
HAL Id: hal-01215190
https://hal.science/hal-01215190v2

Submitted on 16 Oct 2015 (v2), last revised 2 Feb 2017 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gradual Stabilization under τ-Dynamics
Karine Altisen, Stéphane Devismes, Anaïs Durand, Franck Petit

To cite this version:
Karine Altisen, Stéphane Devismes, Anaïs Durand, Franck Petit. Gradual Stabilization under τ -
Dynamics. [Technical Report] VERIMAG UMR 5104, Université Grenoble Alpes, France; LIP6 UMR
7606, INRIA, UPMC Sorbonne Universités, France. 2015. �hal-01215190v2�

https://hal.science/hal-01215190v2
https://hal.archives-ouvertes.fr

Gradual Stabilization under τ -Dynamics

Karine Altisen,§ Stéphane Devismes,§ Anäıs Durand,§ and Franck Petit†

§VERIMAG UMR 5104, Université Grenoble Alpes, France

†LIP6 UMR 7606, INRIA, UPMC Sorbonne Universités, France

Abstract

We introduce the notion of gradually stabilizing algorithm as any self-stabilizing

algorithm achieving the following additional feature. Assuming that at most τ dy-

namic steps occur starting from a legitimate configuration, a gradually stabilizing

algorithm first quickly recover to a configuration from which a specification offering

a minimum quality of service is satisfied. It then gradually converges to specifica-

tions offering stronger and stronger safety guarantees until fully recovering to its

initial (strong) specification.

We illustrate this new property by considering three variants of a synchroniza-

tion problem respectively called strong, weak, and partial weak unison. We propose

a self-stabilizing algorithm which is also gradually stabilizing in the sense that after

one dynamic step from a legitimate configuration, it immediately satisfies the spec-

ification of partial weak unison, then converges to the specification of weak unison

in at most one round, and finally retrieves the specification of strong unison after

at most (µ+ 1)D1 + 1 additional rounds, where D1 is the diameter of the network

after the dynamic step and µ is a parameter which should be greater than or equal

to sum of n (the initial size of the network) and #J (an upper bound on the number

of processes that join the system during the dynamic step).

Keywords: Self-stabilization, synchronization problems, unison, gradual stabilization,

superstabilization, safe-convergence.

1

Contents

1 Introduction 3

2 Preliminaries 6

3 Stabilization 9

3.1 Self-stabilization . 9

3.2 Gradual Stabilization under τ -Dynamics 10

4 Unison 11

5 Necessary Condition 13

6 Self-Stabilizing Strong Unison 16

6.1 Algorithm WU . 16

6.2 Algorithm SU . 18

6.2.1 Correctness Proof . 20

6.2.2 Complexity Analysis . 23

7 Gradual Stabilization under 1-Dynamics for Strong Unison 23

7.1 Algorithm DSU . 24

7.2 Proof of Correctness . 28

8 Conclusion 35

A Results from [6] 39

2

1 Introduction

In 1974, Dijkstra [10] introduced self-stabilization, a general paradigm to enable the

design of distributed systems tolerating any finite number of transient faults. Consider

the first configuration after all transient faults cease. This configuration is arbitrary, but

no other transient faults will ever occur from this configuration. By abuse of language,

this configuration is referred to as arbitrary initial configuration of the system in the

literature. Then, a self-stabilizing algorithm (provided that faults have not corrupted

its code) guarantees that starting from an arbitrary initial configuration, the system

recovers within finite time, without any external intervention, to a so-called legitimate

configuration from which its specification is satisfied. Thus, self-stabilization makes no

hypotheses on the nature or extent of transient faults that could hit the system, and

the system recovers from the effects of those faults in a unified manner. Such versatility

comes at a price, e.g., after transient faults cease, there is a finite period of time, called the

stabilization phase, during which the safety properties of the system are violated. Hence,

self-stabilizing algorithms are mainly compared according to their stabilization time, the

maximum duration of the stabilization phase. For many problems, the stabilization

time is significant, e.g., for synchronization problems [2] and more generally for non-

static problems [14] (such as token passing) the lower bound is Ω(D) rounds, where D
is the diameter of the network. By definition, the stabilization time is impacted by

worst case scenarios. Now, in most cases, transient faults are sparse and their effect

may be superficial. Consequently, recent research focuses on ensuring drastically smaller

convergence times in favorable cases.

Defining the number of faults hitting a network using some kind of Hamming distance

(the minimal number of processes whose state must be changed in order to recover a

legitimate configuration), variants of the self-stabilization paradigm have been given. For

example, the notion of k-stabilization [3] guarantees that the system recovers when the

initial configuration is at distance at most k from a legitimate configuration.

The property of locality consists in avoiding situations in which a small number of

transient faults causes the entire system to be involved in a global convergence activity.

Locality is, for example, captured by fault containing self-stabilizing algorithms [15],

which ensure that when few faults hit the system, the faults are both spatially and

temporally contained. “Spatially” means that if only few faults occur, those faults cannot

be propagated further than a preset radius around the corrupted processes. “Temporally”

means quick stabilization when few faults occur.

Some other approaches consist in providing convergence times tailored by the type of

transient faults. For example, a superstabilizing algorithm [12] is self-stabilizing and has

3

two additional properties. In presence of a single topological change (adding or removing

one link or process in the network), it recovers fast (typically O(1) rounds), and a safety

predicate, called a passage predicate, should be satisfied along the stabilization phase.

Contribution In this paper, we introduce a specialization of self-stabilization called

gradual stabilization. A gradually stabilizing algorithm is a self-stabilizing algorithm with

the following additional feature. Assuming that at most τ dynamic steps1 occur starting

from a legitimate configuration, a gradually stabilizing algorithm first quickly recovers

to a configuration from which a specification offering a minimum quality of service is

satisfied. It then gradually converges to specifications offering stronger and stronger

safety guarantees until fully recovering to its initial (strong) specification. Of course, the

gradual stabilization makes sense only if the convergence to every intermediate weaker

specification is fast.

We illustrate this new property by considering three variants of a synchronization

problem respectively called strong, weak, and partial weak unison. In these problems,

each process should maintain a local clock. We restrict here our study to periodic clocks,

i.e., all local clocks are integer variables whose domain is {0, . . . , α − 1}, where α ≥ 2

is called the period. Each process should regularly increment its clock (modulo α) while

fulfilling some safety requirements. The safety of strong unison imposes that at most

two consecutive clock values exist in any configuration of the system. Weak unison

only requires that the difference between clocks of every two neighbors is at most one

increment. Finally, we defined partial weak unison as a property dedicated to dynamic

systems. It only enforces the difference between clocks of neighboring processes present

before the dynamic steps to remain at most one increment.

We propose a self-stabilizing strong unison algorithm which works with any period

α > 4 in any anonymous connected network. It assumes the knowledge of two values µ

and β, where µ is any upper bound on n, and β should divide α and be greater than µ2.

Our algorithm is designed in the locally shared memory model and assume the distributed

unfair daemon, the most general daemon of the model. Its stabilization time is at most

n+ (µ+ 1)D + 1 rounds, where n (resp. D) is the size (resp. diameter) of the network.

We then slightly modify this algorithm to make it gradually stabilizing assuming at

most one dynamic step. In particular, the parameter µ should now be greater than or

equal to n + #J , where #J is an upper bound on the number of processes that join the

system during the dynamic step. Notice that these slight modifications lead to increase

the stabilization time by one round. This new version is gradually stabilizing because

after one dynamic step from a configuration which is legitimate for the strong unison,

1N.b., a dynamic step is a step containing topological changes.

4

it immediately satisfies the specification of partial weak unison, then converges to the

specification of weak unison in at most one round, and finally retrieves the specification

of strong unison after at most (µ+ 1)D1 + 1 additional rounds, where D1 is the diameter

of the network after the dynamic step. The dynamic step may contain several topological

events (i.e., link and/or process additions and/or removals). However, we require that,

after those topological changes, the network should stay connected and if α > 4, every

process which joins the system should be linked to at least one process already in the

system before the dynamic step. We show that this condition, called UnderLocalControl,

is necessary.

Related Work Gradual stabilization is related to two other stronger forms of self-

stabilization, namely, safe-converging self-stabilization [20] and superstabilization [12].

The goal of a safely converging self-stabilizing algorithm is to first quickly (within O(1)

rounds is the usual rule) converge from an arbitrary configuration to a feasible legitimate

configuration, where a minimum quality of service is guaranteed. Once such a feasible

legitimate configuration is reached, the system continues to converge to an optimal le-

gitimate configuration, where more stringent conditions are required. Hence, the aim of

safe-converging self-stabilization is also to ensure a gradual convergence, but only for two

specifications. However, this gradual convergence is stronger than ours as it should be

ensured after any step of transient faults,2 while the gradual convergence of our prop-

erty applies after dynamic steps only. Safe convergence is especially interesting for self-

stabilizing algorithms that compute optimized data structures, e.g., minimal dominating

sets [20], approximately minimum weakly connected dominating sets [22], approximately

minimum connected dominating sets [21, 23], and minimal (f, g)-alliances [8]. However,

to the best of our knowledge, no safe-converging algorithm for non-static problems, such

as unison for example, has been proposed until now.

In superstabilization, like in our approach, fast convergence and the passage predi-

cate should be ensured only if the system was in a legitimate configuration before the

topological change occurs. In contrast with our approach, superstabilization ensures fast

convergence to the original specification. However, this strong property only considers

one dynamic step consisting in only one topological event: the addition or removal of

one link or process in the network. Again, superstabilization has been especially studied

in the context of static problems, e.g., spanning tree construction [12, 5, 4], and color-

ing [12]. However, notice that there exist few superstabilizing algorithms for non-static

problems, such as mutual exclusion [17, 24].

We use the general term unison to name several close problems also known in the lit-

2Such transient faults may include topological changes, but not only.

5

erature as phase or barrier synchronization problems. There exists many self-stabilizing

algorithms for the strong as well as weak unison problem, e.g., [16, 1, 18, 27, 19, 7, 28].

Now, to the best of our knowledge, until now, no self-stabilizing solution for such problems

proposes specific convergence properties in case of topological changes. Self-stabilizing

strong unison was first considered in synchronous anonymous networks. Particular topolo-

gies were considered in [18] (rings) and [27] (trees). Gouda and Herman [16] proposed a

self-stabilizing algorithm for strong unison working in anonymous synchronous systems

of arbitrary connected topology. However, they considered unbounded clocks. A solution

working with the same settings, yet implementing bounded clocks, is proposed in [1].

In [28], an asynchronous self-stabilizing strong unison algorithm is proposed for arbitrary

connected rooted networks.

Johnen et al. investigated asynchronous self-stabilizing weak unison in oriented trees

in [19]. The first self-stabilizing asynchronous weak unison for general graphs was pro-

posed by Couvreur et al. [9]. However, no complexity analysis was given. Another solution

which stabilizes in O(n) rounds has been proposed by Boulinier et al. in [7]. Finally,

Boulinier proposed in his PhD thesis a parametric solution which generalizes both the

solutions of [9] and [7]. In particular, the complexity analysis of this latter algorithm

reveals an upper bound in O(D.n) rounds on the stabilization time of the Couvreur et

al.’ algorithm.

Roadmap. The rest of the paper is organized as follows. In the next section, we

define the computational model used in this paper. In Section 3, we recall the formal

definition of self-stabilization, and introduce the notion of gradual stabilization. The

three variants of the unison problem considered in this paper are defined in Section 4. In

Section 5, we show that condition UnderLocalControl is necessary to obtain our gradually

stabilizing solution. We present our self-stabilizing strong unison algorithm in Section 6.

The gradually stabilizing variant of this latter algorithm is proposed in Section 7. We

make concluding remarks in Section 8. Some useful results from [6] are recalled in the

appendix.

2 Preliminaries

We consider the locally shared memory model introduced by Dijkstra [10] enriched with

the notion of topological changes. Thereupon, we follow an approach similar to the one

used by Dolev in the context of superstabilization [11].

6

Processes. We consider distributed systems made of anonymous processes. The system

initially contains n > 0 processes and its topology is connected, however it may suffer

from topological changes along the time. Each process p can directly communicate with

a subset p.N of other processes, called its neighbors. In our context, p.N can vary over

time. Communications are assumed to be bidirectional, i.e., for any two processes p and

q, q ∈ p.N ⇔ p ∈ q.N at any time. Communications are carried out by a finite set

of locally shared variables at each process: each process can read its own variables and

those of its (current) neighbors, but can only write into its own variables. The state of

a process is the vector of values of its variables. We denote by S the set of all possible

states of a process.

Each process updates its variables according to a local algorithm. The collection of

all local algorithms defines a distributed algorithm. In the distributed algorithm A, the

local algorithm of p consists of a finite set of actions of the following form:

〈 label 〉 :: 〈 guard 〉 → 〈 statement 〉

The labels are used to identify actions in the reasoning. The guard of an action is a

Boolean predicate involving variables of p and its neighbors. The statement is a sequence

of assignments on variables of p. If the guard of some action evaluates to true, then the

action is said to be enabled at p. By extension, if at least one action is enabled at p, p

is said to be enabled. An action can be executed only if it is enabled. In this case, the

execution of the action consists in executing its statement, atomically.

A configuration γi of the system is a pair (Gi, Vi → S). Gi = (Vi, Ei) is a simple

undirected graph which represents the topology of the network in configuration γi, i.e.,

Vi is the set of processes that are in the system in γi and Ei ⊆ Vi × Vi represents the

communication links between processes of Vi in γi: ∀p, q ∈ Vi, {p, q} ∈ Ei ⇔ p ∈ q.N
in γi. Vi → S is a function which associates a state to any process of Vi. For sake of

simplicity, we denote by γi(p) the state of process p ∈ Vi in configuration γi. Moreover,

γi(p).x denotes the value of the x-variable at process p in configuration γi. We denote by

C the set of all possible configurations.

Executions. The dynamicity and asynchronism of the system is materialized by an

adversary, called the daemon. When the system is in a configuration γ, the daemon first

chooses between

• selecting enabled processes to make them performing actions— in this case, a com-

putation step is made, and

• modifying the topology — in this case, the system suffers from a dynamic step.

7

The set of all possible computation (resp. dynamic) steps induces a binary relation over

configurations noted 7→c ⊆ C × C (resp. 7→d ⊆ C × C). Let 7→ = 7→d ∪ 7→c be the

binary relation defining all possible steps.

An execution is any sequence of configurations γ0, γ1, . . . such that G0 is connected

and ∀i ≥ 0, γi 7→ γi+1. For sake of simplicity, we note G0 = G = (V,E); we also note

D the diameter of G and we recall that |V0| = |V | = n. Moreover, we define Eτ the set

of maximal executions which contain at most τ dynamic steps. A maximal execution

e ∈ Eτ is either infinite, or ends in a so-called terminal configuration, where all processes

in the system are disabled. The set of all possible maximal executions is therefore equal

to E = ∪τ≥0Eτ . Notice that ∀i, j ∈ N, i ≤ j implies E i ⊆ E j. For any subset of

configurations X ⊆ C, we denote by EτX the set of all executions in Eτ taht start from a

configuration of X, i.e., EτX = {(γi)i≥0 ∈ Eτ : γ0 ∈ X}.

Computation steps. Let γi be a configuration. Let Enabled(γi) be the set of enabled

processes in γi. The daemon can choose to make a computation step from γi only if

Enabled(γi) 6= ∅. In this case, it first selects a non-empty subset S of Enabled(γi). Next,

every process p ∈ S atomically executes one of its enabled actions, leading the system to

a new configuration, say γi+1. In this case, γi 7→c γi+1 with, in particular, Gi = Gi+1.

Dynamic steps. Let γi 7→d γi+1 be a dynamic step. We have Gi+1 6= Gi, whereas the

state of every process in Vi∩Vi+1 remains unchanged, i.e., ∀p ∈ Vi∩Vi+1, γi+1(p) = γi(p).

Precisely, γi 7→d γi+1 contains a finite number of events of the following types:

• A process p can join the system, i.e., p /∈ Vi ∧ p ∈ Vi+1. This event is denoted by

joinp and triggers the atomic execution of a specific action, called bootstrap, which

initializes the variables of p to a particular state, called bootstate. This bootstrap

is executed without any communication. We denote by Newk the set of processes

which are in bootstate in γk. When p joins the system in γi 7→d γi+1, we have

p ∈ Newi+1, but p /∈ Newi. Moreover, until p executes its very first action, say

in γx 7→ γx+1, it is still in bootstate. Hence ∀j ∈ {i + 1, . . . , x}, p ∈ Newj, but

p /∈ Newx+1.

We assume that there are at most #J joins in the system during a dynamic step.

• Process p can also leave the system or crash, i.e., p ∈ Vi ∧ p /∈ Vi+1.

• Finally, some communication links can appear (resp. disappear) between two pro-

cesses p and q, i.e., {p, q} /∈ Ei ∧ {p, q} ∈ Ei+1 (resp. {p, q} ∈ Ei ∧ {p, q} /∈ Ei+1).

Notice that several joins, leaves, as well as link appearances and disappearances can be

made in the same step γi 7→d γi+1.

8

Daemon. As previously explained, executions are driven by a daemon. In this paper,

we assume the daemon is distributed and unfair. In any computation step, a distributed

daemon must select at least one enabled process (maybe more). An unfair daemon has

no fairness constraint, i.e., it might never select a process during any computation step

unless it is the only enabled one. Moreover, at each configuration an unfair daemon freely

chooses between making a computation or dynamic step, except if the configuration is

terminal; in this latter case, only dynamic steps can be chosen.

Functional specification and performances. A distributed algorithm A is designed

to ensure some functional properties called its specification. A specification SP is a

predicate over E .

We measure the time complexity of our algorithms in terms of rounds [13]. This

latter expresses the execution time according to the speed of the slowest process. The

first round of an execution e = (γi)i≥0 is the minimal prefix e′ of e such that every enabled

process in γ0 either executes an action or is neutralized (defined below). Let γj be the

last configuration of e′, the second round of e is the first round of e′′ = (γi)i≥j, and so

forth.

Neutralized means that a process p is enabled in a configuration γi but either p is no

more in the system in the next configuration γi+1 (p /∈ Vi+1), or p is not enabled in γi+1

and does not execute any action during the step γi 7→ γi+1.

3 Stabilization

3.1 Self-stabilization

Below we recall the definitions of some notions classically used in self-stabilization. No-

tice that all these notions are defined by only considering executions free of topological

changes, yet starting from an arbitrary configuration. Indeed, self-stabilization consid-

ers the system immediately after the transient faults cease. So, the system is initially

observed from an arbitrary configuration reached due to occurrence of transient faults

(including some topological changes maybe), but from which no faults (in particular, no

topological changes) will ever occur.

Let A be a distributed algorithm. Let X, Y ⊆ C be two subsets of configurations. X

is closed under A if and only if ∀γ, γ′ ∈ C, (γ ∈ X ∧ γ 7→c γ
′) ⇒ γ′ ∈ X. Y converges

to X under A if and only if ∀e ∈ E0Y ,∃γ ∈ e such that γ ∈ X. A stabilizes from Y to a

specification SP by X if and only if

• X is closed under A,

9

• Y converges to X under A,

• and ∀e ∈ E0X , SP (e).

Moreover, the convergence time in steps (resp. rounds) from Y to X is the maximal

number of steps (or rounds, respectively) to reach a configuration of X in over every

execution of E0Y .

Self-stabilization has been defined by Dijkstra in 1974 [10] as follows: a distributed

algorithm A is self-stabilizing for a specification SP if and only if ∃L ⊆ C, A stabilizes

from C to SP by L.

L (resp. C \ L) is then said to be a set of legitimate configurations (resp. illegitimate

configurations) w.r.t. SP . The stabilization time of A is then the convergence time from

C to L.

3.2 Gradual Stabilization under τ-Dynamics

Below, we introduce a specialization of self-stabilization called gradual stabilization. The

main idea behind this concept is the following: if after starting from a legitimate configu-

ration, the system suffers from few topological changes, then the very first configuration

after those topological changes may be illegitimate, but this configuration is usually far

from being arbitrary. Hence, in such a situation, it may be possible to first quickly recover

to a configuration from which a specification offering a minimum quality of service is sat-

isfied. It may be also possible to gradually converge to specifications offering stronger and

stronger safety guarantees until fully recovering to the initial (strong) specification. Of

course, the gradual stabilization makes sense only if the convergence to every intermediate

weaker specification is fast.

Let τ ≥ 0. For a given execution e = (γi)i≥0 ∈ Eτ , let first(e) be the integer such

that γfirst(e) is the first configuration of e after the last topological change. Formally,

first(e) is the minimal index such that the suffix of e starting from first(e) contains no

dynamic step: first(e) = min{i : (γj)j≥i ∈ E0}. For any subset of executions E ⊆ Eτ ,
let FC(E) = {γfirst(e) : e = (γi)i≥0 ∈ E} (FC() stands for “First Configuration”).

Let SP1, SP2, . . . , SPk, be an ordered sequence of specifications. Let B1, B2, . . . , Bk

be (asymptotic) complexity bounds such that B1 < B2 < · · · < Bk.

A distributed algorithmA is gradually stabilizing under τ -dynamics for (SP1•B1, SP2•
B2, . . . , SPk •Bk) if and only if ∃L1, . . .Lk ⊆ C such that

1. A stabilizes from C to SPk by Lk, i.e., A is self-stabilizing for SPk.

2. Starting from a legitimate configuration, after at most τ steps of topological changes,

A gradually converges to every Li with i ∈ {1, . . . , k}, i.e., ∀i ∈ {1, . . . , k}, we have

10

• A stabilizes from FC(EτLk) to SPi by Li, and

• the convergence time in rounds from FC(EτLk) to Li is bounded by Bi.

Notice that, by definition, any gradually stabilizing algorithm is also a self-stabilizing

algorithm for SPk. Hence, the performances of any gradually stabilizing algorithm can

be also evaluated at the light of its stabilization time.

Gradual stabilization is related to two other stronger forms of self-stabilization: safe-

converging self-stabilization [20] and superstabilization [12].

The goal of a safely converging self-stabilizing algorithm is to first quickly (within O(1)

rounds is the usual rule) converge to a feasible legitimate configuration, where a minimum

quality of service is guaranteed. Once such a feasible legitimate configuration is reached,

the system continues to converge to an optimal legitimate configuration, where more

stringent conditions are required. Hence, the aim of safe-converging self-stabilization is

also to ensure a gradual convergence, but for two specifications. However, this gradual

convergence should be ensured after any step of transient faults (such transient faults can

include topological changes, but not only), while the gradual convergence of our property

applies after dynamic steps only.

A superstabilizing algorithm is self-stabilizing and has two additional properties. In

presence of a single topological change (adding or removing one link or process in the net-

work), it recovers fast (typically O(1)), and a safety predicate, called a passage predicate,

should be satisfied along the stabilization phase. Like in our approach, fast convergence,

captured by the notion of superstabilization time, and the passage predicate should be

ensured only if the system was in a legitimate configuration before the topological change

occurs. In contrast with our approach, superstabilization only considers one dynamic step

consisting in only one topological event: the addition or removal of one link or process

in the network. A superstabilizing algorithm for a specification SP1 can be seen as an

algorithm which is gradually stabilizing under 1-dynamics for (SP0•0, SP1•f) where SP0

is the passage predicate, f is the superstabilization time and the dynamic step consists

of adding or removing one link or process in the network only.

4 Unison

We consider several close synchronization problems included here under the general term

of unison. In these problems, each process should maintain a local clock. We restrict here

our study to periodic clocks, i.e., all local clocks are integer variables whose domain is

{0, . . . , α− 1}, where α ≥ 2 is called the period. Each process should regularly increment

its clock (modulo α) while fulfilling some safety requirements. Below we define three

11

versions of the problem respectively named strong, weak, and partial weak unison.

Strong unison defined below is also known as the phase or barrier synchronization

problem [26, 25].

Specification 1 (Strong Unison). An execution e satisfies the specification SPSU of

strong unison if and only if

• In any configuration γ ∈ e, there exists at most two different clock values, and if

so, these two values are consecutive (modulo α). (Safety)

• Every process increments its clock infinitely often in e. (Liveness)

The definition of weak unison below appeared first in [9] under the name of asyn-

chronous unison.

Specification 2 (Weak Unison). An execution e satisfies the specification SPWU of weak

unison if and only if

• In any configuration γ ∈ e, the clocks of every two neighboring processes differ from

at most one increment (modulo α). (Safety)

• Every process increments its clock infinitely often in e. (Liveness)

Finally, in the context of dynamic systems, a straightforward variant of the weak

unison is the following.

Specification 3 (Partial Weak Unison). An execution e = (γi)i≥0 satisfies the specifica-

tion SPPU of partial weak unison if and only if

• In any configuration γi ∈ e, the clocks of any two neighbors which are not in Newi

differ from at most one increment (modulo α). (Safety)

• Every process increments its clock infinitely often in e. (Liveness)

The property below sum up the straightforward relationship between the three vari-

ants of unison.

Property 1. SPSU ⇒ SPWU ⇒ SPPU.

12

5 Necessary Condition

Through out this section, we assume the existence of a deterministic algorithm A which is

gradually stabilizing under 1-dynamics for (SPPU •0, SPWU •1, SPSU •B) in any arbitrary

anonymous network under the distributed unfair daemon, withB > 1 be any (asymptotic)

complexity bound. Let LASU be the legitimate configurations of A w.r.t. specification

SPSU.

The property given below states that, when α > 3 and once a legitimate configuration

of strong unison is reached, the system necessarily goes through a configuration where

all clocks have the same value between two increments at the same process.

Property 2. Assume α > 3. For every (γi)i≥0 ∈ E0LASU, for every process p, for every

k ∈ {0, ..., α − 1}, for every i ≥ 0, if p increments its clock from k to (k + 1) mod α

in γi 7→ γi+1 and ∃j > i such that γj(p).clock = (k + 2) mod α, then there exists

x ∈ {i+ 1, ..., j − 1}, such that all clocks have value (k + 1) mod α in γx.

Proof. Let (γi)i≥0 ∈ E0LASU be an execution and p be a process. Let k ∈ {0, ..., α − 1} and

i ≥ 0 such that p increments its clock from k to (k + 1) mod α in γi 7→ γi+1 and ∃j > i

such that γj(p).clock = (k + 2) mod α.

Assume that there is a process q such that γi(q).clock = (k − 1) mod α. As the

execution satisfies SPSU, there exists a step after γi in which p increments, due to liveness;

but due to safety, q necessarily increments at the same step. Using the daemon, we can

now build a possible step where p moves, but not q leading to a configuration where

q.clock = (k− 1) mod α and p.clock = (k+ 1) mod α. Hence, there exists an execution

starting from a configuration of LASU which does not satisfy SPSU, a contradiction.

Hence, ∀q ∈ V, γi(q).clock ∈ {k, (k + 1) mod α}, by the safety of SPSU. Similarly

to the previous case, while there are processes whose clock value is k, no process (in

particular p) can increment its clock from (k + 1) mod α to (k + 2) mod α. Hence,

between γi and γj there exists a configuration where all processes have clock value (k+1)

mod α.

In the following, we will establish that the property UnderLocalControl given below

is a necessary condition for A. The definition of UnderLocalControl uses the notion of

dominating set: a dominating set of the graph G = (V,E) is any subset D of V such

that every node not in D is adjacent to at least one member of D. UnderLocalControl

captures a condition on the network dynamics which is necessary to prevent a notable

desynchronization of clocks. Namely, the network should stay connected and if α > 4,

every process that joins during the dynamic step γ 7→d γ
′ should be “under the control

of” (that is, linked to) at least one process which exists in both γ and γ′.

13

(c+3) mod α

(c+2) mod α

(a) γT

(c+3) mod α

(c+2) mod α

r2 r1

p

q

(b) γT+1

(c+3) mod α

(c+2) mod α

r2 r1

cp

q

(c) γT+2

Figure 1: Execution e′′ in the proof of Theorem 1. The hachured nodes are in bootstate.

Definition 1 (UnderLocalControl). UnderLocalControl holds if and only if for every exe-

cution e = (γi)i≥0 ∈ E1LASU ,

1. Gfirst(e) is connected, and

2. if α > 4, then Vfirst(e) \Newfirst(e) is a dominating set.

Lemma 1. For every execution e ∈ E1LASU, Gfirst(e) is connected.

Proof. Assume, by the contradiction, that there is an execution e = (γi)i≥0 ∈ E1LASU such

that Gfirst(e) is disconnected. Let A and B be two connected components of Gfirst(e).

By definition, there exists j ≥ first(e) such that γj ∈ LASU and A and B are defined

in all configurations (γi)i≥j. From γj, all processes regularly increment their clocks in

both A and B by the liveness property of strong unison. In particular, there always

exists enabled processes in A that increment. Now, as no process of B is linked to any

process of A, the behavior of processes in B has no impact on processes in A and vice

versa. Consequently, there exists a possible execution of E1LASU prefixed by γ0 . . . γj where

the distributed unfair daemon only selects processes in A from γj, hence violating the

liveness property of strong unison, a contradiction.

Lemma 2. If α > 4, then for every execution e ∈ E1LASU, Vfirst(e) \ Newfirst(e) is a domi-

nating set.

Proof. We illustrate the following proof with Figure 1. Let e ∈ (γi)i≥0 ∈ E1LASU . Let

x = first(e). Assume, by the contradiction, that α > 4 and Gx is connected, but

14

Vx \Newx is not a dominating set. This implies that ∃p ∈ Newx such that ∀q ∈ γx(p).N ,

q ∈ Newx.
First, notice that every process among p and its neighbors are enabled in γx to take a

clock value in {0 . . . α − 1}. Indeed, assume that the daemon makes a synchronous step

from γx, then the step γx 7→ γx+1 actually corresponds to a complete round, by definition

and so γx+1 should be a legitimate configuration of weak unison. Let c be the clock value

taken by p if p moves in γx 7→c γx+1.

Consider now another execution e′ in E0LASU (with no topological change) on a graph of

at least two nodes which contains neither p nor its neighbors in γx(p).N . Strong unison

is satisfied in e′ and, as α > 4, by Property 2, there is a configuration γS in e′ where every

clock equals (c + 2) mod α. From γS, there is eventually a step in which at least one

process increments its clock to (c+ 3) mod α. Assume not all processes are activated by

the distributed unfair daemon during this step. Then, this step leads to a configuration

γT where there is exactly two values of clock: (c + 2) mod α and (c + 3) mod α, see

Figure 1a.

Consider now another execution e′′ having a prefix common to e′ until γT . Assume

that the daemon introduces a dynamic step at configuration γT . Assume that this step

consists in adding p with the same neighborhood as well as two links from q, a neighbor

of p, and two already existing nodes r1 and r2, such that the clock of r1 (resp. r2) equals

(c + 2) mod α (resp. (c + 3) mod α) in γT , see Figure 1b. By definition, since strong

unison is satisfied in γT (by assumption), the partial weak unison necessarily holds along

the suffix of e′′ starting at γT+1.

Process p and its neighbors are in a situation similar to the one in γx so they are

enabled to take a clock value in {0 . . . α − 1}, in particular p is enabled to take value c.

Assume that the daemon exactly selects p and its neighbors in the next step γT+1 7→ γT+2.

In γT+2 (Figure 1c), the clock of r1 and r2 are respectively equal to (c + 2) mod α and

(c + 3) mod α, since they did not move; moreover, the clock of p is equal to c. Now, q

also chooses a clock value in γT+1 7→ γT+2 and that clock value should differ of at most

one increment from the clocks of p, r1, and r2 since partial weak unison holds in γT+1

and all subsequent configurations. As α > 3, if the clock of q equals:

• c or (c + 1) mod α, the difference between the clocks of q and r2 is at least 2

increments,

• (c+ 2) mod α or (c+ 3) mod α, the difference between the clocks of q and p is at

least 2 increments,

• any value in {0...α − 1} \ {c, (c + 1) mod α, (c + 2) mod α, (c + 3) mod α}, the

difference between the clocks of q and r1 is at least 2 increments.

15

Hence, the safety of partial weak unison is necessarily violated in the configuration γT+2

of e′′, a contradiction.

By Lemmas 1 and 2, follows:

Theorem 1. An algorithm A is gradually stabilizing under 1-dynamics for (SPPU •
0, SPWU • 1, SPSU • B) in arbitrary anonymous networks under the distributed unfair

daemon with a set of legitimate configurations w.r.t. specification SPSU noted LASU only if

UnderLocalControl holds.

6 Self-Stabilizing Strong Unison

In this section, we propose an algorithm which is self-stabilizing for the strong unison

problem in any arbitrary connected anonymous network. This algorithm works for any

period α > 4 and is based on an algorithm previously proposed by Boulinier in [6], this

latter is self-stabilizing for the weak unison problem and works for any period β > n2,

where n is the size of the network. We first recall the algorithm of Boulinier, called here

Algorithm WU , in Subsection 6.1. Notice that the notation used in this algorithm will

be also applicable to our algorithms. We give our self-stabilizing algorithm for the strong

unison, Algorithm SU , and its proof of correctness in Subsection 6.2.

6.1 Algorithm WU

Algorithm WU , see Algorithm 1 for its formal code, has been proposed by Boulinier

in his PhD thesis [6]. Actually, it is a generalization of the self-stabilizing weak unison

algorithm proposed by Couvreur et al. [9]. This algorithm being simply self-stabilizing,

it only considers executions without any topological change, yet starting from arbitrary

configuration. The topology of the network then consists in a connected graph G = (V,E)

of n nodes which is fixed all along the execution. Remind that D is the diameter of G.

Algorithm WU uses the following notations.

Notations We define the delay between two integer values x and y by the function

dβ
(
x, y
)

= min
(
(x− y) mod β, (y − x) mod β

)
. Then, let the order relation �β,µ such

that for every two integer values x and y, x �β,µ y ≡
(
(y − x) mod β

)
≤ µ.

Overview In the algorithm, each process p is endowed with a clock variable p.t ∈
{0, . . . , β − 1}, where β is its period. β should be greater than n2. The algorithm also

uses another constant, noted µ, which should satisfy n ≤ µ ≤ β
2
. The main idea behind

the algorithm is the following. When the delay between the clock of a given process p

16

and the clocks of some neighbors is greater than one, but the maximum delay is not

too big (that is, does not exceed µ), then it is possible to “normally” converge (using

Action WU -N) to a configuration where the delay between those clocks is at most one

by making increment the clocks of the most behind processes among p and its neighbors.

In contrast, if the delay is too big (that is, the delay between the clocks of p and one of

its neighbors is more than µ), then p should reset its clock to 0 (Action WU -R).

The Algorithm Two actions are used to maintain p.t at each process p. When p is in

time or late, but not that much, with all its neighbors, i.e., when ∀q ∈ p.N , p.t �β,µ q.t,
p can “normally” increment its clock using Action WU -N . When the delay between the

clocks of p and one of its neighbors q is too big, i.e., dβ
(
p.t, q.t

)
> µ and the clock of p

is not yet reset, then p resets its clock to 0 using Action WU -R.

Algorithm 1 WU , for every process p
Parameters:

β: any positive integer such that β > n2

µ: any positive integer such that n ≤ µ ≤ β
2

Variable:
p.t ∈ {0, . . . , β − 1}

Actions:
WU -N :: ∀q ∈ p.N , p.t �β,µ q.t → p.t← (p.t+ 1) mod β
WU -R :: ∃q ∈ p.N , dβ

(
p.t, q.t

)
> µ ∧ p.t 6= 0 → p.t← 0

From [6], we have the following theorem.

Theorem 2. Algorithm WU is self-stabilizing for SPWU (specification of weak unison)

by the set of legitimate configurations

LWU = {γ ∈ C : ∀p ∈ V, ∀q ∈ γ(p).N , dβ
(
γ(p).t, γ(q).t

)
≤ 1}

in an arbitrary connected network assuming a distributed unfair daemon.

Its stabilization time is at most n + µD rounds, where n (resp. D) is the size (resp.

diameter) of the network and µ is a parameter satisfying n ≤ µ ≤ β
2
.

By definition, D < n, consequently we have:

Remark 1. Once Algorithm WU has stabilized, the delay between t-clocks of any two

arbitrary far processes is at most n− 1, the size of the network.

Complexity Analysis. Let Cµ be the set of configurations where the distance between

two neighboring clocks is at most µ. Below, we prove in Lemma 3 (resp. Lemma 4) a

17

bound on the time required to ensure that all t-variables have incremented k times which

holds since the system has reached a configuration of Cµ (resp. LWU)

Lemma 3. ∀k ≥ 1, ∀e ∈ E0Cµ, every process p increments p.t executing WU-N at least k

times every µD + k rounds, where D is the diameter of the network.

Proof. Let k ≥ 1. Let e = (γi)i≥0 ∈ E0Cµ . Using Lemma 30, ∀i ≥ 0, there is a function

f on processes such that ∀p ∈ V, f(γi, p) mod β = γi(p).t and ∀p ∈ V , ∀q ∈ p.N ,

dβ
(
γi(p).t, γi(q).t

)
≤ µ. Hence, ∀p, q ∈ V , |f(γi, p)− f(γi, q)| ≤ µD.

For every i ≥ 0, we note fmin
γi

= min{f(γi, x) : x ∈ V }. Action WU -N is enabled in

γi at every process x ∈ V for which γi(x).t = f(γi, x) = fmin
γi

. So, after one round, every

such a process x has incremented its t-variable (executing action WU -N) at least once.

Let γj be the first configuration after one round. Then, fmin
γj
≥ fmin

γi
+1. We now consider

γd to be the first configuration after µD + k rounds, starting from γi. Using inductively,

the same arguments as for j, it comes that fmin
γd
≥ fmin

γi
+ µD + k (∗).

Let p be a process in V . By definitions of f and fmin
γi

, we have that fmin
γi
≤ f(γi, p) ≤

fmin
γi

+ µD (∗∗). Assume now that p increments]incr < k times p.t between γi and γd.

Then

f(γd, p) = f(γi, p) +]incr < f(γi, p) + k (assumption on #incr)

≤ fmin
γi

+ µD + k, by (∗∗)

≤ fmin
γd

, by (∗)

So, p satisfies f(γd, p) < fmin
γd

, a contradiction.

Lemma 4. ∀k ≥ 1, ∀e ∈ E0LWU
, every process p increments its clock p.t executing action

WU-N at least k times every D + k rounds, where D is the diameter of the network.

Proof. The proof of this lemma is exactly the same as the one for Lemma 3 when replacing

Cµ with LWU and µD with D.

Some other useful results from [6] about AlgorithmWU are recalled in Appendix A.

6.2 Algorithm SU

In this subsection, we still assume a non-dynamic context (no topological change) and we

use the notations defined in Subsection 6.1. Algorithm SU is a straightforward adaptation

of AlgorithmWU . More precisely, Algorithm SU maintains two clocks at each process p.

The first one, p.t ∈ {0, . . . , β−1}, is called the internal clock and is maintained exactly as

in Algorithm WU . Then, p.t is used as an internal pulse machine to increment a second,

yet actual, clock of Algorithm SU p.c ∈ {0, . . . , α− 1}, also referred to as external clock.

18

Algorithm SU , see Algorithm 2 for its formal code, is designed for any period α > 4.

Its actions SU -N and SU -R are identical to actionsWU -N andWU -R of AlgorithmWU ,

except that we add the computation of the external c-clock in their respective statement.

We already know that Algorithm WU stabilizes to a configuration from which t-

clocks regularly increment while preserving a bounded delay of at most one between two

neighboring processes, and so of at most n−1 between any two processes (see Remark 1).

Algorithm SU implements the same mechanism to maintain p.t at each process p and

computes p.c from p.t as a normalization operation from clock values in {0, . . . , β− 1} to

{0, . . . , α − 1}: each time the value of p.t is modified, p.c is updated to
⌊
α
β
p.t
⌋
. Hence,

we just need to fix β in such way that β
α

is greater than or equal to n to ensure that,

when the delay between any two t-clocks is at most n − 1, the delay between any two

c-clocks is at most one, see Figure 2 (page 21). Furthermore, the liveness of WU ensures

that every t-clock increments infinitely often, hence so do c-clocks.

Algorithm 2 SU , for every process p
Parameters:

α: any positive integer such that α > 4
µ: any positive integer such that µ ≥ n
β: any positive integer such that β > µ2 and ∃K such that K > µ and β = Kα

Variables:
p.c ∈ {0, . . . , α− 1}
p.t ∈ {0, . . . , β − 1}

Actions:
SU -N :: ∀q ∈ p.N , p.t �β,µ q.t → p.t← (p.t+ 1) mod β

p.c←
⌊
α
β
p.t
⌋

SU -R :: ∃q ∈ p.N , dβ
(
p.t, q.t

)
> µ → p.t← 0

∧ p.t 6= 0 p.c← 0

Remark 2. Notice that β > µ2, so β ≥ 2µ when µ ≥ 2. Moreover, α > 4 and β is a

multiple of α, so β ≥ 5. Thus, β ≥ 2µ also holds if µ = 1.

Remark 3. By construction and from Remark 2, all results on t-clocks in Algorithm WU
also holds for t-clocks in Algorithm SU .

Theorem 3 below states that Algorithm SU is self-stabilizing for the strong unison

problem. We detail the proof of this intuitive result in the sequel.

Theorem 3. Algorithm SU is self-stabilizing for SPSU (the specification of the strong

unison) in any arbitrary connected anonymous network assuming a distributed unfair

daemon. Its stabilization time is at most n+ (µ+ 1)D + 1 rounds, where n (resp. D) is

the size (resp. diameter) of the network and µ is a parameter satisfying µ ≥ n.

19

6.2.1 Correctness Proof

We first define a set of legitimate configurations w.r.t. the specification SPSU (Defini-

tion 2). Then, we prove the closure and convergence w.r.t. those legitimate configurations

(see Lemmas 5 and 6). Afterwards, we prove correctness w.r.t. the specification, namely,

safety of SPSU is shown in Lemma 10 and liveness is proved in Lemma 11.

Definition 2 (Legitimate Configurations w.r.t. SPSU under Algorithm SU). A configu-

ration γ is legitimate w.r.t. SPSU under SU if and only if

1. ∀p ∈ V , ∀q ∈ γ(p).N , dβ
(
γ(p).t, γ(q).t

)
≤ 1.

2. ∀p ∈ V , γ(p).c =
⌊
α
β
γ(p).t

⌋
.

We denote by LSU the set of legitimate configurations w.r.t. SPSU under SU .

By definition, µ ≥ n > 0, hence from Definition 2, follows.

Remark 4. In a legitimate configuration γ ∈ LSU, ∀p, q ∈ V , dβ
(
γ(p).t, γ(q).t

)
≤ µ.

Lemma 5 (Closure). LSU is closed under Algorithm SU .

Proof. First, from Theorem 2, note that the set of legitimate configurations defined for

Algorithm WU is also closed for Algorithm SU . Hence we only have to check closure for

the second constraint of Definition 2, the one on c-variables .

Let γ ∈ LSU be a legitimate configuration of Algorithm SU and let γ 7→c γ
′ be a

computation step of Algorithm SU . Let p ∈ V . As γ ∈ LSU, γ(p).c =
⌊
α
β
γ(p).t

⌋
. Either

p does not execute any action during step γ 7→c γ
′, or p executes SU -N or SU -R. These

two actions update p.c according to the new value of p.t. Hence γ′(p).c =
⌊
α
β
γ′(p).t

⌋
.

Lemma 6 (Convergence). C (the set of all possible configurations) converges to LSU

under Algorithm SU .

Proof. From Theorem 2, note that the set of legitimate configurations for AlgorithmWU
is also reachable in a finite number of steps for Algorithm SU . Hence, again, we only

have to check that the second constraint (the one on c-variables) is also achievable within

a finite number of steps.

Again using Theorem 2, liveness of Specification SPWU is ensured by Algorithm WU
and therefore by Algorithm SU . Hence, after stabilization, each process p updates its

internal clock p.t within a finite time; meanwhile p.c is also updated to
⌊
α
β
p.t
⌋
.

Lemmas 7, 8 and 9 are technical results on the values of t- and c- variables that will be

used to prove the safety part of Specification SPSU. For all these lemmas, we assume that

α, β, K are positive numbers that satisfies the constraint declared on the Parameters

section of Algorithm SU , namely β = Kα.

20

0
1

x

α-1

0 1 β
α

-1
β
α

2β
α

-1

xβ
α

(x+ 1)β
α

-1

(α-1)β
α

β-1

c

t

n-1

Figure 2: Relationship between variables t and c.

Lemma 7. Let x ∈ {0, . . . , α− 1} and ξ ∈ {0, . . . , β
α
− 1}. The following equality holds:⌊

α
β

(
xβ
α

+ ξ
)⌋

= x.

Proof. Let x ∈ {0, . . . , α − 1} and ξ ∈ {0, . . . , β
α
− 1}. As

⌊
α
β

(
xβ
α

+ ξ
)⌋

=
⌊
x+ α

β
ξ
⌋

=

x+
⌊
α
β
ξ
⌋

and ξ ∈ {0, . . . , β
α
− 1}, we have that 0 ≤ α

β
ξ < 1 and therefore

⌊
α
β
ξ
⌋

= 0.

We apply Lemma 7 by instantiating the value of the internal clock t with xβ
α

+ξ. Since

the value of the external clock c is computed as
⌊
α
β
t
⌋

in Algorithm 2, we have c = x.

Now, if we chose β (period of internal clocks) such that it can be written as β = Kα

with K a positive integer, the value of c =
⌊
α
β
t
⌋

is always a non negative integer which

evolves according to t = cβ
α

+ ξ as shown in in Figure 2.

Lemma 8. Let x1, x2 ∈ {0, . . . , α−1} and ξ1, ξ2 ∈ {0, . . . , βα−1}. The following assertion

holds: x1
β
α

+ ξ1 ≤ x2
β
α

+ ξ2 ⇒ x1 ≤ x2

Proof. Let x1, x2 ∈ {0, . . . , α−1} and ξ1, ξ2 ∈ {0, . . . , βα−1}. If x1
β
α

+ξ1 ≤ x2
β
α

+ξ2, then

we have that x1 − x2 ≤ (ξ1 − ξ2)/K. As ξ1, ξ2 ∈ {0, . . . , K − 1}, we have (ξ2 − ξ1)/K ≤
1−1/K. By transitivity, we obtain that x1−x2 ≤ 1−1/K < 1. As x1 and x2 are natural

integers, so is their difference; this proves that x1 − x2 ≤ 0

Again, Lemma 8 will be used with the internal clock t = cβ
α

+ ξ: this establishes the

monotonic relation between internal and external clocks.

Lemma 9. Let t1, t2 ∈ {0, ..., β − 1}. The following assertion holds:

∀d < K, dβ
(
t1, t2

)
≤ d⇒ dα

(⌊α
β
t1

⌋
,

⌊
α

β
t2

⌋)
≤ 1

21

Proof. Let t1, t2 ∈ {0, ..., β − 1} such that dβ
(
t1, t2

)
≤ d. We write t1 and t2 as t1 =

x1K + ξ1 and t2 = x2K + ξ2 where x1, x2 ∈ {0, . . . , α− 1} (resp. ξ1, ξ2 ∈ {0, . . . , K − 1})
are the quotients (resp. remainders) of the Euclidean division of t1, t2 by K. From

Lemma 7, we have that bt1/Kc = x1 and bt2/Kc = x2.

Assume, by contradiction, that dα
(
x1, x2

)
> 1. By definition, this means that

min
(
(x1−x2) mod α, (x2−x1) mod α

)
> 1. This implies that both (x1−x2) mod α >

1 and (x2−x1) mod α > 1. As dβ
(
t1, t2

)
≤ d, min

(
(t1− t2) mod β, (t2− t1) mod β

)
≤

d. Without loss of generality, assume that (t1 − t2) mod β ≤ d. There are two cases:

1. If t1 ≥ t2, then (t1 − t2) mod β = t1 − t2. So, t1 − t2 ≤ d.

Now, as t1 ≥ t2, x1 ≥ x2 by Lemma 8. Hence x1 − x2 = (x1 − x2) mod α > 1.

As x1 and x2 are natural numbers, this implies that x1 − x2 ≥ 2. We rewrite the

inequality as x1K + ξ1 − x2K − ξ2 ≥ 2K + ξ1 − ξ2. Since ξ1, ξ2 ∈ {0, . . . , K − 1},
we have −K < ξ1 − ξ2 < K and therefore x1K + ξ1 − x2K − ξ2 > K > d. Hence,

t1 − t2 > d, a contradiction.

2. If t1 < t2, then (t1 − t2) mod β = β + t1 − t2. So, β + t1 − t2 ≤ d.

Now, as t1 < t2, x1 ≤ x2 by Lemma 8. Hence (x1 − x2) mod α = α+ x1 − x2 > 1.

As x1 and x2 are natural numbers, this implies that α+x1−x2 ≥ 2. We rewrite the

inequality as β+x1K+ ξ1−x2K− ξ2 ≥ 2K+ ξ1− ξ2. Since ξ1, ξ2 ∈ {0, . . . , K−1},
we have −K < ξ1−ξ2 < K and therefore β+x1K+ξ1−x2K−ξ2 > K > d. Hence,

β + t1 − t2 > d, a contradiction.

As previous lemmas, Lemma 9 will be used with the internal clock t = cβ
α

+ ξ: it

expresses that once internal clocks have stabilized at a distance smaller than d, external

clocks are at distance smaller than 1. We now prove that Algorithm 2 achieves the safety

and liveness properties of SPSU.

Lemma 10 (Safety). Algorithm SU achieves the safety of SPSU.

Proof. Let γ ∈ LSU: the distance (β) between any two internal clocks t in γ is upper

bounded by n−1 and for any process, p ∈ V , γ(p).c =
⌊
α
β
γ(p).t

⌋
. Hence, using Lemma 9

with d = n − 1 < K, we have ∀p, q ∈ V , dα
(
γ(p).c, γ(q).c

)
≤ 1. As α > 4, this proves

that the variables c in γ have at most two different consecutive values.

Lemma 11 (Liveness). Algorithm SU achieves the liveness of SPSU.

22

Proof. Let e = (γi)i≥0 ∈ E0LSU . Let p be a process. γ0 is a legitimate configuration of WU
so p increments infinitely often p.t using Action SU -N (by Theorem 2 and Remark 3).

So p.t goes through each integer value between 0 and β − 1 infinitely often (in increasing

order). Hence, by Lemma 7, p.c is incremented infinitely often and goes through each

integer value between 0 and α− 1 (in increasing order).

Proof of Theorem 3. Lemmas 5 (closure), 6 (convergence), 10 (safety of Specification

SPSU), and 11 (liveness of Specification SPSU) prove that Algorithm SU is self-stabilizing

for SPSU in any arbitrary connected anonymous network assuming a distributed unfair

daemon. 2

6.2.2 Complexity Analysis

We now give some complexity results about Algorithm SU . Precisely, a bound on the

stabilization time of SU is given in Theorem 4. Then, a delay between any two consecutive

clocks increments, which holds once Algorithm SU has stabilized, is given in Theorem 5.

Theorem 4. The stabilization time of SU to LSU is at most n + (µ + 1)D + 1 rounds,

where n (resp. D) is the size (resp. diameter) of the network.

Proof. Let (γi)i≥0 ∈ E0. The behavior of the t-variables in Algorithm SU is similar to

that of WU (Remark 3), which stabilizes in at most n + µD rounds (see Theorems 10

and 11) to weak unison. So, in n + µD rounds, the delay between the t-clocks of any

two arbitrary far processes is at most n. If c-variables are well-calculated according to

t-variables, i.e., if c =
⌊
α
β
t
⌋
, then the delay between the c-clocks of any two arbitrary

far processes is at most 1 (Lemma 9). In at most D + 1 additional rounds, each process

executes SU -N (Lemma 4) and updates its c-variable according to its t-variable. Hence,

in at most n+ (µ+ 1)D + 1 rounds, the system reaches a legitimate configuration.

Theorem 5. After convergence of SU to LSU, each process p increments its clock p.c at

least once every D + β
α

rounds, where D is the diameter of the network.

Proof. If DSU converged to LdSU, by Remark 3 and Lemma 4, after D + β
α

rounds, p

increments p.t at least β
α

times. Now, by Lemma 7, if t-variable is incremented β
α

times,

c-variable is incremented once.

7 Gradual Stabilization under 1-Dynamics for Strong

Unison

We now propose a variant of Algorithm SU , called Algorithm DSU (see Algorithm 3

for formal code). This latter is still self-stabilizing for strong unison and achieves a

23

0
0

p0
0
1

p1
0
2

p2

. . . 0
n-2

pn−2
0
n-1

pn−1

Figure 3: Difference between neighboring t-clocks may become greater than one after
adding a link (e.g., the dashed one). The value of c- (resp. t-) variable is in the upper
(resp. lower) part of the node.

gradual convergence after one dynamic step. Roughly speaking, after one dynamic step,

which may include several topological events, it maintains clocks almost synchronized

during the convergence to strong unison. Precisely, after any dynamic step which fulfills

condition UnderLocalControl, Algorithm DSU immediately satisfies partial weak unison,

then converges in at most one round to weak unison, and finally re-stabilizes to strong

unison.

Notice that, after one dynamic step, the graph contains at most n+ #J processes, by

definition. Moreover, we denote by D1 the diameter of the new graph.

7.1 Algorithm DSU

Our solution withstands one dynamic step, which may include several topological events

(i.e. link or process additions or removals). However, according to Theorem 1, such a

dynamic step should satisfy Condition UnderLocalControl. Namely, the graph should stay

connected and, as α > 4, every process that joins during the dynamic step γ 7→d γ
′ should

be linked to at least one process which exists in both γ and γ′.

Consider first link additions only. Adding a link can break the safety of weak unison on

internal clocks, see for example Figure 3. Indeed, adding a link may create a delay between

two (new) neighboring t-clocks greater than one. Nevertheless, the delay between any

two t-clocks remains bounded by n− 1 and, consequently, no process will reset its t-clock

(Figure 3 shows a worst case). Moreover, c-clocks still satisfies strong unison immediately

after the link addition. Besides, since increments are constrained by neighboring clocks,

adding links only reinforces those constraints. Thus, the delay between internal clocks of

arbitrary far processes remains bounded by n− 1, and so strong unison remains satisfied

in all subsequent computation steps in this case. Consider again example in Figure 3:

before the dynamic step, pn−1 had only to wait until pn−2 increments pn−2.t in order to

be able to increment its own t-clock; yet after the step, it has also to wait for p0.

Assume now a dynamic step containing only process and link removals. Due to

Condition UnderLocalControl, the network remains connected. Hence, constraints between

(still existing) neighbors are maintained: the delay between t-clocks of two neighbors

24

0
0

p0
0
1

p1
0
2

p2

0
1

p3
0
2

p4

(a) Initial configura-
tion.

0
0

p0
0
1

p1

0
1

p3
0
2

p4

(b) After one dy-
namic step where
p2 leaves and link
{p0, p3} is removed.

Figure 4: Delay between neighboring t-clocks remains bounded by one after removing
processes and/or links.

1
11

p1

2
12

p2
2
13

p3
2
14

p4

2
15

p5
2
16

p6

(a) Initial configuration satisfy-
ing strong unison.

1
11

p1

2
12

p2
2
13

p3
2
14

p4

2
15

p5
2
16

p6

(b) After one dynamic step:
link {p1, p2} disappears and link
{p1, p6} is created.

1
11

p1

3
20

p2
3
19

p3
3
18

p4

2
17

p5
2
16

p6

(c) Some steps later, strong uni-
son is violated.

Figure 5: Example of execution where one link is added and another is removed: µ = 6,
α = 7, and β = 42.

remains bounded by one, see example on Figure 4. So, weak unison on t-clocks remains

satisfied and so is strong unison on c-clocks.

Consider now a more complex scenario, where the dynamic step contains link ad-

ditions as well as process and/or link removals. Figure 5 shows an example of such a

scenario, where safety of strong unison is violated. As above, the addition of link {p1, p6}
in Figure 5b leads to a delay between t-clocks of these two (new) neighbors which is

greater than one (here 5). However, the removal of link {p1, p2} relaxes the neighborhood

constraint on p2: p2 can now increment without waiting for p1. Consequently, executing

Algorithm SU does not ensure that the delay between t-clocks of any two arbitrary far

processes remains bounded by n− 1, e.g., in Figure 5c, the delay between p1 and p2 is 9

while n − 1 = 5. Since c-clock values are computed from t-clock values, we also cannot

guarantee that there is at most two c-clock values in the system, see in Figure 5c p1.c = 1

while p2.c = 3.

Again, in the worst case scenario, after a dynamic step, the delay between two neigh-

boring t-clocks is bounded by n−1. Moreover, t-clocks being computed like in Algorithm

WU , we can use two of its useful properties (see [6]): (1) when the delay between every

pair of neighboring t-clocks is at most µ with µ ≥ n, the delay between these clocks

25

remains bounded by µ because processes never reset; (2) furthermore, from such configu-

rations, the system converges to a configuration from which the delay between the t-clocks

of every two neighbors is at most one. So, keeping µ ≥ n, processes will not reset after

one dynamic step and the delay between any two neighboring t-clocks will monotonically

decrease from at most n − 1 to at most one. Consequently, the delay between any two

neighboring c-clocks (which are computed from t-clocks) will stay less than or equal to

one, i.e., weak unison will be satisfied, all along the convergence to strong unison.

Consider now a process p that joins the system. The event joinp occurs and triggers

the specific action bootstrap that sets both the clocks p.t and p.c to a specific bootstate

value, noted ⊥. Note that by definition and from the previous discussion, the system

immediately satisfies partial weak unison since it only depends on processes that were

in the system before the dynamic step. Now, to ensure that weak unison holds within a

round, we add the action DSU -J which is enabled as soon as the process is in bootstate.

This action initializes the two clocks of p according to the clock values in its neighborhood.

Precisely, the value of p.t can be chosen among the non-⊥ values in its neighborhood, and

such values exist by Condition UnderLocalControl. We choose to set p.t to the minimum

non-⊥ t-clock value in its neighborhood, using the function MinTimep given below.

MinTimep = 0 if ∀q ∈ p.N , q.t = ⊥;

min{q.t : q ∈ p.N ∧ q.t 6= ⊥} otherwise.

The value of p.c is then computed according to the value of p.t. Notice that MinTimep

returns 0 when p and all its neighbors have their respective t-clock equal to ⊥. This

ensures that Algorithm DSU remains self-stabilizing (in particular, if the system starts

in a configuration where all t-clocks are equal to ⊥).

To prevent the unfair daemon from blocking the convergence to a configuration con-

taining no ⊥ values, we should also forbid processes with non-⊥ t-clock values to incre-

ment while there are ⊥ t-clock values in their neighborhood. So, we define the predicate

Locked which holds for a given process p when either p.t = ⊥, or at least one of its

neighbor q satisfies q.t = ⊥. We then enforce the guard of both normal and reset ac-

tions, so that no Locked-process can execute them. See actions DSU -N and DSU -R.

This ensures that t-clocks are initialized first by Action DSU -J , before any value in their

neighborhood increments.

Finally, notice that all the previous explanation relies on the fact that, once the system

recovers from process additions (i.e., once no ⊥ value remains), the algorithm behaves

exactly the same as Algorithm SU . Hence, it has to match the assumptions made for

SU . In particular, the assumptions on α and β remain the same. But the constraint on

26

µ has to be adapted, since µ should be greater than or equal to the actual number of

processes in the network and this number may increase. Now, the number of processes

added in a dynamic step is bounded by #J . So, we require µ to be greater than or equal

to n+ #J .

Algorithm 3 DSU , for every process p
Parameters:

α: any positive integer such that α > 4
µ: any positive integer such that µ ≥ n+ #J
β: any positive integer such that β > µ2, and ∃K such that K > µ and β = Kα

Variables:
p.c ∈ {0, . . . , α− 1} ∪ {⊥}
p.t ∈ {0, . . . , β − 1} ∪ {⊥}

Predicates:
Lockedp ≡ p.t = ⊥ ∨ ∃q ∈ p.N , q.t = ⊥
NormalStepp ≡ ¬Lockedp ∧ ∀q ∈ p.N , p.t �β,µ q.t
ResetStepp ≡ ¬Lockedp ∧

(
∃q ∈ p.N , dβ

(
p.t, q.t

)
> µ ∧ p.t 6= 0

)
JoinStepp ≡ p.t = ⊥

Actions:
DSU -N :: NormalStepp → p.t← (p.t+ 1) mod β

p.c←
⌊
α
β
p.t
⌋

DSU -R :: ResetStepp → p.t← 0
p.c← 0

DSU -J :: JoinStepp → p.t←MinTimep

p.c←
⌊
α
β
p.t
⌋

bootstrap :: joinp → p.t← ⊥
p.c← ⊥

We now consider the example of execution of Algorithm DSU given in Figure 6. This

execution starts in a configuration satisfying strong unison, see Figure 6a. Then, one

dynamic step happens (step (a) 7→(b)), where a process p6 joins the system. We now try

to delay as long as possible the execution of DSU -J by p6. In configuration (b), p3 and p5,

the new neighbors of p6, are locked. They will remain disabled until p6 executes DSU -J .

p1 and p4 execute DSU -N in (b) 7→(c). Then, p4 is disabled because of p5 and p1 executes

DSU -N in (c) 7→(d). In configuration (d), p1 is from now on disabled: p1 must wait until

p2 and p4 get t-clock value 7. p6 is the only enabled process, so the distributed unfair

daemon has no other choice: it selects p6 to initialize its variables executing DSU -J in

(d)7→(e).

27

0
5

p1
0
6

p2
1
7

p3

0
5

p4
0
5

p5

(a) Initial config-
uration satisfying
strong unison.

0
5

p1
0
6

p2
1
7

p3

0
5

p4
0
5

p5
⊥
⊥

p6

(b) After the dy-
namic step where
process p6 joins, p3
and p5 are locked.
p1 and p4 are en-
abled to execute
DSU-N .

0
6

p1
0
6

p2
1
7

p3

0
6

p4
0
5

p5
⊥
⊥

p6

(c) p4 is disabled.
DSU-N is enabled
at p1.

0
7

p1
0
6

p2
1
7

p3

0
6

p4
0
5

p5
⊥
⊥

p6

(d) Now, p1 is dis-
abled because of p2
and p4. p6 is the
only enabled pro-
cess.

0
7

p1
0
6

p2
1
7

p3

0
6

p4
0
5

p5
0
5

p6

(e) p6 executes
DSU-J and
initializes its
clocks.

Figure 6: Example of execution where the daemon delays the first step of a new process:
µ = 6, α = 6, and β = 42.

7.2 Proof of Correctness

Proof of self-stabilization w.r.t. SPSU.

Remark 5. Looking at Algorithm DSU , if t-variables have values different from ⊥, the

predicates JoinStep and Locked are false. Furthermore, no action can assign ⊥ to t. As

a consequence,

• when t-variables are initialized with values different from ⊥,

• as far as no topology change occurs (as far as join is false),

Algorithms DSU and SU are syntactically the same. This implies in particular, that the

set of executions E0 under SU and the set of executions E0nobot under DSU are exactly

the same, where nobot = {γ ∈ C : ∀p ∈ V, γ(p.t) 6= ⊥}.

Definition 3 (Legitimate Configurations w.r.t. SPSU under Algorithm DSU). A config-

uration γ is legitimate w.r.t. SPSU under DSU if and only if

• ∀p ∈ V , γ(p).t 6= ⊥

• ∀p ∈ V , ∀q ∈ γ(p).N , dβ
(
γ(p).t, γ(q).t

)
≤ 1

• ∀p ∈ V , γ(p).c =
⌊
α
β
γ(p).t

⌋
.

We denote by LdSU the set of legitimate configurations w.r.t. SPSU under DSU .

Remark 6. As LdSU restricts the values of t to non-⊥ values, we trivially have the equiva-

lence between LdSU and LSU: for every configuration γ,

γ ∈ LdSU ⇐⇒ γ ∈ LSU

28

Lemma 12 (Closure of LdSU under Algorithm DSU). The set of configurations LdSU is

closed under Algorithm DSU .

Proof. Let γ ∈ LdSU be a legitimate configuration of Algorithm DSU and let γ 7→c γ
′ be

a computation step of Algorithm DSU , from configuration γ. By Remark 6, γ is also in

LSU. But Lemma 5 shows that LSU is closed under SU . From Remark 5, the step γ 7→c γ
′

is also a step under Algorithm SU since γ contains no ⊥. Therefore, γ′ is also in LSU and

in LdSU, as well, using again Remark 6.

Lemma 13. For any execution (γi)i≥0 ∈ E0 under DSU , ∃j ≥ 0 such that ∀k ≥ j,

∀p ∈ V , γk(p).t 6= ⊥.

Proof. Let e = (γi)i≥0 ∈ E0. For any i ≥ 0, we note Bottom(γi) = {p ∈ V : γi(p).t = ⊥}.
As actions DSU -N , DSU -R and DSU -J do not create ⊥ values, ∀i > 0, Bottom(γi) ⊆
Bottom(γi−1). Now, assume by contradiction that ∃p ∈ V such that ∀i ≥ 0, p ∈
Bottom(γi). There is a configuration γs, s ≥ 0, from which no ⊥ value disappears

anymore, i.e., ∀p ∈ V , p ∈ Bottom(γs)⇒ ∀i ≥ s, p ∈ Bottom(γi).

If Bottom(γs) = V , every process is enabled for action DSU -J . So, the unfair daemon

selects at least one process to execute action DSU -J and sets its t-variable to a value

different from ⊥, a contradiction with the definition of γs.

Hence there is at least one process that is not in Bottom(γs). Again, if the only

enabled processes are in Bottom(γs), then the unfair daemon has no other choice but

selecting one of them, a contradiction. So, ∀i ≥ s, there exists a process that is enabled

in γi but which is not in Bottom(γi). Remark that this implies in particular that e is an

infinite execution (no terminal configuration reached).

Now, let consider the subgraph G′ of G induced by V \Bottom(γs). G
′ is composed of

a finite number of connected components and, as e is infinite, there is an infinite number

of actions of e executed in (at least) one of these components. Let G′′ = (V ′′, E ′′) be such

a connected component.

Let e′ = (γ′i)i≥0 be the projection of e on G′′ and t-variable: ∀i ≥ 0, ∀x ∈ V ′′,

γ′i(x).t = γi(x).t. We construct e′′ = (γ′′j)j≥0 from e′ by removing duplicate configurations

with the following inductive schema:

• γ′′0 = γ′0,

• and, ∀j > 0, if γ′′0 . . . γ
′′
j represents γ′0 . . . γ

′
k without duplicate configurations, γ′′j+1 =

γ′next, where next = min{l > k : γ′l 6= γ′k}. (Notice that next is always defined as

there is an infinite number of actions executed in G′′.)

Let L = {p ∈ V ′′ : ∃q ∈ Bottom(γs), {p, q} ∈ E} be the set of processes that are

neighbors of a Bottom(γs) process in G. As G is connected, L is not empty. Furthermore,

29

during the execution e, Locked holds forever for processes in L, hence are disabled. As a

consequence, in execution e′′, no process in L can execute a computation step.

Now, from Remark 3 and 5, and since γ′′0 contains no ⊥ value, e′′ is also an execution

of AlgorithmWU in graph G′′. The fact that existing processes (from the non-empty set

L) never increment their clocks during an infinite execution e′′ of WU is a contradiction

with the liveness of unison (Specification 2) and Theorem 2 which states that WU is

self-stabilizing for unison under an unfair daemon.

Lemma 14 (Convergence to LdSU). The whole set of configurations, C, converges under

Algorithm DSU to the set of legitimate configurations LdSU.

Proof. Let (γi)i≥0 ∈ E0 under DSU . Using Lemma 13, ∃j ≥ 0 such that ∀k ≥ j, ∀p ∈ V ,

γk(p).t 6= ⊥. After γj, the execution of the system, (γk)k≥j, is also a possible execution of

SU (see Remark 5). Hence, it converges to a configuration γk (k ≥ j) in LSU (Lemma 6).

So, using Remark 6, γk ∈ LdSU.

Lemma 15 (Correctness of SPSU under DSU). For any execution e ∈ E0LdSU under DSU ,

LdSU(e).

Proof. From Remark 5, every execution in E0LdSU under DSU is also an execution in E0LSU
under SU . Therefore, the correctness is proved in Lemmas 10 and 11.

Using Lemmas 12, 14 and 15, we can deduce the following theorem:

Theorem 6 (Self-stabilization of DSU w.r.t. strong unison). Algorithm DSU is self-

stabilizing for SPSU in any arbitrary connected anonymous network assuming a distributed

unfair daemon.

Theorem 7 states the stabilization time of DSU .

Theorem 7. The stabilization time of DSU to LdSU is at most n + (µ + 1)D + 2, where

n (resp. D) is the size (resp. diameter) of the network, and µ is a parameter satisfying

µ ≥ n.

Proof. Let (γi)i≥0 ∈ E0. If there are some processes p such that γ0(p).t = ⊥, DSU -J is

continuously enabled at p. So, in one round p.t 6= ⊥. Afterwards, the behavior of the

algorithm is similar to the one of SU , that stabilizes in at most n+ (µ+ 1)D+ 1 rounds

(see Theorem 4). Hence, in n + (µ + 1)D + 2 rounds, the system reaches a legitimate

configuration.

30

Proof of the SPWU • 1 part.

Definition 4 (Legitimate Configurations w.r.t. SPWU under Algorithm DSU). A con-

figuration γ is legitimate w.r.t. SPWU if and only if

• ∀p ∈ V , γ(p).t 6= ⊥.

• ∀p ∈ V , ∀q ∈ γ(p).N , dβ
(
γ(p).t, γ(q).t

)
≤ µ.

• ∀p ∈ V , γ(p).c =
⌊
α
β
γ(p).t

⌋
.

We denote by LdWU the set of legitimate configurations w.r.t. SPWU under DSU .

Lemma 16 (Closure of LdWU under Algorithm DSU). The set of configurations LdWU is

closed under Algorithm DSU .

Proof. Notice that the first and third constraints of Definition 4 are closed, as for LdSU.

As, (1) for every configuration γ, we have that γ ∈ LdWU ⇒ γ ∈ Cµ, (2) Cµ is closed

under WU (see Lemma 25) and (3) every computation step of DSU from LdWU is also

a computation step for WU (see Remarks 3 and 5), the second constraint is also closed

under DSU .

Lemma 17 (Safety of LdWU under DSU). Safety of SPWU under DSU is satisfied.

Proof. Let γ ∈ LdWU, p ∈ V , and q ∈ γ(p).N . We have that dβ
(
γ(p).t, γ(q).t

)
≤ µ. and

γ(p).c =
⌊
α
β
γ(p).t

⌋
. Using Lemma 9 with d = µ < K, we obtain that dα

(
γ(p).c, γ(q).c

)
≤

1.

Lemma 18 (Liveness of LdWU). Liveness of SPWU under DSU is satisfied.

Proof. Let e = (γi)i≥0 ∈ E0 such that γ0 ∈ LdWU. Let p be a process. γ0 is a legit-

imate configuration of WU so p increments infinitely often p.t executing DSU -N (see

Lemma 27). Furthermore, actions DSU -R and DSU -J are disabled. So p.t goes through

each integer value between 0 and β − 1 infinitely often (in increasing order). Hence, by

Lemma 7, p.c is incremented infinitely often and goes through each integer value between

0 and α− 1 (in increasing order).

Proof of the SPPU • 0 part.

Definition 5 (Legitimate Configurations w.r.t. SPPU under DSU). A configuration γ is

legitimate w.r.t. SPPU if and only if

a). ∀p ∈ V , γ(p).t = ⊥ ⇒
(
∃q ∈ γ(p).N , γ(q).t 6= ⊥

)
.

31

b). ∀p ∈ V, ∀q ∈ γ(p).N ,
(
γ(p).t 6= ⊥ ∧ γ(q).t 6= ⊥

)
⇒
(
dβ
(
γ(p).t, γ(q).t

)
≤ µ

)
.

c). ∀p, q ∈ V ,
(
γ(p).t 6= ⊥ ∧ (∃x ∈ γ(p).N , γ(x).t = ⊥)∧
γ(q).t 6= ⊥ ∧ (∃y ∈ γ(q).N , γ(y).t = ⊥)

)
⇒
(
dβ
(
γ(p).t, γ(q).t

)
≤ µ

) .

d). ∀p ∈ V , γ(p).t 6= ⊥ ⇒ γ(p).c =
⌊
α
β
γ(p).t

⌋
.

We denote by LdPU the set of legitimate configurations w.r.t. SPPU.

Lemma 19 (Closure of LdPU under DSU). The set of configurations LdPU is closed under

Algorithm DSU .

Proof. Let γ ∈ LdPU be a legitimate configuration of Algorithm DSU and let γ 7→c γ
′

be a computation step of Algorithm DSU , from configuration γ. In γ, action DSU -R is

disabled for all processes: a process can only execute action DSU -N or DSU -J depending

whether its clock is ⊥ or not.

a). Let p ∈ V such that γ′(p).t = ⊥. As no action can set p.t to ⊥, γ(p).t = ⊥ and by

Definition 5, ∃q ∈ γ(p).N such that γ(q).t 6= ⊥. Lockedq holds in γ (because of p).

Hence, q is disabled in γ and γ(q).t = γ′(q).t 6= ⊥.

b). Let p ∈ V and q ∈ γ(p).N such that γ′(p).t 6= ⊥ and γ′(q).t 6= ⊥.

1. If γ(p).t 6= ⊥ and γ(q).t 6= ⊥, as γ ∈ LdPU, dβ
(
γ(p).t, γ(q).t

)
≤ µ. Now, p and

q can only execute action DSU -N during γ 7→c γ
′. If both p and q, or none

of them, execute action DSU -N , the delay between p.t and q.t remains the

same. If only one of them, without loss of generality assume p, executes action

DSU -N , p.t �β,µ q.t holds in γ. So the increment of p.t decreases the delay

between p.t and q.t. Hence, dβ
(
γ′(p).t, γ′(q).t

)
≤ µ.

2. If γ(p).t = ⊥ and γ(q).t 6= ⊥, as γ ∈ LdPU, ∃x ∈ γ(p).N such that γ(x).t 6= ⊥.

We choose x as such a neighbor of p, with minimum value for t, i.e., γ(x).t =

MinTimep in γ. Hence, dβ
(
γ(x).t, γ(q).t

)
≤ µ because of Definition 5.c): q

and x have a (common) neighbor p whose t-variable equals ⊥. q is disabled in

γ because of p (Lockedq holds in γ), hence γ(q).t = γ′(q).t. As γ′(p).t = γ(x).t

(since p executes action DSU -J), dβ
(
γ′(p).t, γ′(q).t

)
≤ µ.

3. If γ(p).t 6= ⊥ and γ(q).t = ⊥, similar to case 2.

4. If γ(p).t = ⊥ and γ(q).t = ⊥, as γ ∈ LdPU, ∃x ∈ p.N such that γ(x).t =

MinTimep 6= ⊥ in γ and ∃y ∈ p.N such that γ(y).t = MinTimeq 6= ⊥ in γ.

Because of Definition 5.c), dβ
(
γ(x).t, γ(y).t

)
≤ µ because they have neighbors

whose t-variables equal ⊥ (p and q, respectively). Since p and q execute action

DSU -J , γ′(p).t = γ(x).t and γ′(q).t = γ(y).t, so dβ
(
γ′(p).t, γ′(q).t

)
≤ µ.

32

c). Let p, q ∈ V such that γ′(p).t 6= ⊥, ∃x ∈ γ′(p).N with γ′(x).t = ⊥, γ′(p).t 6= ⊥, and

∃y ∈ γ′(q).N with γ′(y).t = ⊥.

As no action can set variable t to ⊥, γ(x).t = ⊥ and γ(y).t = ⊥.

1. If γ(p).t 6= ⊥ and γ(q).t 6= ⊥, as γ ∈ LdPU, dβ
(
γ(p).t, γ(q).t

)
≤ µ. Now, p and q

are disabled in γ (Lockedp, Lockedq) because of x and y, respectively. Hence,

dβ
(
γ′(p).t, γ′(q).t

)
≤ µ.

2. If γ(p).t = ⊥ and γ(q).t 6= ⊥, as γ ∈ LdPU, ∃x′ ∈ γ(p).N such that γ(x′).t =

MinTimep 6= ⊥ in γ. Hence, dβ
(
γ(x′).t, γ(q).t

)
≤ µ because they have neigh-

bors whose t-variables equal ⊥ (p and y, respectively). q is disabled in γ

(Lockedq) because of y: γ(q).t = γ′(q).t. And γ′(p).t = γ(x′).t since p exe-

cutes action DSU -J . So dβ
(
γ′(p).t, γ′(q).t

)
≤ µ.

3. If γ(p).t 6= ⊥ and γ(q).t = ⊥, similar to case 2.

4. If γ(p).t = ⊥ and γ(q).t = ⊥, as γ ∈ LdPU, ∃x′ ∈ γ(p).N such that γ(x′).t =

MinTimep 6= ⊥ in γ and ∃y′ ∈ γ(p).N such that γ(y′).t = MinTimeq 6= ⊥
in γ. Hence, dβ

(
γ(x′).t, γ(y′).t

)
≤ µ because they have neighbors whose t-

variables equal ⊥ (p and q, respectively). γ′(p).t = γ(x′).t and γ′(q).t = γ(y′).t

since p and q execute action DSU -J . So dβ
(
γ′(p).t, γ′(q).t

)
≤ µ.

d). Let p ∈ V such that γ′(p).t 6= ⊥. Two cases are possible: either p does no action and

the constraint between p.t and p.c is preserved, or p executes an action DSU -N . In

the latter case, the assignment of the action ensures the constraint.

Lemma 20 (Safety of LdPU under DSU). Safety of SPPU under DSU is satisfied.

Proof. Let γ ∈ LdPU. By Definition 5, ∀p ∈ V , ∀q ∈ γ(p).N ,
(
γ(p).t 6= ⊥∧ γ(q).t 6= ⊥

)
⇒

dβ
(
γ(p).t, γ(q).t

)
≤ µ. Furthermore, ∀p ∈ V , γ(p).t 6= ⊥ ⇒ γ(p).c =

⌊
α
β
γ(p).t

⌋
. Hence,

using Lemma 9 with d = µ < K, ∀p ∈ V , ∀q ∈ γ(p).N ,
(
γ(p).t 6= ⊥ ∧ γ(q).t 6= ⊥

)
⇒

dα
(
γ(p).c, γ(q).c

)
≤ 1.

Lemma 21 (Liveness of LdPU). Liveness of SPPU under DSU is satisfied.

Proof. Let e = (γi)i≥0 ∈ E0LdPU . Using Lemma 13, ∃i ≥ 0 such that ∀j ≥ i, ∀p ∈
V , γj(p).t 6= ⊥. The legitimate configurations LdPU are closed (Lemma 19), so γi is a

legitimate configuration w.r.t. SPPU and is also a legitimate configuration of WU so

p increments infinitely often p.t executing action DSU -N (Lemma 27). Furthermore,

actions DSU -R and DSU -J are disabled. So p.t goes through each integer value between

33

0 and β− 1 infinitely often (in increasing order). Hence, by Lemma 7, p.c is incremented

infinitely often and goes through each integer value between 0 and α − 1 (in increasing

order).

Lemma 22. DSU converges from LdPU to LdWU in a finite time. The convergence time is

at most one round.

Proof. Let (γi)i≥0 ∈ E0LdPU . ∀p ∈ V , such that γ0(p).t = ⊥, action DSU -J is continuously

enabled at p. By Lemma 13, ∃i > 0, such that ∀j ≥ i, ∀p ∈ V , γj(p).t 6= ⊥. Hence,

∃j ∈ {1, . . . , i} such that p executes action DSU -J during γj−1 7→ γj.

So, in at most one round, the system reaches a configuration γk, k ≥ 0, such that

∀p ∈ Vk, γk(p).t 6= ⊥. Now, γ0 ∈ LdPU and LdPU is closed under DSU (Lemma 19), so

γk ∈ LdPU. As there is no t-variable with ⊥ value in γk, γk ∈ LdWU.

Convergence After One Topology Change Step. We now consider executions in

E1 such that UnderLocalControl holds, namely, after the dynamic step, the graph is still

connected and the nodes that were not added design a dominating set.

Lemma 23. Let γi ∈ LdSU be a legitimate configuration under DSU , γi 7→d γi+1 be a

dynamic step, such that ∀p ∈ Vi+1, γi+1(p).t = ⊥ ⇒ (∃q ∈ γi+1(p).N , γi+1(q).t 6= ⊥),

then γi+1 ∈ LdPU.

Proof. Let γi 7→d γi+1 be a dynamic step such that γi ∈ LdSU and ∀p ∈ Vi+1, γi+1(p).t =

⊥ ⇒ (∃q ∈ γi+1(p).N , γi+1(q).t 6= ⊥). By Definition 3, ∀p ∈ Vi, γi(p).t 6= ⊥, γi(p).c =⌊
α
β
γi(p).t

⌋
, and ∀q ∈ γi(p).N , dβ

(
γi(p).t, γi(q).t

)
≤ 1. Hence ∀p, q ∈ Vi, dβ

(
γi(p).t, γi(q).t

)
≤

µ.

Now, after the dynamic step, in γi+1, the state of processes that are in Vi ∩ Vi+1

remains the same. So, ∀p ∈ Vi+1, ∀q ∈ γi+1(p).N , if γi+1(p).t 6= ⊥ and γi+1(q).t 6= ⊥,

then p, q ∈ Vi ∩ Vi+1. As dβ
(
γi(p).t, γi(q).t

)
≤ µ (Remark 4), dβ

(
γi+1(p).t, γi+1(q).t

)
≤ µ.

