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We give necessary and sufficient conditions for existence and infinite divisibility of α-determinantal processes. For that purpose we use results on negative binomial and ordinary binomial multivariate distributions.

Introduction

Several authors have already established necessary and sufficient conditions for existence of α-determinantal processes. Macchi in [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF] and Soshnikov in its survey paper [START_REF] Soshnikov | Determinantal random point fields[END_REF] gave a necessary and sufficient condition for determinantal processes with self-adjoint kernels, which corresponds to the case α = -1. The same condition has also been established in a different way by Hough, Krishnapur, Peres and Virág in [START_REF] Hough | Determinantal processes and independence[END_REF] in the case α = -1. They have also given a sufficient condition of existence in the case α = 1 and self-adjoint kernel. In the special case when the configurations are on a finite space, the paper of Vere-Jones [START_REF] Vere-Jones | Alpha-permanents and their applications to multivariate gamma, negative binomial and ordinary binomial distributions[END_REF] provides necessary and sufficient conditions for any value of α. Finally, Shirai and Takahashi have given sufficient conditions for the existence of an αdeterminantal process for any values of α. However, in the case α > 0, their sufficient condition (Condition B) in [START_REF] Shirai | Random point fields associated with certain Fredholm determinants. I: fermion, Poisson and boson point processes[END_REF] does not work for the following example: the space is reduced to a single point space and the reference measure λ is a unit point mass. With their notations, the two kernels K and J α are respectively reduced to two real numbers k and j α , with

j α = k 1 + αk
We can choose α > 0 and k < 0 such that j α > 0. Under these assumptions, Condition B is fulfilled but the obtained point process has a negative correlation function (ρ 1 (x) = k), which has to be excluded, since a correlation function is an almost everywhere nonnegative function. We are going to strengthen Condition B of Shirai and Takahashi and obtain a necessary and sufficient condition in the case α > 0. This is presented in Theorem 1. Besides, in the case α < 0, we extend the result of Shirai and Takahashi to the case of non self-adjoint kernels and show that the obtained condition is also necessary (Theorems 4 and 5). Moreover, we show that -1/α is necesserely an integer. This has been noticed by Vere-Jones in [START_REF] Vere-Jones | A generalization of permanents and determinants[END_REF] in the case of configurations on a finite space. We also give a necessary and sufficient condition for the infinite divisibility of an αdeterminantal process for all values of α. The main results are presented in Section 3. Section 2 introduces the needed notation. In Section 4, we write a multivariate version of a Shirai and Takahashi formulae on Fredholm determinant expansion. Sections 5 and 6 present the proofs of the results concerning respectively the cases α > 0 and α < 0. The proofs concerning infinite divisibility are presented in Section 7.

Preliminaries

Let E be a locally compact Polish space. A locally finite configuration on E is an integervalued positive Radon measure on E. It can also be identified with a set {(M, α M ) : M ∈ F }, where F is a countable subset of E with no accumulation points (i.e. a discrete subset of E) and, for each point in F , α M is a non-null integer that corresponds to the multiplicity of the point M (M is a multiple point if α M ≥ 2). Let λ be a Radon measure on E. Let X be the space of the locally finite configurations of E. The space X is endowed with the vague topology of measures, i.e. the smallest topology such that, for every real continuous function f with compact support, defined on E , the mapping

X ∋ ξ → f, ξ = x∈ξ f (x) = f dξ is continuous.
Details on the topology of the configuration space can be found in [START_REF] Albeverio | Analysis and geometry on configuration spaces[END_REF]. We denote by B(X ) the corresponding σ-algebra. A point process on E is a random variable with values in X . We do not restrict ourselves to simple point processes, as the configurations in X can have multiple points.

For a n × n matrix A = (a [ij ) 1≤i,j≤n , set:

det α A = σ∈Σn α n-ν(σ) n i=1 a iσ(i)
where Σ n is the set of all permutations on {1, . . . , n} and ν(σ) is the number of cycles of the permutation σ.

For a relatively compact set Λ ⊂ E, the Janossy densities of a point process ξ w.r.t. a Radon measure λ are functions (when they exist) j Λ n :

E n → [0, ∞) for n ∈ N, such that j Λ n (x 1 , . . . , x n ) = n! P(ξ(Λ) = n) π Λ n (x 1 , . . . , x n ) j Λ 0 (∅) = P(ξ(Λ) = 0), where π Λ
n is the density with respect to λ ⊗n of the ordered set (x 1 , . . . , x n ), obtained by first sampling ξ, given that there are n points in Λ, then choosing uniformly an order between the points. For Λ 1 , . . . ,

Λ n disjoint subsets included in Λ, Λ 1 ו••×Λn j Λ n (x 1 , . . . , x n )λ(dx 1 ) . . . λ(dx n
) is the probability that there is exactly one point in each subset Λ i (1 ≤ i ≤ n), and no other point elsewhere.

We recall that we have the following formula, for a non-negative mesurable function f with support in a relatively compact set Λ ⊂ E:

E(f (ξ)) = f (∅) j Λ 0 (∅) + ∞ n=1 1 n! Λ n f (x 1 , . . . , x n ) j Λ n (x 1 , . . . , x n )λ(dx 1 ) . . . λ(dx n ).
For n ∈ N and a ∈ R, we denote a (n) = n-1 i=0 (ai). The correlation functions (also called joint intensities) of a point process ξ w.r.t. a Radon measure λ are functions (when they exist) ρ n : E n → [0, ∞) for n ≥ 1, such that for any family of mutually disjoint relatively compact subsets Λ 1 , . . . , Λ d of E and for any non-null integers n 1 , . . . , n d such that

n 1 + • • • + n d = n, we have E d i=1 ξ(Λ i ) (n i ) = Λ n 1 1 ו••×Λ n d d ρ n (x 1 , . . . , x n )λ(dx 1 ), . . . , λ(dx n ).
Intuitively, for a simple point process, ρ n (x 1 , . . . , x n )λ(dx 1 ) . . . λ(dx n ) is the infinitesimal probability that there is at least one point in the vicinity of each x i (each vicinity having an infinitesimal volume λ(dx i ) around

x i ), 1 ≤ i ≤ n.
Let α be a real number and K a kernel from E 2 to R or C. An α-determinantal point process, with kernel K with respect to λ (also called α-permanental point process) is defined, when it exists, as a point process with the following correlation functions ρ n , n ∈ N with respect to λ:

ρ n (x 1 , . . . , x n ) = det α (K(x i , x j )) 1≤i,j≤n .
We denote by µ α,K,λ the probability distribution of such a point process. We exclude the case of a point process almost surely reduced to the empty configuration.

The case α = -1 corresponds to a determinantal process and the case α = 1 to a permanental process. The case α = 0 corresponds to the Poisson point process. We suppose in the following that α = 0.

We will always assume that the kernel K defines a locally trace class integral operator K on L 2 (E, λ). Under this assumption, one obtains an equivalent definition for the αdeterminantal process, using the following Laplace functional formula:

E µ α,K,λ exp - E f dξ = Det I + αK[1 -e -f ] -1/α (1)
where f is a compactly-supported non-negative function on E, K[1e -f ] stands for √

1e -f K √ 1e -f , I is the identity operator on L 2 (E, λ) and Det is the Fredholm determinant. Details on the link between the correlation function and the Laplace functional of an α-determinantal process can be found in the chapter 4 of [START_REF] Shirai | Random point fields associated with certain Fredholm determinants. I: fermion, Poisson and boson point processes[END_REF]. Some explanations and useful formula on the Fredholm determinant are given in chapter 2.1 of [START_REF] Shirai | Random point fields associated with certain Fredholm determinants. I: fermion, Poisson and boson point processes[END_REF].

For a subset Λ ⊂ E, set: K Λ = p Λ Kp Λ , where p Λ is the orthogonal projection operator from L 2 (E, λ) to the subspace L 2 (Λ, λ).

For two subsets Λ, Λ ′ ⊂ E, set: K ΛΛ ′ = p Λ Kp Λ ′ , and denote by K ΛΛ ′ its kernel. We have for any x, y ∈ E, K ΛΛ ′ (x, y) = 1 Λ (x) 1 Λ ′ (y) K(x, y).

When I + αK (resp. I + αK Λ ) is invertible, J α (resp. J Λ α )
is the integral operator defined by:

J α = K(I + αK) -1 (resp. J Λ α = K Λ (I + αK Λ ) -1
) and we denote by J α (resp. J Λ α ) its kernel. Note that J Λ α is not the orthogonal projection of J α on L 2 (Λ, λ).

Main results

Theorem 1. For α > 0, there exists an α-permanental process with kernel K iff:

• Det(I + αK Λ ) ≥ 1, for any compact set Λ ⊂ E • det α (J Λ α (x i , x j ))
1≤i,j≤n ≥ 0, for any n ∈ N, any compact set Λ ⊂ E and any λ ⊗n -a.e. (x 1 , . . . , x n ) ∈ Λ n .

Remark 2.

Even when E is a finite set, note that the second condition of Theorem 1 consists in an infinite number of computations. Finding a simpler condition, that could be checked in a finite number of steps is still an open problem. Theorem 3. For α > 0, if an α-permanental process with kernel K exists, then:

Spec K Λ ⊂ {z ∈ C : Re z > - 1 2α } , for any compact set Λ ⊂ E.
We remark that this condition is equivalent to

Spec J Λ α ⊂ {z ∈ C : |z| < 1 α } , for any compact set Λ ⊂ E Theorem 4.
For α < 0 and K an integral operator such that I + αK Λ is invertible, for any compact set Λ ⊂ E, an α-determinantal process with kernel K exists iff the two following conditions are fulfilled: 

(i) -1/α ∈ N (ii) det(J Λ α (x i , x j ))
) ∈ Λ n .
The arguments developed in the proof of Theorem 4 shows that actually (ii) =⇒ (i). Consequently, Condition (ii) is itself a necessary and sufficient condition. It also implies that Det(I + βK Λ ) > 0 for any β ∈ [α, 0] and any compact Λ ⊂ E. Theorem 5. For α < 0 and K an integral operator such that for some compact set Λ 0 ⊂ E, I + αK Λ 0 is not invertible, an α-determinantal process with kernel K exists iff:

(i') -1/α ∈ N (ii') det(J Λ β (x i , x j )) 1≤i,j≤n ≥ 0, for any n ∈ N, any β ∈ (α, 0), any compact set Λ ⊂ E and any λ ⊗n -a.e. (x 1 , . . . , x n ) ∈ Λ n .
As in Theorem 4, we also have (ii ′ ) =⇒ (i ′ ) and Condition (ii ′ ) is itself a necessary and sufficient condition.

Note that I + αK Λ 0 is not invertible if and only if there is almost surely at least one point in Λ 0 . Corollary 6. For m a positive integer, the existence of a (-1/m)-determinantal process with kernel K is equivalent to the existence of a determinantal process with the kernel K m .

Corollary 7. For α < 0 and K a self-adjoint operator, an α-determinantal process with kernel K exists iff:

• -1/α ∈ N • Spec K ⊂ [0, -1/α]
This result is well known in the case α = -1 (see for example Hough, Krishnapur, Peres and Virág in [START_REF] Hough | Determinantal processes and independence[END_REF]).

The sufficient part of this necessary and sufficient condition corresponds to condition A in [START_REF] Shirai | Random point fields associated with certain Fredholm determinants. I: fermion, Poisson and boson point processes[END_REF] of Shirai and Takahashi.

Theorem 8. For α < 0, an α-determinantal process in never infinitely divisible.

Theorem 9. For α > 0, an α-determinantal process is infinitely divisible iff

• Det(I + αK Λ ) ≥ 1, for any compact set Λ ⊂ E • σ∈Σn:ν(σ)=1 n i=1 J Λ α (x i , x σ(i) ) ≥ 0, for any n ∈ N, any compact set Λ ⊂ E and λ ⊗n -a.e. (x 1 , . . . , x n ) ∈ Λ n .
This theorem gives a more general condition for infinite-divisibility of an α-permanental process than the condition given by Shirai and Takahashi in [START_REF] Shirai | Random point fields associated with certain Fredholm determinants. I: fermion, Poisson and boson point processes[END_REF]. Theorem 10. For K a a real symmetric locally trace class operator and α > 0, an α-permanental process is infinitely divisible iff

• Det(I + αK Λ ) ≥ 1, for any compact set Λ ⊂ E • J Λ α (x 1 , x 2 ) . . . J Λ α (x n-1 , x n )J Λ α (x n , x 1 ) ≥ 0, for any n ∈ N, any compact set Λ ⊂ E and λ ⊗n -a.e. (x 1 , . . . , x n ) ∈ Λ n .
Following Griffith and Milne's remark in [START_REF] Griffiths | A class of infinitely divisible multivariate negative binomial distributions[END_REF], when an α-permanental process with kernel K exists and is infinitely divisible, we can replace J α Λ by |J α Λ | and obtain an α-permanental process with the same probability distribution. 

Fredholm determinant expansion

In [START_REF] Shirai | Random point fields associated with certain Fredholm determinants. I: fermion, Poisson and boson point processes[END_REF], Shirai and Takahashi have proved the following formula

Det(I -αzK) -1/α = ∞ n=0 z n n! E n det α (K(x i , x j )) 1≤i,j≤n λ(dx 1 ) . . . λ(dx n ) (2) 
for a trace class integral operator K with kernel K and for z ∈ C such that αzK < 1.

In the case where the space E is finite, this formula is also given by Shirai in [START_REF] Shirai | Remarks on the positivity of α-determinants[END_REF].

As z → Det(I -αzK) is analytic on C and z → z -1/α is analytic on C * , we obtain that z → Det(I -αzK Λ,α ) -1/α is analytic on {z ∈ C : I -αzK Λ,α invertible}. Therefore, the formula can be extended to the open disc D, centered in 0 with radius

R = sup{r ∈ R + : ∀z ∈ C, |z| < r ⇒ I -αzK is invertible}.
D is the open disc of center 0 and radius 1/ αK , if the operator K is self-adjoint, but it can be larger if K is not self-adjoint.

As remarked by Shirai and Takahashi, the formula ( 2) is valid for any z

∈ C if -1/α ∈ N.
The following proposition extends (2) to a multivariate case.

Proposition 12. Let Λ ⊂ E be a relatively compact set, Λ 1 , . . . Λ d mutually disjoint subsets of Λ and K a locally trace class integral operator with kernel K.

We have the following formula

Det I -α d k=1 z k K Λ k Λ -1/α = ∞ n 1 ,...,n d =0 d k=1 z n k k n k ! Λ n 1 1 ו••×Λ n d d det α (K(x i , x j )) 1≤i,j≤n λ(dx 1 ) . . . λ(dx n ) (3) for any z 1 , . . . , z d ∈ C, such that I -αγ d k=1 z k K Λ k Λ is invertible for any complex number γ satisfying |γ| < 1 (n denotes n 1 + • • • + n d ).
Proof. We apply the formula (2) to the class trace operator d k=1 z k K Λ k Λ and we use the multilinearity property of the α-determinant of a matrix with respect to its rows.

We obtain

Det I -α d k=1 z k K Λ k Λ -1/α = ∞ n=0 1 n! E n det α d k=1 z k K Λ k Λ (x i , x j ) 1≤i,j≤n λ(dx 1 ) . . . λ(dx n ) = ∞ n=0 1 n! E n d k 1 ,...kn=1 det α z k i 1 Λ k i (x i )1 Λ (x j )K(x i , x j ) 1≤i,j≤n λ(dx 1 ) . . . λ(dx n ) = ∞ n=0 1 n! d k 1 ,...kn=1 Λ k 1 ו••×Λ kn det α (z k i K(x i , x j )) 1≤i,j≤n λ(dx 1 ) . . . λ(dx n ) = ∞ n=0 1 n! d k 1 ,...kn=1 n i=1 z k i Λ k 1 ו••×Λ kn det α (K(x i , x j )) 1≤i,j≤n λ(dx 1 ) . . . λ(dx n )
where we have used the fact that

K Λ k Λ (x i , x j ) = 1 Λ k (x i ) 1 Λ (x j )K(x i , x j )
for the equality between the first and the second line.

As the value of the α-determinant of a matrix is unchanged by simultaneous interchange of its rows and its columns, the product z n 1 1 . . . z n d d where n 1 + . . . n d = n, will be repeated n n 1 ...n d times. This gives the desired formula.

For a relatively compact set Λ ⊂ E and Λ 1 , . . . , Λ d mutually disjoint subsets of Λ, the computation of the Laplace functional of an α-determinantal process for the function

f : (z 1 , . . . , z d ) → -d k=1 (log z k )1 Λ k , with z 1 , . . . , z d ∈ (0, 1]
gives thanks to (1):

E µ α,K,λ d k=1 z ξ(Λ k ) k = Det I + α d k=1 (1 -z k ) K Λ k Λ -1/α (4) 
which is the probability generating function (p.g.f.) of the finite-dimensional random vector (ξ(Λ 1 ), . . . , ξ(Λ d )).

For α < 0, the formula (4) reminds the multivariate binomial distribution p.g.f. and for α > 0, the multivariate negative binomial distribution p.g.f., given by Vere-Jones in [START_REF] Vere-Jones | Alpha-permanents and their applications to multivariate gamma, negative binomial and ordinary binomial distributions[END_REF], in the special case where the space E is finite.

αpermanental process (α > 0)

Proof of Theorem 1. We first prove that the conditions are necessary. We suppose that there exists an α-permanental process with α > 0, kernel K defining the locally trace class integral operator K.

By taking d = 1 in the formula (4), we have

E µ α,K,λ z ξ(Λ) = Det (I + α(1 -z) K Λ ) -1/α
for any compact set Λ ⊂ E and z ∈ (0, 1].

Thus, Det(I + α(1 -z)K Λ ) ≥ 1 for z ∈ (0, 1]. By continuity (as z → Det(I + (1 -z)K Λ )
is indeed analytic on C), we obtain that Det(I + αK Λ ) ≥ 1, which is the first condition. This implies that for any compact set Λ ⊂ E, I + αK Λ is invertible. Hence J Λ α exists and we have, for any non-negative function f , with compact support included in Λ

E µ α,K,λ   x∈ξ e -f (x)   = Det(I + αK[1 -e -f ]) -1/α = Det(I + αK Λ (1 -e -f )) -1/α = Det(I + αK Λ ) -1/α Det(I -αJ Λ α e -f ) -1/α = Det(I + αK Λ ) -1/α ∞ n=0 1 n! Λ n n i=1 e -f (x i ) det α (J Λ α (x i , x j )) 1≤i,j≤n λ(dx 1 ) . . . λ(dx n ) (5) 
where we have used for the equality between the first and the second line the fact that Det(I + AB) = Det(I + BA), for any trace class operator A, and any bounded operator B.

As the Laplace functional defines a.e. uniquely the Janossy density of a point process, one obtains:

det α (J Λ α (x i , x j )) 1≤i,j≤n ≥ 0 λ ⊗n -a.e. (x 1 , . . . , x n ) ∈ E n j Λ α,n (x 1 , . . . , x n ) = Det(I + αK Λ ) -1/α det α (J Λ α (x i , x j )) 1≤i
,j≤n is the Janossy density.

Conversely, if we assume Det(I + αK Λ ) -1/α > 0 and det α (J Λ α (x i , x j )) 1≤i,j≤n ≥ 0 for any n ∈ N, any compact set Λ ⊂ E and any λ ⊗n -a.e. (x 1 , . . . , x n ) ∈ Λ n , the Janossy density will be correctly defined and, on any compact set Λ, we get the existence of a point process ξ Λ with kernel K Λ (see Proposition 5.3.II. in [START_REF] Daley | An introduction to the theory of point processes[END_REF] -here the normalization condition is automatic by chosing f = 0 in ( 5)). The restriction of a point process η, defined on Λ ′ ⊂ E, to a subspace Λ ⊂ Λ ′ is the point process denoted η| Λ , obtained by keeping the points in Λ and deleting the points in Λ ′ \Λ. For any compact sets Λ, Λ ′ ⊂ E, such that Λ ⊂ Λ ′ , ξ Λ and ξ Λ ′ | Λ have the same Laplace functional, because we have for any non-negative function f, with compact support included in Λ:

E exp - Λ f dξ Λ ′ | Λ = Det(I + αK Λ ′ [1 -e -f ]) -1/α = Det(I + αK Λ [1 -e -f ]) -1/α = E exp - Λ f dξ Λ .
Therefore, ξ Λ and ξ Λ ′ | Λ have the same probability distribution. We say that the family (L(ξ Λ )), Λ compact set included in E, is consistent.

Then we can obtain a point process on the complete space E by the Kolmogorov existence theorem for point processes (see Theorem 9.2.X in [START_REF] Daley | An introduction to the theory of point processes[END_REF] with

P k (A 1 , . . . , A k ; n 1 , . . . , n k ) = P ξ ∪ k i=1 A i (A 1 ) = n 1 , . . . , ξ ∪ k i=1 A i (A k ) = n k : as ξ ∪ k i=1
A i is a point process, it follows that the properties (i), (iii), (iv) are fulfilled ; (ii) is fulfilled because the family (L(ξ Λ )), Λ compact set included in E, is consistent). As we used, in this second part of the proof, only the fact that Det(I + αK Λ ) -1/α > 0 (instead of Det(I + αK Λ ) -1/α ≥ 1), the assertion in remark 11 is also proved.

Proof of Theorem 3. We suppose there exists an α-permanental process with α > 0, kernel K defining the locally trace class integral operator K.

Then, following the proof of the preceding theorem, we get that, for all z ∈ [0, 1]

Det(I + α(1 -z)K Λ ) = Det(I + αK Λ ) Det(I -αzJ Λ α ) > 0.
As the power series of Det(I -αzJ Λ α ) -1/α has all its terms non-negative,

|(Det(I -αzJ α Λ ) -1/α | ≤ (Det(I -α |z| J α Λ ) -1/α .
If z 0 is a complex number with minimum modulus such that (Det(I -

αz 0 J α Λ ) = 0, by analycity of z → Det(I -αzJ Λ α ) on C and z → z -1 on C * , Det(I -αzJ Λ α ) -1/α converges for |z| < |z 0 | and diverges for z = z 0 . Thus the series diverges in z = |z 0 | and |z 0 | > 1.
This means that the series converges for |z| ≤ 1 thus, in this case, Det(I -αzJ Λ α ) > 0.

This implies the necessary condition: Spec

J Λ α ⊂ {z ∈ C : |z| < 1 α }.
As ν eigenvalue of K is equivalent to ν 1 + αν eigenvalue of J , and as, K and J being compact operators, their non-null spectral values are their eigenvalues, we get the other equivalent necessary condition:

Spec K Λ ⊂ {z ∈ C : Re z > - 1 2α }.
6 αdeterminantal process (α < 0)

We recall the following remark, already made for example in [START_REF] Hough | Determinantal processes and independence[END_REF].

Remark 13. If we define kernels only λ ⊗2 -almost everywhere, there can be problems when we consider only the diagonal terms, as λ ⊗2 {(x, x) : x ∈ Λ} = 0. For example, in the formula

tr K Λ = Λ K(x, x)λ(dx),
tr K Λ is not uniquely defined. To avoid this problem, we write the kernel K Λ as follows:

K Λ (x, y) = ∞ k=0 a k ϕ k (x)ψ k (y)
where (ϕ k ) k∈N , (ψ k ) k∈N are orthonormal basis in L 2 (Λ, λ) and (a k ) k∈N is a sequence of non-negative real number, which are the singular values of the operator K Λ . The functions ϕ k and ψ k , k ∈ N, are defined λ-almost everywhere, but this gives then a unique value for the expression of type

Λ n F (K(x i , x j ) 1≤i,j≤n ) G(x 1 , . . . , x n )λ(dx 1 ) . . . λ(dx n )
where F is an arbitrary complex function from C n 2 and G is an arbitrary complex function from Λ n . With this remark, the quantities that appear with F = det α are well defined.

Lemma 14. Let K be a kernel defined as in Remark 13 and defining a trace class integral operator K on L 2 (Λ, λ), where Λ is a non-λ-null compact set included in the locally compact Polish space E, λ be a Radon measure, n an integer and α a real number. Let F be a continuous fonction from C n 2 to C. The three following assertions are equivalent

(i) F (K(x i , x j ) 1≤i,j≤n ) ≥ 0 λ ⊗n -a.e.(x 1 , . . . , x n ) ∈ Λ n (ii) there exists a set Λ ′ ⊂ Λ such that λ(Λ\Λ ′ ) = 0 and F ((K(x i , x j )) 1≤i,j≤n ) ≥ 0 for any (x 1 , . . . , x n ) ∈ (Λ ′ ) n (iii) there exists a version of K such that F ((K(x i , x j )) 1≤i,j≤n ) ≥ 0 for any (x 1 , . . . , x n ) ∈ Λ n
Proof. (i) is clearly a consequence of (ii). We assume now that (i) is satisfied and we denote by N the λ ⊗n -null set of n-tuples (x 1 , . . . , x n ) ∈ Λ n such that F ((K(x i , x j )) 1≤i,j≤n ) < 0. As in remark 13, we write the kernel K as follows

K(x, y) = ∞ k=0 a k ϕ k (x)ψ k (y) = ( √ a k ϕ k ) k∈N (x)|( √ a k ψ k ) k∈N (y)
where (ϕ k ) k∈N , (ψ k ) k∈N are orthonormal basis in L 2 (Λ, λ), (a k ) k∈N is a sequence of nonnegative real number, which are the singular values of the operator K and .|. denote the inner product in the Hilbert space l 2 (C).

As K is trace class, we have ∞ k=0 a k < ∞. Hence: 

∞ k=0 a k |ϕ k (x)| 2 < ∞ and ∞ k=0 a k |ψ k (x)| 2 < ∞ λ-a.e. x
: (x, y) → ( √ a k ϕ k ) k∈N (x)|( √ a k ψ k ) k∈N (y) is continuous on A 2 p .
As E is a Polish space, it can be endowed with a distance that we denote by d. We consider the sets

A ′ p = {x ∈ A p : ∀r > 0, λ(B(x, r) ∩ A p ) > 0} B p,n = {x ∈ A p : λ(B(x, 1/n) ∩ A p ) = 0}
where B(x, r) is the open ball in E of radius r centered at x and n is an integer. Let (x k ) k∈N be a sequence in B p,n converging to x ∈ A p . Then we have, when

d(x, x k ) < 1/n, λ(B(x, 1/n -d(x, x k ) ∩ A p ) ≤ λ(B(x k , 1/n) ∩ A p ) = 0
Therefore λ(B(x, 1/n) ∩ A p ) = 0 and x ∈ B p,n : B p,n is closed, thus compact (as it is included in the compact set A p ).

The set of open balls {B(x, 1/n) : x ∈ B p,n } is a cover of B p,n . Then, by compactness, B p,n can be covered by a finite numbers of such balls. As the intersections of A p and any such a ball is a λ-null set, we get λ(B p,n ) = 0.

Hence we have:

λ(A ′ p ) = λ (A p \ ∪ n∈N B p,n ) = λ(A p ) > λ(Λ) -1/p. Let (x 1 , . . . , x n ) ∈ (A ′ p ) n . If (x 1 , . . . , x n ) / ∈ N, then F ((K(x i , x j )) 1≤i,j≤n ) ≥ 0.
Otherwise (x 1 , . . . , x n ) ∈ N. For any i ∈ 1, n and any r > 0, we have

λ(A p ∩ B(x i , r)) > 0, then λ ⊗n (A n p ∩ B((x 1 , . . . , x n ), r)) = λ ⊗n ( n i=1 (A p ∩ B(x i , r))) > 0.
where B((x 1 , . . . , x n ), r) denotes the open ball of radius r centered at x, in E n endowed with the distance d((x 1 , . . . , x n ), (y 1 , . . . ,

y n )) = max 1≤i≤n d(x i , y i ).
Then, as λ ⊗n (N) = 0, for any q ∈ N, there exists (y

(q)
1 , . . . , y (q) n ) ∈ A n p ∩B((x 1 , . . . , x n ), 1/q)\N and thus (y (q) 1 , . . . , y (q) n ) converge to (x 1 , . . . , x n ) when q → ∞. As (y (q) 1 , . . . , y (q) n ) / ∈ N, F ((K(y

(q) i , y (q) j )) 1≤i,j≤n ) ≥ 0. As K is continuous on A 2
p and F is continuous on C n 2 , we have that the function (x 1 , . . . , x n ) → F ((K(x i , x j )) 1≤i,j≤n ) is continuous on A n p . Hence we have:

F ((K(x i , x j )) 1≤i,j≤n ) ≥ 0. Therefore, in all cases, if (x 1 , . . . , x n ) ∈ (A ′ p ) n , F ((K(x i , x j )) 1≤i,j≤n ) ≥ 0.
As (A p ) p∈N is an increasing sequence, it is the same for (A ′ p ) p∈N . Hence we have:

∪ p∈N (A ′ p ) n = ∪ p∈N A ′ p n .
We obtain:

F ((K(x i , x j )) 1≤i,j≤n ) ≥ 0 for any (x 1 , . . . x n ) ∈ ∪ p∈N A ′ p n As λ(Λ\ ∪ p∈N A ′ p ) = 0, we finally obtain (ii) with Λ ′ = ∪ p∈N A ′ p .
We obtained that (i) and (ii) are equivalent conditions.

(i) is clearly a consequence of (iii). Assume now (ii). We will define a version K 1 of K satisfying the condition (iii).

As λ(Λ) = 0, Λ ′ = ∅. We set an arbitrary

x 0 ∈ Λ ′ . For (x, x ′ ) ∈ Λ 2 , we define, y = x if x ∈ Λ ′ , y = x 0 if x ∈ Λ\Λ ′ , y ′ = x ′ if x ′ ∈ Λ ′ , y ′ = x 0 if x ′ ∈ Λ\Λ ′ and K 1 (x, x ′ ) = K(y, y ′ ). For (x 1 , . . . , x n ) ∈ Λ n , we define, for 1 ≤ i ≤ n, y i = x i if x i ∈ Λ ′ and y i = x 0 if x i ∈ Λ\Λ ′ .
Then we have, F ((K 1 (x i , x j )) 1≤i,j≤n ) = F ((K(y i , y j )) 1≤i,j≤n ) ≥ 0 and K 1 is a version of K satisfying the condition (iii).

Remark 15. Let F n , n ∈ N, be continuous functions from C n 2 to C. For any non-λ -null compact set Λ, the condition:

(i) F n ((J Λ α (x i , x j )) 1≤i,j≤n ) ≥ 0, for any n ∈ N and λ ⊗n -a.e. (x 1 , . . . , x n ) ∈ Λ n can always be replaced by the equivalent conditions:

(ii) there exists a set Λ ′ ⊂ Λ such that λ(Λ\Λ ′ ) = 0 and F n ((J Λ α (x i , x j )) 1≤i,j≤n ) ≥ 0, for any n ∈ N and (x 1 , . . . , x n ) ∈ (Λ ′ ) n . or:

(iii) there exists a version of the kernel J such that F n ((J Λ α (x i , x j )) 1≤i,j≤n ) ≥ 0, for any n ∈ N and (x 1 , . . . , x n ) ∈ Λ n .

Proof. The proof of (ii) =⇒ (iii) is done in the same way as in Lemma 14. The other parts of the proof are a direct application of Lemma 14.

Proof that (i) is necessary in Theorem 4. This has been mentioned by Vere-Jones in [START_REF] Vere-Jones | Alpha-permanents and their applications to multivariate gamma, negative binomial and ordinary binomial distributions[END_REF] for the multivariate binomial probability distribution, which corresponds to a determinantal process with E being finite. To our knowledge, this has not been proved in other cases. We consider the n × n matrix 1 n , whose elements are all equal to one.

We have:

n-1 j=0 (1 + jα) = 1 + n-1 k=1 1≤j 1 <•••<j k ≤n-1 j 1 . . . j k α k
We will show by induction on n that the number of permutations in Σ n having n-k cycles for k = 0 is a nk = 1≤j 1 <•••<j k ≤n-1 j 1 . . . j k : this is true for n = 2 and k = 1. Assume it is true for a given n ∈ N * and for any k ∈ 1, n -1 . If we consider the permutations σ ∈ Σ n+1 having n + 1k cycles (0 ≤ k ≤ n), we have 2 cases: -either σ(n + 1) = n + 1: there is exactly a nk permutations corresponding to this case (with the convention a nn = 0, for the case k = n), -or σ(n + 1) = n + 1. Then, if we denote τ n+1 σ(n+1) the transposition in Σ n+1 that exchange n + 1 and σ(n + 1), τ n+1 σ(n+1) • σ is a permutation having n + 1 as fixed point and n + 1k other cycles (with elements in 1, n ): there is exactly na n k-1 permutations corresponding to this case. Then we have

a n+1 n+1-k = a nk + na n k-1 = 1≤j 1 <•••<j k ≤n-1 j 1 . . . j k + 1≤j 1 <•••<j k-1 ≤n-1 j k =n j 1 . . . j k = 1≤j 1 <•••<j k ≤n j 1 . . . j k
which is what we expected. Thus:

det α 1 n = n-1 j=0 (1 + jα). If α < 0 but -1/α / ∈ N, there exists therefore n ∈ N such that det α 1 n < 0.
We suppose that there exists an α-determinantal process with α < 0 but -1/α / ∈ N and kernel K. Then we have det α (K(x i , x j )) 1≤i,j≤n ≥ 0 λ ⊗n -a.e. (x 1 . . . , x n ) ∈ E n . As we exclude the case of a point process having no point almost surely and there is a sequence of compact sets Λ p such that ∪ p∈N Λ p = E, there exists a compact set Λ ∈ E such that

E(ξ(Λ)) = Λ K(x, x)λ(dx) > 0.
Applying Lemma 14, we get that there exist a version K 1 of the kernel K such that det α (K 1 (x i , x j )) 1≤i,j≤n ≥ 0 for any (x 1 . . . , x n ) ∈ Λ n . We also have:

Λ K(x, x)λ(dx) = Λ K 1 (x, x)λ(dx) > 0.
Hence there exists x 0 ∈ Λ such that K 1 (x 0 , x 0 ) > 0. For (x 1 , . . . , x n ) = (x 0 , . . . , x 0 ), we get:

det α (K 1 (x i , x j )) 1≤i,j≤n = K(x 0 , x 0 ) n det α 1 n < 0
which is a contradiction. Therefore if α < 0 and an α-determinantal process exists, then α must be in {-1/m : m ∈ N}.

We consider a d×d square matrix

A. If n 1 , . . . , n d are d non-negative integers, A[n 1 , . . . , n d ] is the (n 1 + • • • + n d ) × (n 1 + • • • + n d ) square matrix composed of the block matrices A ij : A[n 1 , . . . , n d ] =       A 11 A 12 . . . A 1d A 21 A 22 . . . A 2d . . . . . . . . . . . . A d1 A d2 . . . A dd      
, where A ij is the n i × n j matrix whose elements are all equal to a ij (1 ≤ i, j ≤ d).

Lemma 16. Given a d × d square matrix A, the following assertions are equivalent

(i) det -1/m A[n 1 , . . . , n d ] ≥ 0, ∀n 1 , . . . , n d ∈ N (ii) det -1/m A[n 1 , . . . , n d ] ≥ 0, ∀n 1 , . . . , n d ∈ {0, . . . , m} (iii) det A[n 1 , . . . , n d ] ≥ 0, ∀n 1 , . . . , n d ∈ N (iv) det A[n 1 , . . . , n d ] ≥ 0, ∀n 1 , . . . , n d ∈ {0, 1}
Proof. If there exists k ∈ 1, d such that n k > 1, the matrix A[n 1 , . . . , n d ] has at least two identical rows and its determinant is null. So it is clear that (iii) and (iv) are equivalent.

We have:

det(I + ZA) m = ∞ n 1 ,...,n d =0 m n 1 +...n d d k=1 z n k k n k ! det -1/m A[n 1 , . . . , n d ] (6) 
where Z = diag(z 1 , . . . , z d ) and z 1 , . . . , z d are d complex numbers. It is a special case of the formula (3) with α = -1/m, finite space E = 1, d and reference measure λ atomic, where each point of E has measure 1, Λ k = {k}, for k ∈ 1, d , Λ = E. Indeed, ZA = d k=1 z k A k , where A k is the d × d square matrix having the same k th row as A and the other rows with all elements equal to 0. The matrix A corresponds to the operator K, the matrix A k corresponds to the operator K Λ k Λ . Formula (6) also corresponds to the one given by Vere-Jones in [START_REF] Vere-Jones | A generalization of permanents and determinants[END_REF].

We also have for m = 1:

det(I + ZA) = 1 n 1 ,...,n d =0 d k=1 z n k k n k ! det A[n 1 , . . . , n d ]. (7) 
as det A[n 1 , . . . , n d ] = 0 if there exists k ∈ 1, d such that n k > 1.

(i) is equivalent to the fact that the multivariate power series ( 6) has all its coefficients non-negative.

(iii) is equivalent to the fact that the multivariate power series [START_REF] Hough | Determinantal processes and independence[END_REF] has all its coefficients non-negative.

The power series (6) being the m th power of the power serie [START_REF] Hough | Determinantal processes and independence[END_REF], if there exists k ∈ 1, d such that n k > m, the coefficient of d k=1 z n k is null. Therefore, (i) is equivalent to (ii).

For the same reason, we also have that (i) is a consequence of (iii).

Conversely, following Vere-Jones in [START_REF] Vere-Jones | Alpha-permanents and their applications to multivariate gamma, negative binomial and ordinary binomial distributions[END_REF], we can show by induction on the order of the matrix A, that the fact that the power series ( 6) has all its coefficients non-negative implies that the power series [START_REF] Hough | Determinantal processes and independence[END_REF] has all its coefficient non negative. This proves the equivalence between (i) and (iii).

Proposition 17. Let α < 0 and K be an integral operator such that I + αK Λ is invertible, for any compact set Λ ⊂ E. An α-determinantal process with kernel K exists iff: Proof. We assume that there exists an α-determinantal process ξ with kernel K.

det α (J Λ α (x i , x j )) 1≤i,
We already proved that it is necessary to have -1/α ∈ N.

E z ξ(Λ) = Det (I + α(1 -z) K Λ ) -1/α
for any compact set Λ ⊂ E and z ∈ (0, 1].

Then Det (I + α(1z) K Λ ) > 0 for z ∈ (0, 1], and by continuity, Det (I + α K Λ ) ≥ 0. As we assumed that I + αK Λ is invertible, we have necessarily Det (I + α K Λ ) > 0.

For any non-negative function f , with compact support included in Λ

E   x∈ξ e -f (x)   = Det(I + αK[1 -e -f ]) -1/α = Det(I + αK Λ ) -1/α Det(I -αJ Λ α e -f ) -1/α = Det(I + αK Λ ) -1/α ∞ n=0 1 n! Λ n n i=1 e -f (x i ) det α (J Λ α (x i , x j )) 1≤i,j≤n λ(dx 1 ) . . . λ(dx n )
As the Laplace functional defines a.e. uniquely the Janossy density of a point process, one obtains:

det α (J Λ α (x i , x j )) 1≤i,j≤n ≥ 0 λ ⊗n -a.e. (x 1 , . . . , x n ) ∈ E n
Conversely, we assume that the condition det α (J Λ α (x i , x j )) 1≤i,j≤n ≥ 0, for any n ∈ N, λ ⊗n -a.e. (x 1 , . . . , x n ) ∈ Λ n and any compact set Λ. is fulfilled. We have

Det(I -αzJ Λ α ) -1/α = ∞ n=0 z n n! Λ n det α (J Λ α (x i , x j )) 1≤i,j≤n λ(dx 1 ) . . . λ(dx n )
As -1/α ∈ N, this formula is valid for any z ∈ C. Then we obtain for z = 1, Det(I -αJ Λ α ) -1/α ≥ 0. We also have (I -αJ Λ α )(I + αK Λ ) = (I + αK Λ )(I -αJ Λ α ) = I. Then Det(I -αJ Λ α ) > 0 and Det(I + αK Λ ) > 0. Thus the Janossy density is correctly defined and, on any compact set Λ we get the existence of a point process with kernel K and reference mesure λ. Then it can be extended to the complete space E by the Kolmogorov existence theorem (see Theorem 9.2.X in [START_REF] Daley | An introduction to the theory of point processes[END_REF]).

Proof of Theorem 4. For any m ∈ N, applying Lemma 16, we have for any compact set Λ det -1/m (J Λ -1/m (x i , x j )) 1≤i,j≤n ≥ 0, for any n ∈ N, and any (x 1 , . . . , x n ) ∈ Λ n is equivalent to det(J Λ -1/m (x i , x j )) 1≤i,j≤n ≥ 0, for any n ∈ N, and any (x 1 , . . . , x n ) ∈ Λ n Therefore, (L(ξ p k )) k∈N is tight. As E is Polish, X is also Polish (endowed with the Prokhorov metric). Thus there is a subsequence of (L(ξ p k )) k∈N converging weakly to the probability distribution of a point process ξ. By unicity of the distribution of an αdeterminantal process for given kernel and reference measure, ξ must be an α-determinantal process with kernel K, which gives the existence.

Lemma 18. Let J be a trace class self-adjoint integral operator with kernel J. We have det(J(x i , x j )) 1≤i,j≤n ≥ 0 for any n ∈ N, λ ⊗n -a.e.(x 1 , . . . , x n ) ∈ Λ n if and only if

Spec J ⊂ [0, ∞)
Proof. If we assume that the operator J is positive, the kernel can be written as follows:

J(x, y) = ∞ k=0 a k ϕ k (x)ϕ k (y)
where a k ≥ 0 for k ∈ N.

Hence: det(J(x i , x j )) 1≤i,j≤n ≥ 0 for any n ∈ N, and any (x 1 , . . . , x n ) ∈ Λ n Conversely, assume that det(J(x i , x j )) 1≤i,j≤n ≥ 0 for any n ∈ N, λ ⊗n -a.e.(x 1 , . . . , x n ) ∈ Λ n .

From formula (2) with α = -1, we have then for any z ∈ C

Det(I + zJ ) = ∞ n=0 z n n! E n det(J(x i , x j )) 1≤i,j≤n λ(dx 1 ) . . . λ(dx n ). ( 9 
)
As J is assumed to be self-adjoint, its spectrum is included in R. Thanks to [START_REF] Shirai | Random point fields associated with certain Fredholm determinants. I: fermion, Poisson and boson point processes[END_REF], it is impossible to have an eigenvalue in R * -, as the power series has all its coefficients real non-negative and the first coefficient (n = 0) is real positive. Hence Spec J ⊂ [0, ∞).

Proof of Corollary 7. We assume: -1/α ∈ N and Spec K ⊂ [0, -1/α]. Then we have, as K is self-adjoint, that for any compact set Λ, Spec K Λ ⊂ [0, -1/α]. Then Det(I+βK Λ ) > 0 for any β ∈ (α, 0]. If I + αK Λ is invertible for any compact set Λ ⊂ E, we have Spec J Λ α ⊂ [0, ∞) and J Λ α is a trace class self adjoint operator for any compact set Λ. Then, applying Lemma 18, we get that det(J(x i , x j )) 1≤i,j≤n ≥ 0 for any n ∈ N, compact set Λ and λ ⊗n -a.e.(x 1 , . . . , x n ) ∈ Λ n Using Theorem 4, we get the existence of an α-determinantal process with kernel K.

When there exists a compact set Λ 0 such that I + αK Λ 0 is not invertible, by the same line of proof, we obtain the announced result, using Theorem 5.

Conversely, we assume that there exists an α-determinantal process with kernel K. Then, from Theorem 4 or 5, we get that -1/α ∈ N. If I + αK Λ is invertible for any compact set Λ ⊂ E, we have Spec J Λ α ⊂ [0, ∞), using Theorem 4 and lemma 18. Then Spec K Λ ⊂ [0, -1/α) ⊂ [0, -1/α], for any compact set Λ. If there exists a compact set Λ 0 such that I + αK Λ 0 is not invertible, we have Spec J Λ β ⊂ [0, ∞) for any compact set Λ and any β ∈ (α, 0), using Theorem 5 and lemma 18. Then Spec K Λ ⊂ [0, -1/β) for any β ∈ (α, 0). Therefore Spec K Λ ⊂ [0, -1/α] for any compact set Λ. As K is self-adjoint, this implies in both cases that Spec K ⊂ [0, -1/α].

Remark 19. Using the known result in the case α = -1 (see for example Hough, Krishnapur, Peres and Virág in [START_REF] Hough | Determinantal processes and independence[END_REF]) and corollary 6, one obtains a direct proof of Corollary 7.

Infinite divisibility

Proof of Theorem 8. For α < 0, we have proved that it is necessary to have -1/α ∈ N. If an α-determinantal process was infinitely divisible, with α < 0, it would be the sum of N i.i.d αN-determinantal processes for any N ∈ N * , as it can be seen for the Laplace functional formula [START_REF] Albeverio | Analysis and geometry on configuration spaces[END_REF]. This would imply that -1/(Nα) ∈ N, for any N ∈ N * , which is not possible. Therefore, an α-determinantal process with α < 0 is never infinitely divisible. Some charactization on infinite divisibility have also been given in [START_REF] Eisenbaum | On permanental processes[END_REF] in the case α > 0. Then, for any N ∈ N * and any compact set Λ ∈ E, det N α (J Λ α (x i , x j )/N) 1≤i,j≤n ≥ 0. From Theorem 1, we get that there exists a (Nα)-permanental process with kernel K/N. This means that an α-permanental process with kernel K is infinitely divisible.

Conversely, if we assume an α-permanental process with kernel K is infinitely divisible, we get the existence of a Nα-permanental process with kernel K/N, for any N ∈ N * . From Theorem 1, we have that Det(I + αK Λ ) ≥ 1 for any compact set Λ ∈ E. We also have 1 (Nα) n-1 det N α (J Λ α (x i , x j )) 1≤i,j≤n ≥ 0, for any N ∈ N * , any n ∈ N, any compact set Λ ∈ E and λ ⊗n -a.e. (x 1 , . . . , x n ) ∈ Λ n . When N tends to ∞, we obtain:

σ∈Σn:ν(σ)=1 n i=1 J Λ α (x i , x σ(i) ) ≥ 0,
which is the desired result.

Proof of Theorem 10. We use the argument of Griffiths in [START_REF] Griffiths | Multivariate gamma distributions[END_REF] and Griffiths and Milne in [START_REF] Griffiths | A class of infinitely divisible multivariate negative binomial distributions[END_REF]. Assume

σ∈Σn:ν(σ)=1 n i=1 J Λ α (x i , x σ(i) ) ≥ 0,
for any n ∈ N and any (x 1 , . . . , x n ) ∈ Λ n . The condition J Λ α (x 1 , x 2 ) . . . J Λ α (x n-1 , x n )J Λ α (x n , x 1 ) ≥ 0 is satisfied for the elementary cycles, i.e. cycles such that J Λ α (x i , x j ) = 0 if i < j + 1 and (i = 1 or j = n). Then it can be extended to any cycle by induction, using J Λ α (x i , x j ) = J Λ α (x j , x i ).

With Lemma 14, we can then extend the proof to the case when σ∈Σn:ν(σ)=1 n i=1 J Λ α (x i , x σ(i) ) ≥ 0, for any n ∈ N and λ ⊗n -a.e. (x 1 , . . . , x n ) ∈ Λ n .

Remark 20. Note that the argument from Griffiths and Milne in [START_REF] Griffiths | Multivariate gamma distributions[END_REF] and [START_REF] Griffiths | A class of infinitely divisible multivariate negative binomial distributions[END_REF] is only valid for real symmetric matrices.

Remark 11 .

 11 In Theorem 1, 9 and 10 , the condition Det(I + αK Λ ) ≥ 1, for any compact set Λ ⊂ E can be replaced by Det(I + αK Λ ) > 0, for any compact set Λ ⊂ E.

8 )Condition ( 8 )

 88 j≤n ≥ 0, for any n ∈ N, and any compact set Λ λ ⊗n -a.e. (x 1 , . . . , x n ) ∈ Λ n (implies that -1 α ∈ N and Det(I + βK) > 0 for any β ∈ [α, 0].

Proof of Theorem 9 .

 9 For α > 0, assume that Det(I + αK Λ ) ≥ 1 andσ∈Σn:ν(σ)=1 n i=1 J Λ α (x i , x σ(i) ) ≥ 0,for any compact set Λ ⊂ E, n ∈ N and λ ⊗n -a.e. (x 1 , . . . , x n ) ∈ Λ n . Then we have:σ∈Σn:ν(σ)=k n i=1 J Λ α (x i , x σ(i) ) = {I 1 ,...,I k } partition of 1,n σ 1 ∈Σ(I 1 ),...,σ k ∈Σ(I k ): ν(σ 1 )=•••=ν(σ k )=1 k q=1 i∈Iq J Λ α (x i , x σq(i) set Λ ⊂ E, n ∈ N, k ∈ 1, n and λ ⊗n -a.e. (x 1 , . . . , x n ) ∈ Λ n , where, for a finite set I, Σ(I) denotes the set of all permutations on I.

  1≤i,j≤n ≥ 0, for any n ∈ N, any compact set Λ ⊂ E and any λ ⊗n -a.e. (x 1 , . . . , x n
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Now, assume we only have det -1/m (J Λ -1/m (x i , x j )) 1≤i,j≤n ≥ 0, for any n ∈ N, λ ⊗n -a.e. (x 1 , . . . , x n ) ∈ Λ n .

By lemma 14, for each n ∈ N, there exists a set Λ

Then, by Lemma 16, we have: det(J Λ -1/m (x i , x j )) 1≤i,j≤n ≥ 0, for any n ∈ N and (x 1 . . . , x n ) ∈ (Λ ′ ) n . Therefore, we have

The converse is done through a similar proof, using Lemma 14 and 16. Thus, we obtain:

Theorem 4 is then a consequence of Proposition 17.

Proof of Theorem 5. We assume that there exists ξ an α-determinantal process with kernel K.

For p ∈ (0, 1), let ξ p be the process obtained by first sampling ξ, then independently deleting each point of ξ with probability 1p.

Computing the correlation functions, we obtain that ξ p is an α-determinantal process with kernel pK. Thus we get from Theorem 4 that the conditions of the theorem must be fulfilled.

Conversely, we assume that these conditions are fulfilled. We obtain from Theorem 4 that an α-determinantal process ξ p with kernel pK exists, for any p ∈ (0, 1). We consider a sequence (p k ) ∈ (0, 1) N converging to 1 and a compact Λ.

As t → Det(I + αK Λ (1e -t ))