma 10 (Safety). Every execution e ∈ E0LSU satisfies the safety of SPSU.

Proof. Let γ ∈ LSU: the delay (β) between any two internal clocks t in γ is upper bounded

by n − 1 and for any process, p ∈ V , γ(p).c =
⌊
α
β
γ(p).t

⌋
. Hence, using Lemma 9 with

d = n− 1 < K, we have ∀p, q ∈ V , dα
(
γ(p).c, γ(q).c

)
≤ 1. As α > 4, this proves that the

variables c in γ have at most two different consecutive values.
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Finally, as the set LSU is closed (Lemma 5), we are done.

Lemma 11 (Liveness). Every execution e ∈ E0LSU satisfies the liveness of SPSU.

Proof. Let e = (γi)i≥0 ∈ E0LSU . Let p be a process. γ0 is a legitimate configuration of WU
so p increments infinitely often p.t using Action SU -N (by Theorem 2 and Remark 3).

So p.t goes through each integer value between 0 and β − 1 infinitely often (in increasing

order). Hence, by Lemma 7, p.c is incremented infinitely often and goes through each

integer value between 0 and α− 1 (in increasing order).

Proof of Theorem 3. Lemma 5 (closure), Lemma 6 (convergence), Lemmas 10 and

11 (correctness) prove that Algorithm SU is self-stabilizing for SPSU in any arbitrary

connected anonymous network assuming a distributed unfair daemon. 2

6.2.2 Complexity Analysis

We now give some complexity results about Algorithm SU . Precisely, a bound on the

stabilization time of SU is given in Theorem 4. Then, a delay between any two consecutive

clocks increments, which holds once SU has stabilized, is given in Theorem 5.

Theorem 4. The stabilization time of SU to LSU is at most n + (µ + 1)D + 1 rounds,

where n (resp. D) is the size (resp. diameter) of the network.

Proof. Let (γi)i≥0 ∈ E0. The behavior of the t-variables in SU is similar to that of WU
(Remark 3), which stabilizes in at most n + µD rounds (see Theorems 11 and 12) to

weak unison. So, in n + µD rounds, the delay between the t-clocks of any two arbitrary

far processes is at most n − 1 (Remark 1). If c-variables are well-calculated according

to t-variables, i.e., if c =
⌊
α
β
t
⌋
, then the delay between the c-clocks of any two arbitrary

far processes is at most 1 (Lemma 9). In at most D + 1 additional rounds, each process

executes SU -N (Lemma 4) and updates its c-variable according to its t-variable. Hence,

in at most n+ (µ+ 1)D + 1 rounds, the system reaches a legitimate configuration.

Theorem 5. After convergence of SU to LSU, each process p increments its clock p.c at

least once every D + β
α

rounds, where D is the diameter of the network.

Proof. If DSU converged to LdSU, by Remark 3 and Lemma 4, after D + β
α

rounds, p

increments p.t at least β
α

times. Now, by Lemma 7, if a t-variable is incremented β
α

times,

then its corresponding c-variable is incremented once.
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7 Gradual Stabilization under 1-Dynamics for Strong

Unison

We now propose Algorithm DSU (Algorithm 3), a variant of Algorithm SU . DSU is still

self-stabilizing for strong unison and achieves a gradual convergence after one dynamic

step. Precisely, after any dynamic step which fulfills condition UnderLocalControl (n.b.,

this step may include several topological events), DSU maintains clocks almost synchro-

nized during the convergence to strong unison since it immediately satisfies partial weak

unison, then converges in at most one round to weak unison, and finally re-stabilizes to

strong unison.

Notice that, after one dynamic step, the graph contains at most n+ #J processes, by

definition. Moreover, we denote by D1 the diameter of the new graph.

7.1 Algorithm DSU

Our solution withstands one dynamic step, which may include several topological events

(i.e. link or process additions or removals). However, according to Theorem 1, such a

dynamic step should satisfy Condition UnderLocalControl. Namely, the graph should stay

connected and, as α > 4, every process that joins during the dynamic step γ 7→d γ
′ should

be linked to at least one process which exists in both γ and γ′.

The following theorem allows to simplify proofs and explanations.

Theorem 6. Let X be a closed set of configurations. If UnderLocalControl holds, then

∀γi ∈ C, (∃γj ∈ X | γj 7→d γi)⇔ (∃γk ∈ X | γk 7→donly γi)

where 7→donly is the set of all dynamic steps containing no process activation.

Proof. Let γi ∈ C such that γj 7→d γi with γj ∈ X. If γj 7→donly γi, we are done. Otherwise,

let A be the non-empty subset of processes that are activated in γj 7→d γi. There exists

γj 7→s γu, where A is activated. As X is closed, γu ∈ X. Moreover, ∀x ∈ Gj ∩Gi, x ∈ Gu

(since Gu = Gj) and γu(x) = γi(x). Let γu 7→donly γk such that Gk = Gi. ∀x ∈ Gj ∩ Gi,

x ∈ Gk (since Gk = Gi) and γk(x) = γu(x) = γi(x). Moreover, ∀x ∈ Gi \ Gj, x ∈ Gk

(since Gk = Gi) and γk(x) = γi(x) because in both cases, x is in bootstate. Hence,

γk = γi, and we are done.

The second part of the assertion is trivial since, by definition, 7→donly⊆7→d.

Since, by definition, LdSU is closed, the previous theorem applies: the set of config-

urations reachable from LdSU after one dynamic step (which may also include process
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Figure 3: Delay between neighboring t-clocks may become greater than one after adding
a link (e.g., the dashed one). The value of c- (resp. t-) variable is in the upper (resp.
lower) part of the node.
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(a) Initial configura-
tion.
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(b) After one dy-
namic step where
p2 leaves and link
{p0, p3} is removed.

Figure 4: Delay between neighboring t-clocks remains bounded by one after removing
processes and/or links.

activations) is the same as the one reachable from LdSU after one dynamic step made of

topological events only. At the light of this result, we only consider this latter kind of

dynamic steps in the following explanations.

Consider first link additions only. Adding a link can break the safety of weak unison on

internal clocks, see for example Figure 3. Indeed, adding a link may create a delay between

two (new) neighboring t-clocks greater than one. Nevertheless, the delay between any

two t-clocks remains bounded by n− 1 and, consequently, no process will reset its t-clock

(Figure 3 shows a worst case). Moreover, c-clocks still satisfies strong unison immediately

after the link addition. Besides, since increments are constrained by neighboring clocks,

adding links only reinforces those constraints. Thus, the delay between internal clocks of

arbitrary far processes remains bounded by n− 1, and so strong unison remains satisfied

in all subsequent steps in this case. Consider again example in Figure 3: before the

dynamic step, pn−1 had only to wait until pn−2 increments pn−2.t in order to be able to

increment its own t-clock; yet after the step, it has also to wait for p0.

Assume now a dynamic step containing only process and link removals. Due to

Condition UnderLocalControl, the network remains connected. Hence, constraints between

(still existing) neighbors are maintained: the delay between t-clocks of two neighbors

remains bounded by one, see example on Figure 4. So, weak unison on t-clocks remains

satisfied and so is strong unison on c-clocks.
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ing strong unison.
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(b) After one dynamic step:
link {p1, p2} disappears and link
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(c) Some steps later, strong uni-
son is violated.

Figure 5: Example of execution where one link is added and another is removed: µ = 6,
α = 7, and β = 42.

Consider now a more complex scenario, where the dynamic step contains link ad-

ditions as well as process and/or link removals. Figure 5 shows an example of such a

scenario, where safety of strong unison is violated. As above, the addition of link {p1, p6}
in Figure 5b leads to a delay between t-clocks of these two (new) neighbors which is

greater than one (here 5). However, the removal of link {p1, p2} relaxes the neighborhood

constraint on p2: p2 can now increment without waiting for p1. Consequently, executing

Algorithm SU does not ensure that the delay between t-clocks of any two arbitrary far

processes remains bounded by n − 1, e.g., in Figure 5c, the delay between p1 and p2

is 9 while n − 1 = 5. Since c-clock values are computed from t-clock values, we also

cannot guarantee that there is at most two consecutive c-clock values in the system, see

in Figure 5c p1.c = 1, p6.c = 2, and p2.c = 3.

Again, in the worst case scenario, after a dynamic step, the delay between two neigh-

boring t-clocks is bounded by n−1. Moreover, t-clocks being computed like in Algorithm

WU , we can use two of its useful properties (see [5]): (1) when the delay between every

pair of neighboring t-clocks is at most µ with µ ≥ n, the delay between these clocks

remains bounded by µ because processes never reset; (2) furthermore, from such configu-

rations, the system converges to a configuration from which the delay between the t-clocks

of every two neighbors is at most one. So, keeping µ ≥ n, processes will not reset after

one dynamic step and the delay between any two neighboring t-clocks will monotonically

decrease from at most n − 1 to at most one. Consequently, the delay between any two

neighboring c-clocks (which are computed from t-clocks) will stay less than or equal to

one, i.e., weak unison will be satisfied, all along the convergence to strong unison.

Consider now a process p that joins the system. The event joinp occurs and triggers

the specific action bootstrap that sets both the clocks p.t and p.c to a specific bootstate

value, noted ⊥. Note that by definition and from the previous discussion, the system

immediately satisfies partial weak unison since it only depends on processes that were

in the system before the dynamic step. Now, to ensure that weak unison holds within a
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round, we add the action DSU -J which is enabled as soon as the process is in bootstate.

This action initializes the two clocks of p according to the clock values in its neighborhood.

Precisely, the value of p.t can be chosen among the non-⊥ values in its neighborhood, and

such values exist by Condition UnderLocalControl. We choose to set p.t to the minimum

non-⊥ t-clock value in its neighborhood, using the function MinTimep given below.

MinTimep = 0 if ∀q ∈ p.N , q.t = ⊥;

min{q.t : q ∈ p.N ∧ q.t 6= ⊥} otherwise.

The value of p.c is then computed according to the value of p.t. Notice that MinTimep

returns 0 when p and all its neighbors have their respective t-clock equal to ⊥. This

ensures that Algorithm DSU remains self-stabilizing (in particular, if the system starts

in a configuration where all t-clocks are equal to ⊥).

To prevent the unfair daemon from blocking the convergence to a configuration con-

taining no ⊥ values, we should also forbid processes with non-⊥ t-clock values to in-

crement while there are t-clock with ⊥-values in their neighborhood. So, we define the

predicate Locked which holds for a given process p when either p.t = ⊥, or at least one

of its neighbor q satisfies q.t = ⊥. We then enforce the guard of both normal and reset

actions, so that no Locked-process can execute them. See actions DSU -N and DSU -R.

This will ensure that t-clocks are initialized first by Action DSU -J , before any value in

their neighborhood increments.

Finally, notice that all the previous explanation relies on the fact that, once the system

recovers from process additions (i.e., once no ⊥ value remains), the algorithm behaves

exactly the same as Algorithm SU . Hence, it has to match the assumptions made for

SU . In particular, the assumptions on α and β remain the same. But the constraint on

µ has to be adapted, since µ should be greater than or equal to the actual number of

processes in the network and this number may increase. Now, the number of processes

added in a dynamic step is bounded by #J . So, we require µ to be greater than or equal

to n+ #J .

We now consider the example of execution of Algorithm DSU given in Figure 6. This

execution starts in a configuration satisfying strong unison, see Figure 6a. Then, one

dynamic step happens (step (a) 7→(b)), where a process p6 joins the system. We now try

to delay as long as possible the execution of DSU -J by p6. In configuration (b), p3 and p5,

the new neighbors of p6, are locked. They will remain disabled until p6 executes DSU -J .

p1 and p4 execute DSU -N in (b) 7→(c). Then, p4 is disabled because of p5 and p1 executes

DSU -N in (c) 7→(d). In configuration (d), p1 is from now on disabled: p1 must wait until

p2 and p4 get t-clock value 7. p6 is the only enabled process, so the distributed unfair
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Algorithm 3 DSU , for every process p
Parameters:

α: any positive integer such that α > 4
µ: any positive integer such that µ ≥ n+ #J
β: any positive integer such that β > µ2, and ∃K such that K > µ and β = Kα

Variables:
p.c ∈ {0, . . . , α− 1} ∪ {⊥}
p.t ∈ {0, . . . , β − 1} ∪ {⊥}

Predicates:
Lockedp ≡ p.t = ⊥ ∨ ∃q ∈ p.N , q.t = ⊥
NormalStepp ≡ ¬Lockedp ∧ ∀q ∈ p.N , p.t �β,µ q.t
ResetStepp ≡ ¬Lockedp ∧

(
∃q ∈ p.N , dβ

(
p.t, q.t

)
> µ ∧ p.t 6= 0

)
JoinStepp ≡ p.t = ⊥

Actions:
DSU -N :: NormalStepp → p.t← (p.t+ 1) mod β

p.c←
⌊
α
β
p.t
⌋

DSU -R :: ResetStepp → p.t← 0
p.c← 0

DSU -J :: JoinStepp → p.t←MinTimep

p.c←
⌊
α
β
p.t
⌋

bootstrap :: joinp → p.t← ⊥
p.c← ⊥
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Figure 6: Example of execution where the daemon delays the first step of a new process:
µ = 6, α = 6, and β = 42.

daemon has no other choice: it selects p6 to initialize its variables executing DSU -J in

(d)7→(e).

7.2 Proof of Correctness

Self-stabilization w.r.t. SPSU.

Remark 5. In DSU , if all t-variables have values different from ⊥, predicates JoinStep

and Locked are false. Furthermore, no action can assign ⊥ to t. Consequently,

• when all t-variables have values different from ⊥,

• as far as no topological change occurs,

Algorithms DSU and SU are syntactically identical. This implies in particular, that the

set of executions E0 of SU and the set of executions E0nobot of DSU , where nobot = {γ ∈
C : ∀p ∈ V, γ(p.t) 6= ⊥}, are identical too.

Definition 3 (Legitimate Configurations of DSU w.r.t. SPSU). A configuration γ of

DSU is legitimate w.r.t. SPSU if and only if

• ∀p ∈ V , γ(p).t 6= ⊥

• ∀p ∈ V , ∀q ∈ γ(p).N , dβ
(
γ(p).t, γ(q).t

)
≤ 1

• ∀p ∈ V , γ(p).c =
⌊
α
β
γ(p).t

⌋
.

We denote by LdSU the set of legitimate configurations of DSU w.r.t. SPSU.
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Remark 6. As LdSU restricts the values of t to non-⊥ values, we trivially have the equiv-

alence between LdSU and LSU: for every configuration γ, we have γ ∈ LdSU ⇔ γ ∈ LSU.

Lemma 12 (Closure of LdSU under DSU). The set of configurations LdSU is closed under

DSU .

Proof. Let γ ∈ LdSU be a legitimate configuration of DSU and let γ 7→s γ
′ be a static

step of DSU , from configuration γ. By Remark 6, γ is also in LSU. From Remark 5, the

step γ 7→s γ
′ is also a step under SU since γ contains no ⊥-value and Lemma 5 applies

(LSU is closed under SU). Therefore, γ′ is also in LSU and in LdSU as well, using again

Remark 6.

Lemma 13. For any execution (γi)i≥0 ∈ E0 under DSU , ∃j ≥ 0 such that ∀k ≥ j,

∀p ∈ V , γk(p).t 6= ⊥.

Proof. Let e = (γi)i≥0 ∈ E0. For any i ≥ 0, we note Bottom(γi) = {p ∈ V : γi(p).t = ⊥}.
As actions DSU -N , DSU -R and DSU -J do not create ⊥ values, ∀i > 0, Bottom(γi) ⊆
Bottom(γi−1). Now, assume by contradiction that ∃p ∈ V such that ∀i ≥ 0, p ∈
Bottom(γi). There is a configuration γs, s ≥ 0, from which no ⊥-value disappears

anymore, i.e., ∀p ∈ V , p ∈ Bottom(γs)⇒ ∀i ≥ s, p ∈ Bottom(γi).

If Bottom(γs) = V , every process is enabled for action DSU -J . So, the unfair daemon

selects at least one process to execute action DSU -J and sets its t-variable to a value

different from ⊥, a contradiction with the definition of γs.

Hence there is at least one process that is not in Bottom(γs). Again, if the only

enabled processes are in Bottom(γs), then the unfair daemon has no other choice but

selecting one of them, a contradiction. So, ∀i ≥ s, there exists a process that is enabled

in γi but which is not in Bottom(γi). Remark that this implies in particular that e is an

infinite execution (no terminal configuration reached).

Now, let consider the subgraph G′ of G induced by V \Bottom(γs). G
′ is composed of

a finite number of connected components and, as e is infinite, there is an infinite number

of actions of e executed in (at least) one of these components. Let G′′ = (V ′′, E ′′) be such

a connected component.

Let e′ = (γ′i)i≥0 be the projection of e on G′′ and t-variable: ∀i ≥ 0, ∀x ∈ V ′′,

γ′i(x).t = γi(x).t. We construct e′′ = (γ′′j )j≥0 from e′ by removing duplicate configurations

with the following inductive schema:

• γ′′0 = γ′0,

• and, ∀j > 0, if γ′′0 . . . γ
′′
j represents γ′0 . . . γ

′
k without duplicate configurations, γ′′j+1 =

γ′next, where next = min{l > k : γ′l 6= γ′k}. (Notice that next is always defined as

there is an infinite number of actions executed in G′′.)
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Let L = {p ∈ V ′′ : ∃q ∈ Bottom(γs), {p, q} ∈ E} be the set of processes that are

neighbors of a Bottom(γs) process in G. As G is connected, L is not empty. Furthermore,

during the execution e, Locked holds forever for processes in L, hence are disabled. As a

consequence, in execution e′′, no process in L can execute a static step.

Now, from Remark 3 and 5, and since γ′′0 contains no ⊥ value, e′′ is also an execution

of WU in graph G′′. The fact that existing processes (from the non-empty set L) never

increment their clocks during an infinite execution e′′ of WU is a contradiction with the

liveness of unison (Specification 2) and Theorem 2 which states thatWU is self-stabilizing

for unison under an unfair daemon.

Lemma 14 (Convergence to LdSU). C (the set of all possible configurations) converges

under DSU to the set of legitimate configurations LdSU.

Proof. Let (γi)i≥0 ∈ E0 under DSU . Using Lemma 13, ∃j ≥ 0 such that ∀k ≥ j, ∀p ∈ V ,

γk(p).t 6= ⊥. After γj, the execution of the system, (γk)k≥j, is also a possible execution of

SU (see Remark 5). Hence, it converges to a configuration γk (k ≥ j) in LSU (Lemma 6).

So, using Remark 6, γk ∈ LdSU.

Lemma 15 (Correctness of SPSU under DSU). For every execution e ∈ E0LdSU under DSU ,

SPSU(e).

Proof. From Remark 5, every execution in E0LdSU under DSU is also an execution in E0LSU
under SU . Therefore, the correctness is proven in Lemmas 10 and 11.

Using Lemmas 12, 14 and 15, we can deduce the following theorem:

Theorem 7 (Self-stabilization of DSU w.r.t. strong unison). Algorithm DSU is self-

stabilizing for SPSU in any arbitrary connected anonymous network assuming a distributed

unfair daemon.

Theorem 8 states the stabilization time of DSU .

Theorem 8. The stabilization time of DSU to LdSU is at most n + (µ + 1)D + 2, where

n (resp. D) is the size (resp. diameter) of the network, and µ is a parameter satisfying

µ ≥ n.

Proof. Let (γi)i≥0 ∈ E0. If there are some processes p such that γ0(p).t = ⊥, DSU -J is

continuously enabled at p. So, after at most one round p.t 6= ⊥. Afterwards, the behavior

of the algorithm is similar to the one of SU , which stabilizes in at most n+ (µ+ 1)D+ 1

rounds (see Theorem 4). Hence, in at most n+ (µ+ 1)D + 2 rounds, the system reaches

a legitimate configuration.
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Immediate stabilization to SPPU after one dynamic step.

Definition 4 (Legitimate Configurations of DSU w.r.t. SPPU). A configuration γ of

DSU is legitimate w.r.t. SPPU if and only if

a. ∀p ∈ V , γ(p).t = ⊥ ⇒
(
∃q ∈ γ(p).N , γ(q).t 6= ⊥

)
.

b. ∀p ∈ V, ∀q ∈ γ(p).N ,
(
γ(p).t 6= ⊥ ∧ γ(q).t 6= ⊥

)
⇒
(
dβ
(
γ(p).t, γ(q).t

)
≤ µ

)
.

c. ∀p, q ∈ V ,
(
γ(p).t 6= ⊥ ∧ (∃x ∈ γ(p).N , γ(x).t = ⊥)∧
γ(q).t 6= ⊥ ∧ (∃y ∈ γ(q).N , γ(y).t = ⊥)

)
⇒
(
dβ
(
γ(p).t, γ(q).t

)
≤ µ

) .

d. ∀p ∈ V , γ(p).t 6= ⊥ ⇒ γ(p).c =
⌊
α
β
γ(p).t

⌋
.

We denote by LdPU the set of legitimate configurations of DSU w.r.t. SPPU.

Lemma 16 (Closure of LdPU under DSU). The set of configurations LdPU is closed under

DSU .

Proof. Let γ ∈ LdPU be a legitimate configuration of DSU and let γ 7→s γ
′ be a computa-

tion step of DSU , from configuration γ. In γ, action DSU -R is disabled for all processes:

a process can only execute action DSU -N or DSU -J depending whether its clock is ⊥
or not.

a. Let p ∈ V such that γ′(p).t = ⊥. As no action can set p.t to ⊥, γ(p).t = ⊥ and by

Definition 4, ∃q ∈ γ(p).N such that γ(q).t 6= ⊥. Lockedq holds in γ (because of p).

Hence, q is disabled in γ and γ(q).t = γ′(q).t 6= ⊥.

b. Let p ∈ V and q ∈ γ(p).N such that γ′(p).t 6= ⊥ and γ′(q).t 6= ⊥.

1. If γ(p).t 6= ⊥ and γ(q).t 6= ⊥, as γ ∈ LdPU, dβ
(
γ(p).t, γ(q).t

)
≤ µ. Now, p

and q can only execute action DSU -N during γ 7→s γ
′. If both p and q, or

none of them, execute action DSU -N , the delay between p.t and q.t remains

the same. If only one of them, say p, executes action DSU -N , p.t �β,µ q.t
holds in γ. So, either γ(p).t = γ(q).t and dβ

(
γ′(p).t, γ′(q).t

)
= 1 ≤ µ, or the

increment of p.t decreases the delay between p.t and q.t and again we have

dβ
(
γ′(p).t, γ′(q).t

)
≤ µ.

2. If γ(p).t = ⊥ and γ(q).t 6= ⊥, as γ ∈ LdPU, ∃x ∈ γ(p).N such that γ(x).t 6= ⊥.

We choose x as such a neighbor of p, with minimum value for t, i.e., γ(x).t =

MinTimep in γ. Hence, dβ
(
γ(x).t, γ(q).t

)
≤ µ because of Definition 4.c: q

and x have a (common) neighbor p whose t-variable equals ⊥. q is disabled in

γ because of p (Lockedq holds in γ), hence γ(q).t = γ′(q).t. As γ′(p).t = γ(x).t

(since p executes action DSU -J), dβ
(
γ′(p).t, γ′(q).t

)
≤ µ.
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3. If γ(p).t 6= ⊥ and γ(q).t = ⊥, similar to case 2.

4. If γ(p).t = ⊥ and γ(q).t = ⊥, as γ ∈ LdPU, ∃x ∈ p.N such that γ(x).t =

MinTimep 6= ⊥ in γ and ∃y ∈ p.N such that γ(y).t = MinTimeq 6= ⊥ in γ.

Because of Definition 4.c, dβ
(
γ(x).t, γ(y).t

)
≤ µ because they have neighbors

whose t-variables equal ⊥ (p and q, respectively). Since p and q execute action

DSU -J , γ′(p).t = γ(x).t and γ′(q).t = γ(y).t, so dβ
(
γ′(p).t, γ′(q).t

)
≤ µ.

c. Let p, q ∈ V such that γ′(p).t 6= ⊥, ∃x ∈ γ′(p).N with γ′(x).t = ⊥, γ′(p).t 6= ⊥, and

∃y ∈ γ′(q).N with γ′(y).t = ⊥.

As no action can set variable t to ⊥, γ(x).t = ⊥ and γ(y).t = ⊥.

1. If γ(p).t 6= ⊥ and γ(q).t 6= ⊥, as γ ∈ LdPU, dβ
(
γ(p).t, γ(q).t

)
≤ µ. Now, p and q

are disabled in γ (Lockedp, Lockedq) because of x and y, respectively. Hence,

dβ
(
γ′(p).t, γ′(q).t

)
≤ µ.

2. If γ(p).t = ⊥ and γ(q).t 6= ⊥, as γ ∈ LdPU, ∃x′ ∈ γ(p).N such that γ(x′).t =

MinTimep 6= ⊥ in γ. Hence, dβ
(
γ(x′).t, γ(q).t

)
≤ µ because they have neigh-

bors whose t-variables equal ⊥ (p and y, respectively). q is disabled in γ

(Lockedq) because of y: γ(q).t = γ′(q).t. And γ′(p).t = γ(x′).t since p exe-

cutes action DSU -J . So dβ
(
γ′(p).t, γ′(q).t

)
≤ µ.

3. If γ(p).t 6= ⊥ and γ(q).t = ⊥, similar to case 2.

4. If γ(p).t = ⊥ and γ(q).t = ⊥, as γ ∈ LdPU, ∃x′ ∈ γ(p).N such that γ(x′).t =

MinTimep 6= ⊥ in γ and ∃y′ ∈ γ(p).N such that γ(y′).t = MinTimeq 6= ⊥
in γ. Hence, dβ

(
γ(x′).t, γ(y′).t

)
≤ µ because they have neighbors whose t-

variables equal ⊥ (p and q, respectively). γ′(p).t = γ(x′).t and γ′(q).t = γ(y′).t

since p and q execute action DSU -J . So dβ
(
γ′(p).t, γ′(q).t

)
≤ µ.

d . Let p ∈ V such that γ′(p).t 6= ⊥. Two cases are possible: either p executes no

action and the constraint between p.t and p.c is preserved, or p executes an action

DSU -N . In the latter case, the assignment of the action ensures the constraint.

Lemma 17 (Safety of SPPU in E0LdPU). Every execution e ∈ E0LdPU satisfies the safety of

SPPU.

Proof. Let γ ∈ LdPU. By Definition 4, ∀p ∈ V , ∀q ∈ γ(p).N ,
(
γ(p).t 6= ⊥∧ γ(q).t 6= ⊥

)
⇒

dβ
(
γ(p).t, γ(q).t

)
≤ µ. Furthermore, ∀p ∈ V , γ(p).t 6= ⊥ ⇒ γ(p).c =

⌊
α
β
γ(p).t

⌋
. Hence,

using Lemma 9 with d = µ < K, ∀p ∈ V , ∀q ∈ γ(p).N ,
(
γ(p).t 6= ⊥ ∧ γ(q).t 6= ⊥

)
⇒

dα
(
γ(p).c, γ(q).c

)
≤ 1. Finally, as the set LdPU is closed (Lemma 16), we are done.

34



Lemma 18 (Liveness of SPPU in E0LdPU). Every execution e ∈ E0LdPU satisfies the liveness of

SPPU.

Proof. Let e = (γi)i≥0 ∈ E0LdPU . Using Lemma 13, ∃i ≥ 0 such that ∀j ≥ i, ∀p ∈
V , γj(p).t 6= ⊥. The legitimate configurations LdPU are closed (Lemma 16), so γi is a

legitimate configuration w.r.t. SPPU and is also a legitimate configuration of WU so

p increments infinitely often p.t executing action DSU -N (Lemma 27). Furthermore,

actions DSU -R and DSU -J are disabled. So p.t goes through each integer value between

0 and β− 1 infinitely often (in increasing order). Hence, by Lemma 7, p.c is incremented

infinitely often and goes through each integer value between 0 and α − 1 (in increasing

order).

Lemma 19. DSU converges from LdPU to LdWU in a finite time. The convergence time is

at most one round.

Proof. Let (γi)i≥0 ∈ E0LdPU . ∀p ∈ V , such that γ0(p).t = ⊥, action DSU -J is continuously

enabled at p. By Lemma 13, ∃i > 0, such that ∀j ≥ i, ∀p ∈ V , γj(p).t 6= ⊥. Hence,

∃j ∈ {1, . . . , i} such that p executes action DSU -J during γj−1 7→ γj.

So, in at most one round, the system reaches a configuration γk, k ≥ 0, such that

∀p ∈ Vk, γk(p).t 6= ⊥. Now, γ0 ∈ LdPU and LdPU is closed under DSU (Lemma 16), so

γk ∈ LdPU. As there is no t-variable with ⊥ value in γk, γk ∈ LdWU.

Stabilization to SPWU in at most one round after one dynamic step.

Definition 5 (Legitimate Configurations of DSU w.r.t. SPWU). A configuration γ of

DSU is legitimate w.r.t. SPWU if and only if

• ∀p ∈ V , γ(p).t 6= ⊥.

• ∀p ∈ V , ∀q ∈ γ(p).N , dβ
(
γ(p).t, γ(q).t

)
≤ µ.

• ∀p ∈ V , γ(p).c =
⌊
α
β
γ(p).t

⌋
.

We denote by LdWU the set of legitimate configurations of DSU w.r.t. SPWU.

Lemma 20 (Closure of LdWU under DSU). The set of configurations LdWU is closed under

DSU .

Proof. Notice that the first and third constraints of Definition 5 are closed, as for LdSU.

As, (1) for every configuration γ, we have that γ ∈ LdWU ⇒ γ ∈ Cµ, (2) Cµ is closed under

WU (see Lemma 25) and (3) every static step of DSU from LdWU is also a static step for

WU (see Remarks 3 and 5), the second constraint is also closed under DSU .

35



Lemma 21 (Safety of SPWU in E0LdWU
). Every execution e ∈ E0LdWU

satisfies the safety of

SPWU.

Proof. Let γ ∈ LdWU, p ∈ V , and q ∈ γ(p).N . We have that dβ
(
γ(p).t, γ(q).t

)
≤ µ. and

γ(p).c =
⌊
α
β
γ(p).t

⌋
. Using Lemma 9 with d = µ < K, we obtain that dα

(
γ(p).c, γ(q).c

)
≤

1. Finally, as the set LdWU is closed (Lemma 20), we are done.

Lemma 22 (Liveness of SPWU in E0LdWU
). Every execution e ∈ E0LdWU

satisfies the liveness

of SPWU.

Proof. Let e = (γi)i≥0 ∈ E0LdWU
. Let p be a process. γ0 is a legitimate configuration of

WU so p increments infinitely often p.t executing DSU -N (see Lemma 27). Furthermore,

actions DSU -R and DSU -J are disabled. So p.t goes through each integer value between

0 and β− 1 infinitely often (in increasing order). Hence, by Lemma 7, p.c is incremented

infinitely often and goes through each integer value between 0 and α − 1 (in increasing

order).

Gradual stabilization after one dynamic step. We now consider executions in E1LdSU
where UnderLocalControl holds.

Lemma 23. Let γi ∈ LdSU be a legitimate configuration under DSU , γi 7→d γi+1 be a

dynamic step, such that ∀p ∈ Vi+1, γi+1(p).t = ⊥ ⇒ (∃q ∈ γi+1(p).N , γi+1(q).t 6= ⊥),

then γi+1 ∈ LdPU.

Proof. Let γi 7→d γi+1 be a dynamic step such that γi ∈ LdSU and ∀p ∈ Vi+1, γi+1(p).t =

⊥ ⇒ (∃q ∈ γi+1(p).N , γi+1(q).t 6= ⊥). By Theorem 6 and as LdSU is closed (Lemma 12),

the set of reachable configurations from LdSU after one dynamic step satisfying Under-

LocalControl is the same than after one dynamic step satisfying UnderLocalControl with-

out process activations. Hence, we consider here that γi 7→d γi+1 contains no process

activations.

By Definition 3, ∀p ∈ Vi, γi(p).t 6= ⊥, γi(p).c =
⌊
α
β
γi(p).t

⌋
, and ∀q ∈ γi(p).N ,

dβ
(
γi(p).t, γi(q).t

)
≤ 1. Hence ∀p, q ∈ Vi, dβ

(
γi(p).t, γi(q).t

)
≤ µ.

Now, after the dynamic step, in γi+1, the state of processes that are in Vi ∩ Vi+1

remains the same. So, ∀p ∈ Vi+1, ∀q ∈ γi+1(p).N , if γi+1(p).t 6= ⊥ and γi+1(q).t 6= ⊥,

then p, q ∈ Vi ∩ Vi+1. As dβ
(
γi(p).t, γi(q).t

)
≤ µ (Remark 4), dβ

(
γi+1(p).t, γi+1(q).t

)
≤ µ.

Finally, ∀p ∈ Vi+1, if γi+1(p).t 6= ⊥, p ∈ Vi∩Vi+1 so γi+1(p).c = γi(p).c =
⌊
α
β
γi(p).t

⌋
=⌊

α
β
γi+1(p).t

⌋
.

Hence, γi+1 ∈ LdPU.

Lemma 24. DSU converges from LdWU to LdSU in a finite time. The convergence time is

at most (µ+ 1)D1 + 1 rounds.
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Proof. Let e = (γi)i≥0 ∈ E0LdWU
. The behavior of the algorithm is similar to the one of

WU (Remarks 3 and 5). Furthermore, ∀p ∈ V , ∀q ∈ p.N , dβ
(
γ0(p).t, γ0(q).t

)
≤ µ, so

γ0 ∈ Cµ. By Lemma 29, in a finite time, ∀p ∈ V , ∀q ∈ p.N , dβ
(
γ0(p).t, γ0(q).t

)
≤ 1. This

convergence lasts at most µD1 rounds (Theorem 12).

The liveness of weak unison is ensured in e (Lemma 22), so each process eventually

increments its clock executing DSU -N and updates its c-variable. By Lemma 4, the c-

variables are well computed according to t-variables in at most D1 + 1 additional rounds.

Hence, in at most (µ+ 1)D1 + 1 rounds, the system reaches a LdSU.

Since UnderLocalControl imposes that the system remains connected after one dynamic

step, we can use Theorem 7 and Lemmas 20-19 to establish the following theorem:

Theorem 9. If UnderLocalControl is satisfied then DSU is gradually stabilizing under

1-dynamics for (SPPU • 0, SPWU • 1, SPSU • (µ + 1)D1 + 2) , where D1 (resp. n + #J) is

the diameter (resp. an upper bound on the size) of the network after the dynamic step

and µ is a parameter satisfying µ ≥ n+ #J .

Theorem 10 establish a bound on how many rounds are necessary to ensure that a

given process increments its c-clock after the convergence to legitimate configurations

w.r.t. SPSU (resp. SPWU).

Theorem 10. After convergence of DSU to LdWU (resp. LdSU), each process p increments

its clock p.c at least once every µD1 + β
α

rounds (resp. D1 + β
α

rounds).

Proof. By Remarks 3 and 5, we can use results on WU for DSU . If DSU converged

to a configuration γ ∈ LdWU, then γ ∈ Cµ. So, by Lemma 3, after µD1 + β
α

rounds, p

increments p.t at least β
α

times. Now, by Lemma 7, if t-variable is incremented β
α

times,

c-variable is incremented once.

If DSU converged to LdSU, the result of Theorem 5 can be applied (Remark 5). So,

after D1 + β
α

rounds, p increments p.c at least once.

8 Conclusion

The apparent seldomness of superstabilizing solutions for non-static problems, such as

unison, may suggest the difficulty of obtaining such a strong property and if so, make

our notion of gradual stabilization very attractive compared to merely self-stabilizing so-

lutions. For example, in our unison solution, gradual stabilization ensures that processes

remain “almost” synchronized during the convergence phase started after one dynamic

step. Hence, it is worth investigating whether this new paradigm can be applied to other,

in particular non-static, problems.
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Concerning our unison algorithm, the graceful recovery after one dynamic step comes

at the price of slowing down the clock increments. The question of limiting this drawback

remains open.

Finally, it would be interesting to address in future work gradual stabilization for

non-static problems in context of more complex dynamic patterns.

References

[1] Anish Arora, Shlomi Dolev, and Mohamed G. Gouda. Maintaining digital clocks in

step. Parallel Processing Letters, 1:11–18, 1991.

[2] Baruch Awerbuch, Shay Kutten, Yishay Mansour, Boaz Patt-Shamir, and George

Varghese. Time optimal self-stabilizing synchronization. In STOC, pages 652–661,

1993.
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[4] Lélia Blin, Maria Gradinariu Potop-Butucaru, Stephane Rovedakis, and Sébastien
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A Results from [5]

In this section, we recall some useful technical results from [5] about AlgorithmWU . Al-

gorithmWU is an instance of the parametric algorithm GAU in [5]: WU = GAU(β, 0, µ).

The following five lemmas (25-29) are used to establish the self-stabilization of WU
for SPWU by the set of legitimate configurations LWU such that γ ∈ LWU if and only if

∀p ∈ V , ∀q ∈ γ(p).N , dβ
(
γ(p).t, γ(q).t

)
≤ 1.

The proof of self-stabilization is divided into several steps. The first step (Lemma 26)

consists in showing the convergence of WU from C to Cµ, where Cµ is the set of configu-

rations where the delay between the clocks of two neighbors is at most µ, i.e.,

Cµ = {γ ∈ C : ∀p ∈ V, ∀q ∈ γ(p).N , dβ
(
γ(p).t, γ(q).t

)
≤ µ}

Cµ is shown to be closed underWU in Lemma 25. (Notice that LWU ⊆ Cµ.) The liveness

part of SPWU (the clock p.t of every process p goes through each value in {0, . . . , β − 1}
in increasing order infinitely often) is shown for every execution starting from Cµ in

Lemma 27.

Lemma 25 (Property 8 in [5]). Cµ is closed under WU .

Lemma 26 (Theorem 56 in [5]). If n ≤ µ < β
2
, then ∀e ∈ E0, ∃γ ∈ e such that γ ∈ Cµ.

Lemma 27 (Theorem 21 in [5]). If β > n2, then ∀e ∈ E0Cµ, e satisfies the liveness part

of SPWU.

Then, the second step consists of showing closure of LWU underWU (Lemma 28) and

the convergence from Cµ to LWU (Lemma 29). Regarding the correctness, the safety part

of SPWU (two neighboring clocks differ from at most 1) is ensured by definition of LWU,

whereas the liveness part is already ensured by Lemma 27. Precisely:

Lemma 28 (Property 2 in [5]). LWU is closed under WU .

Lemma 29 (Theorems 29 in [5]). If β > n2 and µ < β
2
, then ∀e ∈ E0Cµ, ∃γ ∈ e such that

γ ∈ LWU.

Some performances of Algorithm WU are already recalled in Theorems 11 and 12

(page 41).

Theorem 11 (Theorem 61 in [5]). If n ≤ µ < β
2
, the convergence time of WU from C to

Cµ is at most n rounds.

Theorem 12 (Theorems 20 and 28 in [5]). If β > n2 and µ < β
2
, the convergence time

of WU from Cµ to LWU is at most µD rounds.
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Finally, Lemma 30 below is a technical result about the values of t-variables.

Lemma 30 (Theorem 20, Property 27, and Lemma 22 in [5]). If β > n2 and β > 2µ,

then ∀e = (γi)i≥0 ∈ E0Cµ, there exists a function f on processes such that

• ∀i ≥ 0, ∀p ∈ V , f(γi, p) mod β = γi(p).t,

• and ∀i ≥ 0, ∀p, q ∈ V , |f(γi, p)− f(γi, q)| = dβ
(
γi(p).t, γi(q).t

)
.
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