Finally, ∀p ∈ Vi+1, if γi+1(p).t 6= ⊥, p ∈ Vi∩Vi+1 so γi+1(p).c = γi(p).c =
⌊
α
β
γi(p).t

⌋
=⌊

α
β
γi+1(p).t

⌋
.

Hence, γi+1 ∈ LdPU.

Lemma 24. DSU converges from LdWU to LdSU in a finite time. The convergence time is

at most (µ+ 1)D1 + 1 rounds.

Proof. Let e = (γi)i≥0 ∈ E0LdWU
. The behavior of the algorithm is similar to the one of

WU (Remarks 3 and 5). Furthermore, ∀p ∈ V , ∀q ∈ p.N , dβ
(
γ0(p).t, γ0(q).t

)
≤ µ, so

γ0 ∈ Cµ. By Lemma 29, in a finite time, ∀p ∈ V , ∀q ∈ p.N , dβ
(
γ0(p).t, γ0(q).t

)
≤ 1. This

convergence lasts at most µD1 rounds (Theorem 11).

34

The liveness of weak unison is ensured in e (Lemma 18), so each process eventually

increments its clock executing DSU -N and updates its c-variable. By Lemma 4, the c-

variables are well computed according to t-variables in at most D1 + 1 additional rounds.

Hence, in at most (µ+ 1)D1 + 1 rounds, the system reaches a LdSU.

Using Theorem 6, and Lemmas 16 to 22, we can conclude:

Theorem 8. If UnderLocalControl is satisfied then Algorithm DSU is gradually stabilizing

under 1-dynamics for (SPPU •0, SPWU •1, SPSU • (µ+1)D1 +2) , where D1 (resp. n+#J)

is the diameter (resp. an upper bound on the size) of the network after the dynamic step

and µ is a parameter satisfying µ ≥ n+ #J .

Theorem 9 introduce a result on how often a process increments its clocks since

convergence to legitimate configurations w.r.t. SPSU or SPWU.

Theorem 9. After convergence of DSU to LdWU (resp. LdSU), each process p increments

its clock p.c at least once every µD1 + β
α

rounds (resp. D1 + β
α

rounds).

Proof. By Remarks 3 and 5, we can use results on WU for DSU . If DSU converged

to a configuration γ ∈ LdWU, then γ ∈ Cµ. So, by Lemma 3, after µD1 + β
α

rounds, p

increments p.t at least β
α

times. Now, by Lemma 7, if t-variable is incremented β
α

times,

c-variable is incremented once.

If DSU converged to LdSU, the result of Theorem 5 can be applied (Remark 5). So,

after D1 + β
α

rounds, p increments p.c at least once.

8 Conclusion

The apparent seldomness of superstabilizing solutions for non-static problems, such as

unison, may suggest the difficulty of obtaining such a strong property and if so, make

our notion of gradual stabilization very attractive compared to merely self-stabilizing so-

lutions. For example, in our unison solution, gradual stabilization ensures that processes

remain “almost” synchronized during the convergence phase started after one dynamic

step. Hence, it is worth investigating whether this new paradigm can be applied to other,

in particular non-static, problems.

Concerning our unison algorithm, the graceful recovery after one dynamic step comes

at the price of slowing down the clock increments. The question of limiting this drawback

remains open.

Finally, it would be interesting to address in future work gradual stabilization for

non-static problems in context of more complex dynamic patterns.

35

References

[1] Anish Arora, Shlomi Dolev, and Mohamed G. Gouda. Maintaining digital clocks in

step. Parallel Processing Letters, 1:11–18, 1991.

[2] Baruch Awerbuch, Shay Kutten, Yishay Mansour, Boaz Patt-Shamir, and George

Varghese. Time optimal self-stabilizing synchronization. In STOC, pages 652–661,

1993.

[3] Joffroy Beauquier, Christophe Genolini, and Shay Kutten. k-stabilization of reactive

tasks. In PODC, page 318, 1998.

[4] Lélia Blin, Maria Potop-Butucaru, and Stephane Rovedakis. A super-stabilizing

log(n)log(n)-approximation algorithm for dynamic steiner trees. Theor. Comput.

Sci., 500:90–112, 2013.

[5] Lélia Blin, Maria Gradinariu Potop-Butucaru, Stephane Rovedakis, and Sébastien

Tixeuil. Loop-free super-stabilizing spanning tree construction. In SSS, pages 50–64,

2010.

[6] Christian Boulinier. L’Unisson. PhD thesis, Université de Picardie Jules Vernes,

France, 2007.

[7] Christian Boulinier, Franck Petit, and Vincent Villain. When graph theory helps

self-stabilization. In PODC, pages 150–159, 2004.

[8] Fabienne Carrier, Ajoy Kumar Datta, Stéphane Devismes, Lawrence L. Larmore,

and Yvan Rivierre. Self-stabilizing (f,g)-alliances with safe convergence. J. Parallel

Distrib. Comput., 81-82:11–23, 2015.

[9] Jean-Michel Couvreur, Nissim Francez, and Mohamed G. Gouda. Asynchronous

unison (extended abstract). In ICDCS, pages 486–493, 1992.

[10] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun.

ACM, 17(11):643–644, 1974.

[11] Shlomi Dolev. Self-stabilization. MIT Press, 2000.

[12] Shlomi Dolev and Ted Herman. Superstabilizing protocols for dynamic distributed

systems. Chicago J. Theor. Comput. Sci., 1997, 1997.

[13] Shlomi Dolev, Amos Israeli, and Shlomo Moran. Uniform Dynamic Self-Stabilizing

Leader Election. IEEE Trans. Parallel Distrib. Syst., 8(4):424–440, 1997.

36

[14] Christophe Genolini and Sébastien Tixeuil. A lower bound on dynamic k-

stabilization in asynchronous systems. In SRDS, page 212, 2002.

[15] Sukumar Ghosh, Arobinda Gupta, Ted Herman, and Sriram V. Pemmaraju. Fault-

containing self-stabilizing distributed protocols. Distributed Computing, 20(1):53–73,

2007.

[16] Mohamed G. Gouda and Ted Herman. Stabilizing unison. Inf. Process. Lett.,

35(4):171–175, 1990.

[17] Ted Herman. Superstabilizing mutual exclusion. Distributed Computing, 13(1):1–17,

2000.

[18] Shing-Tsaan Huang and Tzong-Jye Liu. Four-state stabilizing phase clock for uni-

directional rings of odd size. Inf. Process. Lett., 65(6):325–329, 1998.

[19] Colette Johnen, Luc Onana Alima, Ajoy Kumar Datta, and Sébastien Tixeuil. Opti-

mal snap-stabilizing neighborhood synchronizer in tree networks. Parallel Processing

Letters, 12(3-4):327–340, 2002.

[20] Hirotsugu Kakugawa and Toshimitsu Masuzawa. A self-stabilizing minimal domi-

nating set algorithm with safe convergence. In IPDPS, pages 8.–, 2006.

[21] Sayaka Kamei, Tomoko Izumi, and Yukiko Yamauchi. An asynchronous self-

stabilizing approximation for the minimum connected dominating set with safe con-

vergence in unit disk graphs. In SSS, pages 251–265, 2013.

[22] Sayaka Kamei and Hirotsugu Kakugawa. A self-stabilizing approximation algorithm

for the minimum weakly connected dominating set with safe convergence. In WRAS,

pages 57–67, 2007.

[23] Sayaka Kamei and Hirotsugu Kakugawa. A self-stabilizing 6-approximation for the

minimum connected dominating set with safe convergence in unit disk graphs. Theor.

Comput. Sci., 428:80–90, 2012.

[24] Yoshiaki Katayama, Eiichiro Ueda, Hideo Fujiwara, and Toshimitsu Masuzawa. A

latency optimal superstabilizing mutual exclusion protocol in unidirectional rings.

J. Parallel Distrib. Comput., 62(5):865–884, 2002.

[25] Sandeep S. Kulkarni and Anish Arora. Multitolerant barrier synchronization. Inf.

Process. Lett., 64(1):29–36, 1997.

[26] Jayadev Misra. Phase synchronization. Inf. Process. Lett., 38(2):101–105, 1991.

37

[27] Florent Nolot and Vincent Villain. Universal self-stabilizing phase clock protocol

with bounded memory. In IPCCC, pages 228–235, 2001.

[28] Chi-Hung Tzeng, Jehn-Ruey Jiang, and Shing-Tsaan Huang. Size-independent self-

stabilizing asynchronous phase synchronization in general graphs. J. Inf. Sci. Eng.,

26(4):1307–1322, 2010.

38

A Results from [6]

In this section, we recall some useful technical results from [6] about AlgorithmWU . Al-

gorithmWU is an instance of the parametric algorithm GAU in [6]: WU = GAU(β, 0, µ).

The following five lemmas (25-29) are used to establish the self-stabilization of WU
for SPWU by the set of legitimate configurations defined as LWU, where γ ∈ LWU if and

only if ∀p ∈ V , ∀q ∈ γ(p).N , dβ
(
γ(p).t, γ(q).t

)
≤ 1.

The proof of self-stabilization is divided into several steps. The first step (Lemma 26)

consists in showing the convergence of WU from C to Cµ, where Cµ is the set of configu-

rations where the distance between the clocks of two neighbors is at most µ, i.e.,

Cµ = {γ ∈ C : ∀p ∈ V, ∀q ∈ γ(p).N , dβ
(
γ(p).t, γ(q).t

)
≤ µ}

Cµ is shown to be closed underWU in Lemma 25. (Notice that LWU ⊆ Cµ.) The liveness

part of SPWU (the clock p.t of every process p goes through each value in {0, . . . , β − 1}
in increasing order infinitely often) is shown for every execution starting from Cµ in

Lemma 27.

Lemma 25 (Property 8 in [6]). Cµ is closed under WU .

Lemma 26 (Theorem 56 in [6]). If n ≤ µ < β
2
, then ∀e ∈ E0, ∃γ ∈ e such that γ ∈ Cµ.

Lemma 27 (Theorem 21 in [6]). If β > n2, then ∀e ∈ E0Cµ, e satisfies the liveness part

of SPWU.

Then, the second step consists of showing closure of LWU under WU (Lemma 28)

and the convergence from Cµ to LWU (Lemma 29). Regarding the correctness, the safety

part of SPWU (two neighbor clocks differ from at most 1) is ensured by definition of LWU,

whereas the liveness part is already ensured by Lemma 27. Precisely,

Lemma 28 (Property 2 in [6]). LWU is closed under WU .

Lemma 29 (Theorems 29 in [6]). If β > n2 and µ < β
2
, then ∀e ∈ E0Cµ, ∃γ ∈ e such that

γ ∈ LWU.

Some performances of Algorithm WU are already recalled in Theorems 10 and 11

(pages 39 and 39).

Theorem 10 (Theorem 61 in [6]). If n ≤ µ < β
2
, the convergence time of WU from C to

Cµ is at most n rounds.

Theorem 11 (Theorems 20 and 28 in [6]). If β > n2 and µ < β
2
, the convergence time

of WU from Cµ to LWU is at most µD rounds.

39

Finally, Lemma 30 below is a technical result about the values of t-variables.

Lemma 30 (Theorem 20, Property 27, and Lemma 22 in [6]). If β > n2 and β > 2µ,

then ∀e = (γi)i≥0 ∈ E0Cµ, there exists a function f on processes such that

• ∀i ≥ 0, ∀p ∈ V , f(γi, p) mod β = γi(p).t,

• and ∀i ≥ 0, ∀p, q ∈ V , |f(γi, p)− f(γi, q)| = dβ
(
γi(p).t, γi(q).t

)
.

40

