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THE 1-LOOP SELF-ENERGY OF AN ELECTRON
IN A STRONG EXTERNAL MAGNETIC FIELD REVISITED

B. Machet ! 234

Abstract: I revisit the 1-loop self-energy of an electron of mass m in a strong, constant and uniform external mag-
netic field B. First, I show, after Tsai [1], how, for an electron in the lowest Landau level, Schwinger’s techniques
[2] explained by Dittrich and Reuter [3] lead to the same integral deduced by Demeur [4] and used later by Jan-
covici [5]. Then, I calculate the Demeur-Jancovici integral in the range 75 < L = ‘;%f < 10000, which yields

om ~ T [(lnL —YE — %)2 -9+ 71 T %2 + ﬂg,[}flm + 1 (ﬁ — 5) + (’)(ﬁ)] with 8 ~ 1.175, very close

numerically to Jancovici’s last estimate dm ~ [(ln 2L —yg — %)2 +A+.. ] with A ~ 3.5 (undetermined in
[5]). The (In L)?, only contribution to be ever considered, gets largely damped, in particular by the large In L which
arises from the counterterm implementing suitable renormalization conditions. The former exceeds by 45% the true
estimate at L. = 100 and by more at lower L. The addition to existing literature is small but some consequences may

be worth deeper investigations.
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1 Generalities

I shall be concerned in this short 3 note, with the self-energy of an electron at 1-loop in the presence of a strong

external, constant and uniform, magnetic field B.

The electron propagator is described by the sum of the 2 diagrams

— k!

> >3 >3

Fig. 1: I-loop radiative correction to the mass of an electron.

in which the double horizontal lines, external as well as internal, stand for an electron of mass m in an external B. The
self-energy that we shall calculate is the second diagram. For the sake of simplicity, we shall restrict external electrons
to lie in the lowest Landau level. This does not apply to the internal electron propagator, which includes a summation

over all Landau levels.

1.1 Historical remarks

To my knowledge, the uses  of the self-energy of an electron in a strong external B rely on the (ln |Zf)2 that
has been extracted in 1969 by Jancovici [5] from a general formula deduced by Demeur in 1953 [4] and, as far as [
could see, Demeur’s calculations, performed with techniques which are unfamiliar today, have not been reproduced ’.
Despite the presence of potentially large corrections was mentioned at the end of Jancovici’s paper [5] (in there, one
constant could not be determined), all terms but the (ln)2 have been dropped, later, with the argument that they are

“non-leading”. I shall show below that this is untenable.

An alternate way is the one pioneered by Schwinger in the late 1940’s [2]. Calculations have been explained in details
in the book by Dittrich and Reuter [3] in 1985, which includes a long list of references. One finds there, in particular,
the expression for the renormalized 1-loop mass operator () for an electron in an external B, as deduced in 1974
by Tsai [1], which will be our starting point. At the end of his paper, Tsai states that his calculation, which uses the
techniques and results of Schwinger, yields, when projected on the ground state of the electron, “...the known result

of Demeur” (this correspondence is the subject of section 2).

1.2 The procedure

I go along Schwinger’s way and make then use of Demeur’s technique [4] to sandwich the mass operator ()
between 2 “privileged” electron states | ) > (to reproduce the terminology of Demeur and previous authors, in
particular Luttinger [15]), on mass-shell. This restricts, but greatly simplifies the calculations. This matrix element
corresponds to dm of the electron at 1-loop in the presence of B, the electron mass being defined as the pole of its
propagator (subsection 2.2). The privileged state, that always exists in the presence of B, is the one with energy m.
In our present terminology, it corresponds to the Lowest Landau Level (LLL) and, on mass shell, it satisfies the Dirac

equation (# +m)| ¢ >=0, T =p—eA?®.

SThis is why I do not pay a fair enough tribute to the many authors that contributed to this subject, and I apologize for this. I will instead insist
on very small details, generally not mentioned, that can help the reader.
%Some important steps can be found in [6] [7] [8], [9], [10], in the book [11] and in the review [12] in which one can find a large amount of

other important references.
le|B
m2’

"They have been critically examined and completed by Newton [14] at small values of
81 use Schwinger’s metric (—, +, +, +).

but this path seems to have then been abandoned.



Then, I show how changes of variables cast §m in the form deduced by Demeur [4] and used by Jancovici [5]. Itis a

le] B

convergent double integral that only depends on ~—5.

Its rigorous exact analytical evaluation lies beyond my ability.
However, a trick due to ML.I. Vysotsky in his study the screening of the Coulomb potential in an external magnetic
field [16] comes to the rescue: the part of the integrand that resists analytical integration can be nearly perfectly fitted

inside the range of integration by a simpler function that can be analytically integrated.
2 The self-energy Y. in external B of an electron in the lowest Landau level;
equivalence between the calculations of Schwinger and Demeur

2.1 The general formula for the electron self-energy operator at 1-loop

From now onwards we rely on the operatorial expression of the self-energy of an electron in an external B deduced

by Tsai [1] ? in the formalism of Schwinger (in the whole paper “c-term” stands for “counterterm”)

Z(ﬂ') — O;ﬂ i/ du e—lsuzmQ{ e—zs@ |:1 + 6—27.0'3)’ + (1 _ u)€—2103Y z
™ S Jo
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1—
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c—term
in which the notations are the following '© 1!
Y =eB su,
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@ = u(l — wm? — ]+ L5 — (L w¥]el —u? o B, @
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tan 5 =

This formula has been obtained with an internal photon in the Feynman gauge (like Demeur [4]) and and internal
electron propagator in an external B as determined by Schwinger '? (including all Landau levels). The variables of
integration s and w are deduced from the Schwinger’s parameters s; and ss, respectively for the electron and for the

photon !? and both integrated from 0 to oo, by the change s, = su, s3 = s(1 — u).

The counterterm is determined by the 2 equations (3.39) and (3.40) of [3]

0%
lim lim B(r) =0, lim lim (™) _o. 3)
#F——m B—0 #f——m B—0 67}‘
They ensure that, after turning off B, (¥ — ), the renormalization conditions 3(p) y,—o = 0 and 8%7;17) ; . 0
+m=

are fulfilled ' . The renormalized electron mass (pole of its propagator), is then (i.e. at B = 0) defined by

m =mg+dm, dm = X(p)prm=o- 4

9This is eq. (3.44) p.52 of Dittrich-Reuter [3]. The expressions for ® and A are given in their equations (3.38b) and (3.38c) (see also footnote
11).

?Oe stands here for the charge of the electron e = —|e| < 0.

'There is a sign misprint in the definition (3.38b) of @ in [3], which has been corrected here. The correct sign is the one in eq. (3.35) of [3].

128ee for example [1].

3For example ﬁ =i [57 dsz e—isa(k®—ie)

14These renormalization conditions are carefully explained in p. 38-41 of [3].



2.2 Defining the electron mass in the presence of B

The propagator of a Dirac electron in an external field A* is

1

G=—"—""—"—. 5
7}L + mg + E(TF) ( )
We define, in analogy with eq. (4), the mass of the electron as the pole of its propagator by
m=mg + E(Tr)#er:O < om = E(W)#+m:0~ (6)
dm depends on the external field. Note that the mass-shell is defined by 7#? = —72 + 5o = —m? # p2.
2.3 Projecting 3(7) on the “privileged state”: dm for the lowest Landau level
The spectrum of a Dirac electron in a pure magnetic field directed along z is [17]
2 _ 2 2
e, =m"+p;+(2n+1+0,)le|B, (7
in which o, = £1 is 2 X the spin projection of the electron on the z axis. So, atn = 0,0, = —1,p, =0, €, = M
this so-called “privileged state” is nothing more than the lowest Landau level.
Ap=0
. Ay, =0 . - .
We can consider A, = such that F;5 = B is the only non-vanishing component of the classical
Ay =azB
A, =0
external F},,,. Then, the wave function of the privileged state of energy m writes [15] [11]
0
1 (|| B\ s |1 1
n=0,s=—1,py=p. =0 = ——= | —— R , N = L, L, . 8
Vn=0,5=—1,p,=p.=0 \/N<7T) e 0 v ®)
dimensions along y and z
0

Following (6), in order to determine dm for the (on mass-shell) LLL, we shall sandwich the general self-energy

operator (1) between two states | ¢ > defined in (8) and satisfying (# + m)| ¥ >= 0.

The expression (1) involves # that we shall replace by —m, A that needs not be transformed, and ® which involves
m? — 72, 7% and 0, F**. The only non-vanishing component of F** being F'? = B, 0,,F" = o13F'? +
091 F21 = 2015 F12 = 205B 5. Since the electron is an eigenstate of the Dirac equation in the presence of B,
m? — gt% can be taken to vanish. 72 = 77 + 73 is also identical, since the privileged state has p, = 0 and we work in
a gauge with A, = 0, to 72 = 7% + m3. One has 7> = —72 + $0,, F* such that 73 = —* + 7§ + 03 eB. Since
our gauge for the external B has Ag = 0, 73 = p3, which is the energy squared of the electron, identical to m? for the
privileged state. Therefore, on mass-shell, 72 = o3 e B. When sandwiched between privileged states,
0

1

<|od|p>= ( 0100 ) diag(1,—-1,1,-1) = —1 such that o can be replaced by (—1) and ® shrinks
0
0

toueB ( — g) o3 can also be replaced by (—1) in the exponentials of (1).

Bg12 = 63 = L[y!,4?] = diag(1,—1,1, —1) like in [3].



3 () in (1) also involves a term proportional to 7, . Since the privileged state has p, = 0 and we work at A, = 0,
this is also equal to 7.7 = v#m, — v°mo = 7# +7°p". < ¢ | # | 1 >= —m such that

<Y |gtL | >=<v| —m++°p° | >. Since y° = diag(1,1,—1,—1),eq. (8) yields < ¢ | #1 | ¥ >= —m+p°.
The energy p° of the privileged state | 1) > being equal to m, this term vanishes.

Gathering all information and simplifications leads finally to

LLL am © 1 B e—isd’(u,Y)
om = 3(T) ppmeo = / iswtm? | & 1+ ue?Y 1+u) |,
rrL = X(7)g4m=0 NORG ( ) — (1 +u)
c—term
Y = eBsu,
B(u,Y) B(u,Y)
®(u,Y) =ueB (1—Y :ueB—T7 9)
inY cosY iy 2
Alu,Y) = (1 —u)* 4+ 2u(l — u)% TR e ,
Y Y
0 1—u)sinY 31)0 1— Y + oyt
sin B, y) "L B A WSnY s, y) Ges B (1—ujcos ¥ +um
A(u,Y) