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Abstract

We give necessary and sufficient conditions for existence and infinite divisibility of
α-determinantal processes. For that purpose we use results on negative binomial
and ordinary binomial multivariate distributions.
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1 Introduction

Several authors have already established necessary and sufficient conditions for existence
of α-determinantal processes.
Macchi in [8] and Soshnikov in its survey paper [11] gave a necessary and sufficient condi-
tion for determinantal processes with self-adjoint kernels, which corresponds to the case
α = −1.
The same condition has also been established in a different way by Hough, Krishnapur,
Peres and Virág in [7] in the case α = −1. They have also given a sufficient condition of
existence in the case α = 1 and self-adjoint kernel.
In the special case when the configurations are on a finite space, the paper of Vere-Jones
[12] provides necessary and sufficient conditions for any value of α.
Finally, Shirai and Takahashi have given sufficient conditions for the existence of an α-
determinantal process for any values of α. However, in the case α > 0, their sufficient
condition (Condition B) in [9] does not work for the following example: the space is
reduced to a single point space and the reference measure λ is a unit point mass. With
their notations, the two kernels K and Jα are respectively reduced to two real numbers k
and jα, with

jα =
k

1 + αk
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We can choose α > 0 and k < 0 such that jα > 0. Under these assumptions, Condition B
is fulfilled but the obtained point process has a negative correlation function (ρ1(x) = k),
which has to be excluded, since a correlation function is an almost everywhere non-
negative function.

We are going to strengthen Condition B of Shirai and Takahashi and obtain a necessary
and sufficient condition in the case α > 0. This is presented in Theorem 1.
Besides, in the case α < 0, we extend the result of Shirai and Takahashi to the case of non
self-adjoint kernels and show that the obtained condition is also necessary (Theorems 4
and 5). Moreover, we show that −1/α is necesserely an integer. This has been noticed
by Vere-Jones in [13] in the case of configurations on a finite space.
We also give a necessary and sufficient condition for the infinite divisibility of an α-
determinantal process for all values of α.

The main results are presented in Section 3. Section 2 introduces the needed notation. In
Section 4, we write a multivariate version of a Shirai and Takahashi formulae on Fredholm
determinant expansion. Sections 5 and 6 present the proofs of the results concerning
respectively the cases α > 0 and α < 0. The proofs concerning infinite divisibility are
presented in Section 7.

2 Preliminaries

Let E be a locally compact Polish space. A locally finite configuration on E is an integer-
valued positive Radon measure on E. It can also be identified with a set {(M,αM) :
M ∈ F}, where F is a countable subset of E with no accumulation points (i.e. a discrete
subset of E) and, for each point in F , αM is a non-null integer that corresponds to the
multiplicity of the point M (M is a multiple point if αM ≥ 2).
Let λ be a Radon measure on E. Let X be the space of the locally finite configurations
of E. The space X is endowed with the vague topology of measures, i.e. the smallest
topology such that, for every real continuous function f with compact support, defined
on E , the mapping

X ∋ ξ 7→ 〈f, ξ〉 =
∑

x∈ξ

f(x) =
∫

fdξ

is continuous. Details on the topology of the configuration space can be found in [1].
We denote by B(X ) the corresponding σ-algebra. A point process on E is a random
variable with values in X . We do not restrict ourselves to simple point processes, as the
configurations in X can have multiple points.

For a n× n matrix A = (a[ij)1≤i,j≤n, set:

detα A =
∑

σ∈Σn

αn−ν(σ)
n
∏

i=1

aiσ(i)

where Σn is the set of all permutations on {1, . . . , n} and ν(σ) is the number of cycles of
the permutation σ.
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For a relatively compact set Λ ⊂ E, the Janossy densities of a point process ξ w.r.t. a
Radon measure λ are functions (when they exist) jΛ

n : En → [0,∞) for n ∈ N , such that

jΛ
n (x1, . . . , xn) = n! P(ξ(Λ) = n) πΛ

n (x1, . . . , xn)

jΛ
0 (∅) = P(ξ(Λ) = 0),

where πΛ
n is the density with respect to λ⊗n of the ordered set (x1, . . . , xn), obtained by

first sampling ξ, given that there are n points in Λ, then choosing uniformly an order
between the points.
For Λ1, . . . ,Λn disjoint subsets included in Λ,

∫

Λ1×···×Λn
jΛ

n (x1, . . . , xn)λ(dx1) . . . λ(dxn) is
the probability that there is exactly one point in each subset Λi (1 ≤ i ≤ n), and no other
point elsewhere.
We recall that we have the following formula, for a non-negative mesurable function f
with support in a relatively compact set Λ ⊂ E:

E(f(ξ)) = f(∅) jΛ
0 (∅) +

∞
∑

n=1

1

n!

∫

Λn
f(x1, . . . , xn) jΛ

n (x1, . . . , xn)λ(dx1) . . . λ(dxn).

For n ∈ N and a ∈ R, we denote a(n) =
∏n−1

i=0 (a− i).
The correlation functions (also called joint intensities) of a point process ξ w.r.t. a Radon
measure λ are functions (when they exist) ρn : En → [0,∞) for n ≥ 1, such that for
any family of mutually disjoint relatively compact subsets Λ1, . . . ,Λd of E and for any
non-null integers n1, . . . , nd such that n1 + · · · + nd = n, we have

E

(

d
∏

i=1

ξ(Λi)
(ni)

)

=
∫

Λ
n1
1 ×···×Λ

nd
d

ρn(x1, . . . , xn)λ(dx1), . . . , λ(dxn).

Intuitively, for a simple point process, ρn(x1, . . . , xn)λ(dx1) . . . λ(dxn) is the infinitesimal
probability that there is at least one point in the vicinity of each xi (each vicinity having
an infinitesimal volume λ(dxi) around xi), 1 ≤ i ≤ n.

Let α be a real number and K a kernel from E2 to R or C. An α-determinantal point
process, with kernel K with respect to λ (also called α-permanental point process) is
defined, when it exists, as a point process with the following correlation functions ρn, n ∈ N

with respect to λ:

ρn(x1, . . . , xn) = detα(K(xi, xj))1≤i,j≤n.

We denote by µα,K,λ the probability distribution of such a point process.
We exclude the case of a point process almost surely reduced to the empty configuration.

The case α = −1 corresponds to a determinantal process and the case α = 1 to a perma-
nental process. The case α = 0 corresponds to the Poisson point process. We suppose in
the following that α 6= 0.

We will always assume that the kernel K defines a locally trace class integral operator
K on L2(E, λ). Under this assumption, one obtains an equivalent definition for the α-
determinantal process, using the following Laplace functional formula:

Eµα,K,λ

[

exp
(

−
∫

E
fdξ

)]

= Det
(

I + αK[1 − e−f ]
)−1/α

(1)
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where f is a compactly-supported non-negative function on E, K[1 − e−f ] stands for√
1 − e−fK

√
1 − e−f , I is the identity operator on L2(E, λ) and Det is the Fredholm de-

terminant. Details on the link between the correlation function and the Laplace functional
of an α-determinantal process can be found in the chapter 4 of [9]. Some explanations
and useful formula on the Fredholm determinant are given in chapter 2.1 of [9].

For a subset Λ ⊂ E, set: KΛ = pΛKpΛ, where pΛ is the orthogonal projection operator
from L2(E, λ) to the subspace L2(Λ, λ).

For two subsets Λ,Λ′ ⊂ E, set: KΛΛ′ = pΛKpΛ′, and denote by KΛΛ′ its kernel. We have
for any x, y ∈ E, KΛΛ′(x, y) = 1Λ(x)1Λ′(y)K(x, y).

When I +αK (resp. I +αKΛ) is invertible, Jα (resp. J Λ
α ) is the integral operator defined

by: Jα = K(I +αK)−1 (resp. J Λ
α = KΛ(I +αKΛ)−1) and we denote by Jα (resp. JΛ

α ) its
kernel. Note that J Λ

α is not the orthogonal projection of Jα on L2(Λ, λ).

3 Main results

Theorem 1. For α > 0, there exists an α-permanental process with kernel K iff:

• Det(I + αKΛ) ≥ 1, for any compact set Λ ⊂ E

• detα(JΛ
α (xi, xj))1≤i,j≤n ≥ 0, for any n ∈ N, any compact set Λ ⊂ E and any λ⊗n-a.e.

(x1, . . . , xn) ∈ Λn.

Remark 2. Even when E is a finite set, note that the second condition of Theorem 1
consists in an infinite number of computations. Finding a simpler condition, that could
be checked in a finite number of steps is still an open problem.

Theorem 3. For α > 0, if an α-permanental process with kernel K exists, then:

Spec KΛ ⊂ {z ∈ C : Re z > − 1

2α
} , for any compact set Λ ⊂ E.

We remark that this condition is equivalent to

Spec J Λ
α ⊂ {z ∈ C : |z| < 1

α
} , for any compact set Λ ⊂ E

Theorem 4. For α < 0 and K an integral operator such that I + αKΛ is invertible,
for any compact set Λ ⊂ E, an α-determinantal process with kernel K exists iff the two
following conditions are fulfilled:

(i) −1/α ∈ N

(ii) det(JΛ
α (xi, xj))1≤i,j≤n ≥ 0, for any n ∈ N, any compact set Λ ⊂ E and any λ⊗n-a.e.

(x1, . . . , xn) ∈ Λn.
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The arguments developed in the proof of Theorem 4 shows that actually (ii) =⇒ (i).
Consequently, Condition (ii) is itself a necessary and sufficient condition. It also implies
that Det(I + βKΛ) > 0 for any β ∈ [α, 0] and any compact Λ ⊂ E.

Theorem 5. For α < 0 and K an integral operator such that for some compact set
Λ0 ⊂ E, I + αKΛ0 is not invertible, an α-determinantal process with kernel K exists iff:

(i’) −1/α ∈ N

(ii’) det(JΛ
β (xi, xj))1≤i,j≤n ≥ 0, for any n ∈ N, any β ∈ (α, 0), any compact set Λ ⊂ E

and any λ⊗n-a.e. (x1, . . . , xn) ∈ Λn.

As in Theorem 4, we also have (ii′) =⇒ (i′) and Condition (ii′) is itself a necessary and
sufficient condition.

Note that I +αKΛ0 is not invertible if and only if there is almost surely at least one point
in Λ0.

Corollary 6. For m a positive integer, the existence of a (−1/m)-determinantal process

with kernel K is equivalent to the existence of a determinantal process with the kernel
K

m
.

Corollary 7. For α < 0 and K a self-adjoint operator, an α-determinantal process with
kernel K exists iff:

• −1/α ∈ N

• Spec K ⊂ [0,−1/α]

This result is well known in the case α = −1 (see for example Hough, Krishnapur, Peres
and Virág in [7]).
The sufficient part of this necessary and sufficient condition corresponds to condition A
in [9] of Shirai and Takahashi.

Theorem 8. For α < 0, an α-determinantal process in never infinitely divisible.

Theorem 9. For α > 0, an α-determinantal process is infinitely divisible iff

• Det(I + αKΛ) ≥ 1, for any compact set Λ ⊂ E

• ∑

σ∈Σn:ν(σ)=1

∏n
i=1 J

Λ
α (xi, xσ(i)) ≥ 0, for any n ∈ N, any compact set Λ ⊂ E and

λ⊗n-a.e. (x1, . . . , xn) ∈ Λn.

This theorem gives a more general condition for infinite-divisibility of an α-permanental
process than the condition given by Shirai and Takahashi in [9].

Theorem 10. For K a a real symmetric locally trace class operator and α > 0, an
α-permanental process is infinitely divisible iff
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• Det(I + αKΛ) ≥ 1, for any compact set Λ ⊂ E

• JΛ
α (x1, x2) . . . J

Λ
α (xn−1, xn)JΛ

α (xn, x1) ≥ 0, for any n ∈ N, any compact set Λ ⊂ E
and λ⊗n-a.e. (x1, . . . , xn) ∈ Λn.

Following Griffith and Milne’s remark in [6], when an α-permanental process with kernel
K exists and is infinitely divisible, we can replace Jα

Λ by |Jα
Λ | and obtain an α-permanental

process with the same probability distribution.

Remark 11. In Theorem 1, 9 and 10 , the condition

Det(I + αKΛ) ≥ 1, for any compact set Λ ⊂ E

can be replaced by

Det(I + αKΛ) > 0, for any compact set Λ ⊂ E.

4 Fredholm determinant expansion

In [9], Shirai and Takahashi have proved the following formula

Det(I − αzK)−1/α =
∞
∑

n=0

zn

n!

∫

En
detα(K(xi, xj))1≤i,j≤nλ(dx1) . . . λ(dxn) (2)

for a trace class integral operator K with kernel K and for z ∈ C such that ‖αzK‖ < 1.
In the case where the space E is finite, this formula is also given by Shirai in [10].

As z 7→ Det(I − αzK) is analytic on C and z 7→ z−1/α is analytic on C∗, we obtain that
z 7→ Det(I − αzKΛ,α)−1/α is analytic on {z ∈ C : I − αzKΛ,α invertible}.
Therefore, the formula can be extended to the open disc D, centered in 0 with radius
R = sup{r ∈ R+ : ∀z ∈ C, |z| < r ⇒ I − αzK is invertible}.
D is the open disc of center 0 and radius 1/‖αK‖, if the operator K is self-adjoint, but it
can be larger if K is not self-adjoint.

As remarked by Shirai and Takahashi, the formula (2) is valid for any z ∈ C if −1/α ∈ N.

The following proposition extends (2) to a multivariate case.

Proposition 12. Let Λ ⊂ E be a relatively compact set, Λ1, . . .Λd mutually disjoint
subsets of Λ and K a locally trace class integral operator with kernel K.
We have the following formula

Det

(

I − α
d
∑

k=1

zk KΛkΛ

)−1/α

=
∞
∑

n1,...,nd=0

(

d
∏

k=1

znk

k

nk!

)

∫

Λ
n1
1 ×···×Λ

nd
d

detα(K(xi, xj))1≤i,j≤n λ(dx1) . . . λ(dxn) (3)

for any z1, . . . , zd ∈ C, such that I −αγ
∑d

k=1 zkKΛkΛ is invertible for any complex number
γ satisfying |γ| < 1 (n denotes n1 + · · · + nd).
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Proof. We apply the formula (2) to the class trace operator
∑d

k=1 zkKΛkΛ and we use the
multilinearity property of the α-determinant of a matrix with respect to its rows.

We obtain

Det

(

I − α
d
∑

k=1

zkKΛkΛ

)−1/α

=
∞
∑

n=0

1

n!

∫

En
detα

(

d
∑

k=1

zkKΛkΛ(xi, xj)

)

1≤i,j≤n

λ(dx1) . . . λ(dxn)

=
∞
∑

n=0

1

n!

∫

En

d
∑

k1,...kn=1

detα

(

zki
1Λki

(xi)1Λ(xj)K(xi, xj)
)

1≤i,j≤n
λ(dx1) . . . λ(dxn)

=
∞
∑

n=0

1

n!

d
∑

k1,...kn=1

∫

Λk1
×···×Λkn

detα (zki
K(xi, xj))1≤i,j≤n λ(dx1) . . . λ(dxn)

=
∞
∑

n=0

1

n!

d
∑

k1,...kn=1

(

n
∏

i=1

zki

)

∫

Λk1
×···×Λkn

detα (K(xi, xj))1≤i,j≤n λ(dx1) . . . λ(dxn)

where we have used the fact that KΛkΛ(xi, xj) = 1Λk
(xi)1Λ(xj)K(xi, xj) for the equality

between the first and the second line.
As the value of the α-determinant of a matrix is unchanged by simultaneous interchange
of its rows and its columns, the product zn1

1 . . . znd

d where n1 + . . . nd = n, will be repeated
(

n
n1...nd

)

times. This gives the desired formula.

For a relatively compact set Λ ⊂ E and Λ1, . . . ,Λd mutually disjoint subsets of Λ, the
computation of the Laplace functional of an α-determinantal process for the function
f : (z1, . . . , zd) 7→ −∑d

k=1(log zk)1Λk
, with z1, . . . , zd ∈ (0, 1] gives thanks to (1):

Eµα,K,λ

[

d
∏

k=1

z
ξ(Λk)
k

]

= Det

(

I + α
d
∑

k=1

(1 − zk) KΛkΛ

)−1/α

(4)

which is the probability generating function (p.g.f.) of the finite-dimensional random vec-
tor (ξ(Λ1), . . . , ξ(Λd)).

For α < 0, the formula (4) reminds the multivariate binomial distribution p.g.f. and for
α > 0, the multivariate negative binomial distribution p.g.f., given by Vere-Jones in [12],
in the special case where the space E is finite.

5 α- permanental process (α > 0)

Proof of Theorem 1. We first prove that the conditions are necessary. We suppose that
there exists an α-permanental process with α > 0, kernel K defining the locally trace
class integral operator K.
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By taking d = 1 in the formula (4), we have

Eµα,K,λ

(

zξ(Λ)
)

= Det (I + α(1 − z) KΛ)−1/α

for any compact set Λ ⊂ E and z ∈ (0, 1].

Thus, Det(I + α(1 − z)KΛ) ≥ 1 for z ∈ (0, 1]. By continuity (as z 7→ Det(I + (1 − z)KΛ)
is indeed analytic on C), we obtain that Det(I + αKΛ) ≥ 1, which is the first condition.
This implies that for any compact set Λ ⊂ E, I +αKΛ is invertible. Hence J Λ

α exists and
we have, for any non-negative function f , with compact support included in Λ

Eµα,K,λ





∏

x∈ξ

e−f(x)



 = Det(I + αK[1 − e−f ])−1/α

= Det(I + αKΛ(1 − e−f))−1/α

= Det(I + αKΛ)−1/α Det(I − αJ Λ
α e

−f)−1/α

= Det(I + αKΛ)−1/α
∞
∑

n=0

1

n!

∫

Λn

(

n
∏

i=1

e−f(xi)

)

detα(JΛ
α (xi, xj))1≤i,j≤nλ(dx1) . . . λ(dxn)

(5)

where we have used for the equality between the first and the second line the fact that
Det(I + AB) = Det(I + BA), for any trace class operator A, and any bounded operator
B.
As the Laplace functional defines a.e. uniquely the Janossy density of a point process,
one obtains:

detα(JΛ
α (xi, xj))1≤i,j≤n ≥ 0 λ⊗n-a.e. (x1, . . . , xn) ∈ En

jΛ
α,n(x1, . . . , xn) = Det(I + αKΛ)−1/α detα(JΛ

α (xi, xj))1≤i,j≤n is the Janossy density.

Conversely, if we assume Det(I + αKΛ)−1/α > 0 and detα(JΛ
α (xi, xj))1≤i,j≤n ≥ 0 for

any n ∈ N, any compact set Λ ⊂ E and any λ⊗n-a.e. (x1, . . . , xn) ∈ Λn, the Janossy
density will be correctly defined and, on any compact set Λ, we get the existence of a
point process ξΛ with kernel KΛ (see Proposition 5.3.II. in [2] - here the normalization
condition is automatic by chosing f = 0 in (5)).
The restriction of a point process η, defined on Λ′ ⊂ E, to a subspace Λ ⊂ Λ′ is the point
process denoted η|Λ, obtained by keeping the points in Λ and deleting the points in Λ′\Λ.
For any compact sets Λ,Λ′ ⊂ E, such that Λ ⊂ Λ′, ξΛ and ξΛ′|Λ have the same Laplace
functional, because we have for any non-negative function f, with compact support in-
cluded in Λ:

E

(

exp
(

−
∫

Λ
fdξΛ′|Λ

))

= Det(I + αKΛ′[1 − e−f ])−1/α

= Det(I + αKΛ[1 − e−f ])−1/α

= E

(

exp
(

−
∫

Λ
fdξΛ

))

.

Therefore, ξΛ and ξΛ′|Λ have the same probability distribution. We say that the family
(L(ξΛ)), Λ compact set included in E, is consistent.
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Then we can obtain a point process on the complete space E by the Kolmogorov existence
theorem for point processes (see Theorem 9.2.X in [3] with Pk(A1, . . . , Ak;n1, . . . , nk) =

P

(

ξ∪k
i=1Ai

(A1) = n1, . . . , ξ∪k
i=1Ai

(Ak) = nk

)

: as ξ∪k
i=1Ai

is a point process, it follows that

the properties (i), (iii), (iv) are fulfilled ; (ii) is fulfilled because the family (L(ξΛ)), Λ
compact set included in E, is consistent).
As we used, in this second part of the proof, only the fact that Det(I + αKΛ)−1/α > 0
(instead of Det(I + αKΛ)−1/α ≥ 1), the assertion in remark 11 is also proved.

Proof of Theorem 3. We suppose there exists an α-permanental process with α > 0, ker-
nel K defining the locally trace class integral operator K.

Then, following the proof of the preceding theorem, we get that, for all z ∈ [0, 1]

Det(I + α(1 − z)KΛ) = Det(I + αKΛ) Det(I − αzJ Λ
α ) > 0.

As the power series of Det(I − αzJ Λ
α )−1/α has all its terms non-negative,

|(Det(I − αzJ α
Λ )−1/α| ≤ (Det(I − α |z| J α

Λ )−1/α.

If z0 is a complex number with minimum modulus such that (Det(I − αz0J α
Λ ) = 0, by

analycity of z 7→ Det(I −αzJ Λ
α ) on C and z 7→ z−1 on C∗, Det(I −αzJ Λ

α )−1/α converges
for |z| < |z0| and diverges for z = z0. Thus the series diverges in z = |z0| and |z0| > 1.
This means that the series converges for |z| ≤ 1 thus, in this case, Det(I − αzJ Λ

α ) > 0.

This implies the necessary condition: Spec J Λ
α ⊂ {z ∈ C : |z| < 1

α
}.

As ν eigenvalue of K is equivalent to
ν

1 + αν
eigenvalue of J , and as, K and J being

compact operators, their non-null spectral values are their eigenvalues, we get the other
equivalent necessary condition:

Spec KΛ ⊂ {z ∈ C : Re z > − 1

2α
}.

6 α- determinantal process (α < 0)

We recall the following remark, already made for example in [7].

Remark 13. If we define kernels only λ⊗2-almost everywhere, there can be problems
when we consider only the diagonal terms, as λ⊗2{(x, x) : x ∈ Λ} = 0. For example, in
the formula

trKΛ =
∫

Λ
K(x, x)λ(dx),

trKΛ is not uniquely defined. To avoid this problem, we write the kernel KΛ as follows:

KΛ(x, y) =
∞
∑

k=0

akϕk(x)ψk(y)

9



where (ϕk)k∈N, (ψk)k∈N are orthonormal basis in L2(Λ, λ) and (ak)k∈N is a sequence of
non-negative real number, which are the singular values of the operator KΛ.
The functions ϕk and ψk, k ∈ N, are defined λ-almost everywhere, but this gives then a
unique value for the expression of type

∫

Λn
F (K(xi, xj)1≤i,j≤n)G(x1, . . . , xn)λ(dx1) . . . λ(dxn)

where F is an arbitrary complex function from C
n2

and G is an arbitrary complex function
from Λn.
With this remark, the quantities that appear with F = detα are well defined.

Lemma 14. Let K be a kernel defined as in Remark 13 and defining a trace class inte-
gral operator K on L2(Λ, λ), where Λ is a non-λ-null compact set included in the locally
compact Polish space E, λ be a Radon measure, n an integer and α a real number. Let F
be a continuous fonction from Cn2

to C. The three following assertions are equivalent

(i) F (K(xi, xj)1≤i,j≤n) ≥ 0 λ⊗n − a.e.(x1, . . . , xn) ∈ Λn

(ii) there exists a set Λ′ ⊂ Λ such that λ(Λ\Λ′) = 0 and F ((K(xi, xj))1≤i,j≤n) ≥ 0

for any (x1, . . . , xn) ∈ (Λ′)n

(iii) there exists a version of K such that F ((K(xi, xj))1≤i,j≤n) ≥ 0

for any (x1, . . . , xn) ∈ Λn

Proof. (i) is clearly a consequence of (ii). We assume now that (i) is satisfied and we denote
by N the λ⊗n-null set of n-tuples (x1, . . . , xn) ∈ Λn such that F ((K(xi, xj))1≤i,j≤n) < 0.
As in remark 13, we write the kernel K as follows

K(x, y) =
∞
∑

k=0

akϕk(x)ψk(y) = 〈(√akϕk)k∈N(x)|(√akψk)k∈N(y)〉

where (ϕk)k∈N, (ψk)k∈N are orthonormal basis in L2(Λ, λ), (ak)k∈N is a sequence of non-
negative real number, which are the singular values of the operator K and 〈.|.〉 denote the
inner product in the Hilbert space l2(C).
As K is trace class, we have

∑∞
k=0 ak < ∞. Hence:

∞
∑

k=0

ak|ϕk(x)|2 < ∞ and
∞
∑

k=0

ak|ψk(x)|2 < ∞ λ-a.e. x ∈ Λ

From Lusin’s theorem, there exists an increasing sequence (Ap)p∈N of compact sets in-
cluded in Λ such that, for any p ∈ N

(
√
akϕk)k∈N and (

√
akψk)k∈N are continuous from Ap to l2(C) and λ(Λ\Ap) <

1

p

Therefore the kernel K : (x, y) 7→
〈

(
√
akϕk)k∈N(x)|(√akψk)k∈N(y)

〉

is continuous on A 2
p .

As E is a Polish space, it can be endowed with a distance that we denote by d. We
consider the sets

A′
p = {x ∈ Ap : ∀r > 0, λ(B(x, r) ∩ Ap) > 0}
Bp,n = {x ∈ Ap : λ(B(x, 1/n) ∩Ap) = 0}

10



where B(x, r) is the open ball in E of radius r centered at x and n is an integer.
Let (xk)k∈N be a sequence in Bp,n converging to x ∈ Ap. Then we have, when d(x, xk) <
1/n,

λ(B(x, 1/n− d(x, xk) ∩Ap) ≤ λ(B(xk, 1/n) ∩ Ap) = 0

Therefore λ(B(x, 1/n) ∩ Ap) = 0 and x ∈ Bp,n : Bp,n is closed, thus compact (as it is
included in the compact set Ap).
The set of open balls {B(x, 1/n) : x ∈ Bp,n} is a cover of Bp,n. Then, by compactness,
Bp,n can be covered by a finite numbers of such balls. As the intersections of Ap and any
such a ball is a λ-null set, we get λ(Bp,n) = 0.

Hence we have: λ(A′
p) = λ (Ap\ ∪n∈N Bp,n) = λ(Ap) > λ(Λ) − 1/p.

Let (x1, . . . , xn) ∈ (A′
p)n. If (x1, . . . , xn) /∈ N , then F ((K(xi, xj))1≤i,j≤n) ≥ 0.

Otherwise (x1, . . . , xn) ∈ N . For any i ∈ J1, nK and any r > 0, we have

λ(Ap ∩B(xi, r)) > 0, then λ⊗n(An
p ∩ B((x1, . . . , xn), r)) = λ⊗n(

n
∏

i=1

(Ap ∩B(xi, r))) > 0.

where B((x1, . . . , xn), r) denotes the open ball of radius r centered at x, in En endowed
with the distance d((x1, . . . , xn), (y1, . . . , yn)) = max

1≤i≤n
d(xi, yi).

Then, as λ⊗n(N) = 0, for any q ∈ N, there exists (y
(q)
1 , . . . , y(q)

n ) ∈ An
p∩B((x1, . . . , xn), 1/q)\N

and thus (y
(q)
1 , . . . , y(q)

n ) converge to (x1, . . . , xn) when q → ∞.

As (y
(q)
1 , . . . , y(q)

n ) /∈ N , F ((K(y
(q)
i , y

(q)
j ))1≤i,j≤n) ≥ 0.

As K is continuous on A2
p and F is continuous on C

n2
, we have that the function

(x1, . . . , xn) 7→ F ((K(xi, xj))1≤i,j≤n) is continuous onAn
p . Hence we have: F ((K(xi, xj))1≤i,j≤n) ≥

0.
Therefore, in all cases, if (x1, . . . , xn) ∈ (A′

p)n, F ((K(xi, xj))1≤i,j≤n) ≥ 0.

As (Ap)p∈N is an increasing sequence, it is the same for (A′
p)p∈N. Hence we have: ∪p∈N(A′

p)n =
(

∪p∈NA
′
p

)n
.

We obtain:

F ((K(xi, xj))1≤i,j≤n) ≥ 0 for any (x1, . . . xn) ∈
(

∪p∈NA
′
p

)n

As λ(Λ\
(

∪p∈NA
′
p

)

) = 0, we finally obtain (ii) with Λ′ = ∪p∈NA
′
p.

We obtained that (i) and (ii) are equivalent conditions.

(i) is clearly a consequence of (iii). Assume now (ii). We will define a version K1 of K
satisfying the condition (iii).
As λ(Λ) 6= 0, Λ′ 6= ∅. We set an arbitrary x0 ∈ Λ′.
For (x, x′) ∈ Λ2, we define, y = x if x ∈ Λ′, y = x0 if x ∈ Λ\Λ′, y′ = x′ if x′ ∈ Λ′, y′ = x0

if x′ ∈ Λ\Λ′ and K1(x, x
′) = K(y, y′).

11



For (x1, . . . , xn) ∈ Λn, we define, for 1 ≤ i ≤ n, yi = xi if xi ∈ Λ′ and yi = x0 if xi ∈ Λ\Λ′.
Then we have, F ((K1(xi, xj))1≤i,j≤n) = F ((K(yi, yj))1≤i,j≤n) ≥ 0 and K1 is a version of
K satisfying the condition (iii).

Remark 15. Let Fn, n ∈ N, be continuous functions from Cn2
to C. For any non-λ−null

compact set Λ, the condition:

(i) Fn((JΛ
α (xi, xj))1≤i,j≤n) ≥ 0, for any n ∈ N and λ⊗n-a.e. (x1, . . . , xn) ∈ Λn

can always be replaced by the equivalent conditions:

(ii) there exists a set Λ′ ⊂ Λ such that λ(Λ\Λ′) = 0 and Fn((JΛ
α (xi, xj))1≤i,j≤n) ≥ 0, for

any n ∈ N and (x1, . . . , xn) ∈ (Λ′)n.

or:

(iii) there exists a version of the kernel J such that Fn((JΛ
α (xi, xj))1≤i,j≤n) ≥ 0, for any

n ∈ N and (x1, . . . , xn) ∈ Λn.

Proof. The proof of (ii) =⇒ (iii) is done in the same way as in Lemma 14. The other
parts of the proof are a direct application of Lemma 14.

Proof that (i) is necessary in Theorem 4. This has been mentioned by Vere-Jones in [12]
for the multivariate binomial probability distribution, which corresponds to a determi-
nantal process with E being finite. To our knowledge, this has not been proved in other
cases.
We consider the n× n matrix 1n, whose elements are all equal to one.

We have:
∏n−1

j=0 (1 + jα) = 1 +
∑n−1

k=1

∑

1≤j1<···<jk≤n−1 j1 . . . jk α
k

We will show by induction on n that the number of permutations in Σn having n−k cycles
for k 6= 0 is ank =

∑

1≤j1<···<jk≤n−1 j1 . . . jk: this is true for n = 2 and k = 1. Assume it
is true for a given n ∈ N∗ and for any k ∈ J1, n − 1K. If we consider the permutations
σ ∈ Σn+1 having n + 1 − k cycles (0 ≤ k ≤ n), we have 2 cases:
- either σ(n + 1) = n + 1: there is exactly ank permutations corresponding to this case
(with the convention ann = 0, for the case k = n),
- or σ(n + 1) 6= n + 1. Then, if we denote τn+1 σ(n+1) the transposition in Σn+1 that
exchange n+ 1 and σ(n+ 1), τn+1 σ(n+1) ◦ σ is a permutation having n+ 1 as fixed point
and n+ 1 −k other cycles (with elements in J1, nK): there is exactly nan k−1 permutations
corresponding to this case.
Then we have

an+1 n+1−k = ank + nan k−1

=
∑

1≤j1<···<jk≤n−1

j1 . . . jk +
∑

1≤j1<···<jk−1≤n−1
jk=n

j1 . . . jk

=
∑

1≤j1<···<jk≤n

j1 . . . jk

12



which is what we expected.
Thus: detα 1n =

∏n−1
j=0 (1 + jα).

If α < 0 but −1/α /∈ N, there exists therefore n ∈ N such that detα 1n < 0.

We suppose that there exists an α-determinantal process with α < 0 but −1/α /∈ N and
kernel K. Then we have detα(K(xi, xj))1≤i,j≤n ≥ 0 λ⊗n -a.e. (x1 . . . , xn) ∈ En.
As we exclude the case of a point process having no point almost surely and there is a
sequence of compact sets Λp such that ∪p∈NΛp = E, there exists a compact set Λ ∈ E
such that

E(ξ(Λ)) =
∫

Λ
K(x, x)λ(dx) > 0.

Applying Lemma 14, we get that there exist a version K1 of the kernel K such that
detα(K1(xi, xj))1≤i,j≤n ≥ 0 for any (x1 . . . , xn) ∈ Λn. We also have:

∫

Λ
K(x, x)λ(dx) =

∫

Λ
K1(x, x)λ(dx) > 0.

Hence there exists x0 ∈ Λ such that K1(x0, x0) > 0.
For (x1, . . . , xn) = (x0, . . . , x0), we get:

detα(K1(xi, xj))1≤i,j≤n = K(x0, x0)n detα 1n < 0

which is a contradiction. Therefore if α < 0 and an α-determinantal process exists, then
α must be in {−1/m : m ∈ N}.

We consider a d×d square matrix A. If n1, . . . , nd are d non-negative integers, A[n1, . . . , nd]
is the (n1 + · · · + nd) × (n1 + · · · + nd) square matrix composed of the block matrices Aij:

A[n1, . . . , nd] =













A11 A12 . . . A1d

A21 A22 . . . A2d
...

...
. . .

...
Ad1 Ad2 . . . Add













,

where Aij is the ni × nj matrix whose elements are all equal to aij (1 ≤ i, j ≤ d).

Lemma 16. Given a d× d square matrix A, the following assertions are equivalent

(i) det−1/m A[n1, . . . , nd] ≥ 0, ∀n1, . . . , nd ∈ N

(ii) det−1/m A[n1, . . . , nd] ≥ 0, ∀n1, . . . , nd ∈ {0, . . . , m}
(iii) detA[n1, . . . , nd] ≥ 0, ∀n1, . . . , nd ∈ N

(iv) detA[n1, . . . , nd] ≥ 0, ∀n1, . . . , nd ∈ {0, 1}

Proof. If there exists k ∈ J1, dK such that nk > 1, the matrix A[n1, . . . , nd] has at least two
identical rows and its determinant is null. So it is clear that (iii) and (iv) are equivalent.
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We have:

det(I + ZA)m =
∞
∑

n1,...,nd=0

mn1+...nd

(

d
∏

k=1

znk

k

nk!

)

det−1/m A[n1, . . . , nd] (6)

where Z = diag(z1, . . . , zd) and z1, . . . , zd are d complex numbers. It is a special case
of the formula (3) with α = −1/m, finite space E = J1, dK and reference measure λ
atomic, where each point of E has measure 1, Λk = {k}, for k ∈ J1, dK, Λ = E. Indeed,
ZA =

∑d
k=1 zkAk, where Ak is the d× d square matrix having the same kth row as A and

the other rows with all elements equal to 0. The matrix A corresponds to the operator
K, the matrix Ak corresponds to the operator KΛkΛ. Formula (6) also corresponds to the
one given by Vere-Jones in [13].

We also have for m = 1:

det(I + ZA) =
1
∑

n1,...,nd=0

(

d
∏

k=1

znk

k

nk!

)

detA[n1, . . . , nd]. (7)

as detA[n1, . . . , nd] = 0 if there exists k ∈ J1, dK such that nk > 1.

(i) is equivalent to the fact that the multivariate power series (6) has all its coefficients
non-negative.
(iii) is equivalent to the fact that the multivariate power series (7) has all its coefficients
non-negative.

The power series (6) being the mth power of the power serie (7), if there exists k ∈ J1, dK
such that nk > m, the coefficient of

∏d
k=1 z

nk is null. Therefore, (i) is equivalent to (ii).

For the same reason, we also have that (i) is a consequence of (iii).

Conversely, following Vere-Jones in [12], we can show by induction on the order of the
matrix A, that the fact that the power series (6) has all its coefficients non-negative
implies that the power series (7) has all its coefficient non negative.
This proves the equivalence between (i) and (iii).

Proposition 17. Let α < 0 and K be an integral operator such that I +αKΛ is invertible,
for any compact set Λ ⊂ E. An α-determinantal process with kernel K exists iff:

detα(JΛ
α (xi, xj))1≤i,j≤n ≥ 0, for any n ∈ N, and any compact set Λ

λ⊗n-a.e. (x1, . . . , xn) ∈ Λn (8)

Condition (8) implies that − 1

α
∈ N and Det(I + βK) > 0 for any β ∈ [α, 0].

Proof. We assume that there exists an α-determinantal process ξ with kernel K.
We already proved that it is necessary to have −1/α ∈ N.

14



By taking d = 1 in the formula (4), we have

E

(

zξ(Λ)
)

= Det (I + α(1 − z) KΛ)−1/α

for any compact set Λ ⊂ E and z ∈ (0, 1].

Then Det (I + α(1 − z) KΛ) > 0 for z ∈ (0, 1], and by continuity, Det (I + αKΛ) ≥ 0. As
we assumed that I + αKΛ is invertible, we have necessarily Det (I + αKΛ) > 0.

For any non-negative function f , with compact support included in Λ

E





∏

x∈ξ

e−f(x)



 = Det(I + αK[1 − e−f ])−1/α

= Det(I + αKΛ)−1/α Det(I − αJ Λ
α e

−f)−1/α

= Det(I + αKΛ)−1/α
∞
∑

n=0

1

n!

∫

Λn

(

n
∏

i=1

e−f(xi)

)

detα(JΛ
α (xi, xj))1≤i,j≤nλ(dx1) . . . λ(dxn)

As the Laplace functional defines a.e. uniquely the Janossy density of a point process,
one obtains:

detα(JΛ
α (xi, xj))1≤i,j≤n ≥ 0 λ⊗n-a.e. (x1, . . . , xn) ∈ En

Conversely, we assume that the condition

detα(JΛ
α (xi, xj))1≤i,j≤n ≥ 0, for any n ∈ N, λ⊗n-a.e. (x1, . . . , xn) ∈ Λn and any

compact set Λ.

is fulfilled. We have

Det(I − αzJ Λ
α )−1/α =

∞
∑

n=0

zn

n!

∫

Λn
detα(JΛ

α (xi, xj))1≤i,j≤nλ(dx1) . . . λ(dxn)

As −1/α ∈ N, this formula is valid for any z ∈ C. Then we obtain for z = 1, Det(I −
αJ Λ

α )−1/α ≥ 0.
We also have (I − αJ Λ

α )(I + αKΛ) = (I + αKΛ)(I − αJ Λ
α ) = I.

Then Det(I − αJ Λ
α ) > 0 and Det(I + αKΛ) > 0.

Thus the Janossy density is correctly defined and, on any compact set Λ we get the
existence of a point process with kernel K and reference mesure λ.
Then it can be extended to the complete space E by the Kolmogorov existence theorem
(see Theorem 9.2.X in [3]).

Proof of Theorem 4. For any m ∈ N, applying Lemma 16, we have for any compact set Λ

det−1/m(JΛ
−1/m(xi, xj))1≤i,j≤n ≥ 0, for any n ∈ N, and any (x1, . . . , xn) ∈ Λn

is equivalent to

det(JΛ
−1/m(xi, xj))1≤i,j≤n ≥ 0, for any n ∈ N, and any (x1, . . . , xn) ∈ Λn
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Now, assume we only have

det−1/m(JΛ
−1/m(xi, xj))1≤i,j≤n ≥ 0, for any n ∈ N, λ⊗n-a.e. (x1, . . . , xn) ∈ Λn.

By lemma 14, for each n ∈ N, there exists a set Λ′
n ⊂ Λ such that λ(Λ\Λ′

n) = 0 and
det−1/m(JΛ

−1/m(xi, xj))1≤i,j≤n ≥ 0 for any (x1 . . . , xn) ∈ (Λ′
n)n.

If Λ′ = ∩n∈NΛ′
n, we have λ(Λ\Λ′) = 0 and det−1/m(JΛ

−1/m(xi, xj))1≤i,j≤n ≥ 0 for any n ∈ N

and (x1 . . . , xn) ∈ (Λ′)n.
Then, by Lemma 16, we have: det(JΛ

−1/m(xi, xj))1≤i,j≤n ≥ 0, for any n ∈ N and (x1 . . . , xn) ∈
(Λ′)n.
Therefore, we have

det(JΛ
−1/m(xi, xj))1≤i,j≤n ≥ 0, for any n ∈ N, λ⊗n-a.e. (x1, . . . , xn) ∈ Λn.

The converse is done through a similar proof, using Lemma 14 and 16.
Thus, we obtain:

detα(JΛ
α (xi, xj))1≤i,j≤n ≥ 0, for any n ∈ N, λ⊗n-a.e. (x1, . . . , xn) ∈ Λn

is equivalent to

det(JΛ
α (xi, xj))1≤i,j≤n ≥ 0, for any n ∈ N, λ⊗n-a.e. (x1, . . . , xn) ∈ Λn

Theorem 4 is then a consequence of Proposition 17.

Proof of Theorem 5. We assume that there exists ξ an α-determinantal process with ker-
nel K.
For p ∈ (0, 1), let ξp be the process obtained by first sampling ξ, then independently
deleting each point of ξ with probability 1 − p.
Computing the correlation functions, we obtain that ξp is an α-determinantal process with
kernel pK.
Thus we get from Theorem 4 that the conditions of the theorem must be fulfilled.

Conversely, we assume that these conditions are fulfilled. We obtain from Theorem 4 that
an α-determinantal process ξp with kernel pK exists, for any p ∈ (0, 1).
We consider a sequence (pk) ∈ (0, 1)N converging to 1 and a compact Λ.

E(exp(−tξpk
(Λ)) = Det(I + αpkKΛ(1 − e−t))−1/α −→

k→∞
Det(I + αKΛ(1 − e−t))−1/α

As t 7→ Det(I + αKΛ(1 − e−t))−1/α is continuous in 0, (L(ξpk
(Λ)))k∈N converge weakly.

Thus (L(ξpk
(Λ)))k∈N is tight.

Γ ⊂ X is relatively compact if and only if, for any compact set Λ ⊂ E, {ξ(Λ) : ξ ∈ Γ} is
bounded.
Let (Λn)n∈N be an increasing sequence of compact sets such that ∪n∈NΛn = E.
As, for any n ∈ N, (L(ξpk

(Λn)))k∈N is tight, we have that, for any ǫ > 0 and n ∈ N, there
exists Mn > 0 such that for any k ∈ N,P(ξpk

(Λn) > Mn) < ǫ 2−n−1

Let Γ = {γ ∈ X : ∀n ∈ N, γ(Λn) ≤ Mn}. It is a compact set and for any k ∈ N,P(ξpk
∈

Γc) < ǫ.
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Therefore, (L(ξpk
))k∈N is tight. As E is Polish, X is also Polish (endowed with the

Prokhorov metric). Thus there is a subsequence of (L(ξpk
))k∈N converging weakly to

the probability distribution of a point process ξ. By unicity of the distribution of an α-
determinantal process for given kernel and reference measure, ξ must be an α-determinantal
process with kernel K, which gives the existence.

Lemma 18. Let J be a trace class self-adjoint integral operator with kernel J . We have

det(J(xi, xj))1≤i,j≤n ≥ 0 for any n ∈ N, λ⊗n-a.e.(x1, . . . , xn) ∈ Λn

if and only if

Spec J ⊂ [0,∞)

Proof. If we assume that the operator J is positive, the kernel can be written as follows:

J(x, y) =
∞
∑

k=0

akϕk(x)ϕk(y)

where ak ≥ 0 for k ∈ N.

Hence:

det(J(xi, xj))1≤i,j≤n ≥ 0 for any n ∈ N, and any (x1, . . . , xn) ∈ Λn

Conversely, assume that

det(J(xi, xj))1≤i,j≤n ≥ 0 for any n ∈ N, λ⊗n-a.e.(x1, . . . , xn) ∈ Λn.

From formula (2) with α = −1, we have then for any z ∈ C

Det(I + zJ ) =
∞
∑

n=0

zn

n!

∫

En
det(J(xi, xj))1≤i,j≤nλ(dx1) . . . λ(dxn). (9)

As J is assumed to be self-adjoint, its spectrum is included in R. Thanks to (9), it is
impossible to have an eigenvalue in R

∗
−, as the power series has all its coefficients real

non-negative and the first coefficient (n = 0) is real positive. Hence Spec J ⊂ [0,∞).

Proof of Corollary 7. We assume: −1/α ∈ N and Spec K ⊂ [0,−1/α]. Then we have, as
K is self-adjoint, that for any compact set Λ, Spec KΛ ⊂ [0,−1/α]. Then Det(I+βKΛ) > 0
for any β ∈ (α, 0].
If I + αKΛ is invertible for any compact set Λ ⊂ E, we have Spec JΛ

α ⊂ [0,∞) and JΛ
α is

a trace class self adjoint operator for any compact set Λ.
Then, applying Lemma 18, we get that

det(J(xi, xj))1≤i,j≤n ≥ 0 for any n ∈ N, compact set Λ and λ⊗n-a.e.(x1, . . . , xn) ∈ Λn

Using Theorem 4, we get the existence of an α-determinantal process with kernel K.
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When there exists a compact set Λ0 such that I + αKΛ0 is not invertible, by the same
line of proof, we obtain the announced result, using Theorem 5.

Conversely, we assume that there exists an α-determinantal process with kernel K.
Then, from Theorem 4 or 5, we get that −1/α ∈ N.
If I + αKΛ is invertible for any compact set Λ ⊂ E, we have Spec JΛ

α ⊂ [0,∞), using
Theorem 4 and lemma 18. Then SpecKΛ ⊂ [0,−1/α) ⊂ [0,−1/α], for any compact set
Λ.
If there exists a compact set Λ0 such that I + αKΛ0 is not invertible, we have Spec JΛ

β ⊂
[0,∞) for any compact set Λ and any β ∈ (α, 0), using Theorem 5 and lemma 18. Then
SpecKΛ ⊂ [0,−1/β) for any β ∈ (α, 0). Therefore SpecKΛ ⊂ [0,−1/α] for any compact
set Λ.
As K is self-adjoint, this implies in both cases that SpecK ⊂ [0,−1/α].

Remark 19. Using the known result in the case α = −1 (see for example Hough, Krish-
napur, Peres and Virág in [7]) and corollary 6, one obtains a direct proof of Corollary 7.

7 Infinite divisibility

Proof of Theorem 8. For α < 0, we have proved that it is necessary to have −1/α ∈ N.
If an α-determinantal process was infinitely divisible, with α < 0, it would be the sum
of N i.i.d αN -determinantal processes for any N ∈ N∗, as it can be seen for the Laplace
functional formula (1). This would imply that −1/(Nα) ∈ N, for any N ∈ N∗, which
is not possible. Therefore, an α-determinantal process with α < 0 is never infinitely
divisible.

Some charactization on infinite divisibility have also been given in [4] in the case α > 0.

Proof of Theorem 9. For α > 0, assume that Det(I + αKΛ) ≥ 1 and

∑

σ∈Σn:ν(σ)=1

n
∏

i=1

JΛ
α (xi, xσ(i)) ≥ 0,

for any compact set Λ ⊂ E, n ∈ N and λ⊗n-a.e. (x1, . . . , xn) ∈ Λn. Then we have:

∑

σ∈Σn:ν(σ)=k

n
∏

i=1

JΛ
α (xi, xσ(i)) =

∑

{I1,...,Ik}

partition of J1,nK

∑

σ1∈Σ(I1),...,σk∈Σ(Ik):

ν(σ1)=···=ν(σk)=1

k
∏

q=1

∏

i∈Iq

JΛ
α (xi, xσq(i))

=
∑

{I1,...,Ik}

partition of J1,nK

k
∏

q=1









∑

σ∈Σ(Iq):

ν(σ)=1

∏

i∈Iq

JΛ
α (xi, xσ(i))









≥ 0,

for any compact set Λ ⊂ E, n ∈ N, k ∈ J1, nK and λ⊗n-a.e. (x1, . . . , xn) ∈ Λn, where, for
a finite set I, Σ(I) denotes the set of all permutations on I.
Then, for any N ∈ N∗ and any compact set Λ ∈ E, detNα(JΛ

α (xi, xj)/N)1≤i,j≤n ≥ 0. From
Theorem 1, we get that there exists a (Nα)-permanental process with kernel K/N . This
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means that an α-permanental process with kernel K is infinitely divisible.

Conversely, if we assume an α-permanental process with kernel K is infinitely divisible,
we get the existence of a Nα-permanental process with kernel K/N , for any N ∈ N∗.
From Theorem 1, we have that Det(I + αKΛ) ≥ 1 for any compact set Λ ∈ E.
We also have

1

(Nα)n−1
detNα(JΛ

α (xi, xj))1≤i,j≤n ≥ 0,

for any N ∈ N∗, any n ∈ N, any compact set Λ ∈ E and λ⊗n-a.e. (x1, . . . , xn) ∈ Λn.
When N tends to ∞, we obtain:

∑

σ∈Σn:ν(σ)=1

n
∏

i=1

JΛ
α (xi, xσ(i)) ≥ 0,

which is the desired result.

Proof of Theorem 10. We use the argument of Griffiths in [5] and Griffiths and Milne
in [6]. Assume

∑

σ∈Σn:ν(σ)=1

n
∏

i=1

JΛ
α (xi, xσ(i)) ≥ 0,

for any n ∈ N and any (x1, . . . , xn) ∈ Λn.
The condition JΛ

α (x1, x2) . . . J
Λ
α (xn−1, xn)JΛ

α (xn, x1) ≥ 0 is satisfied for the elementary cy-
cles, i.e. cycles such that JΛ

α (xi, xj) = 0 if i < j + 1 and (i 6= 1 or j 6= n). Then it can be
extended to any cycle by induction, using JΛ

α (xi, xj) = JΛ
α (xj , xi).

With Lemma 14, we can then extend the proof to the case when

∑

σ∈Σn:ν(σ)=1

n
∏

i=1

JΛ
α (xi, xσ(i)) ≥ 0,

for any n ∈ N and λ⊗n-a.e. (x1, . . . , xn) ∈ Λn.

Remark 20. Note that the argument from Griffiths and Milne in [5] and [6] is only valid
for real symmetric matrices.
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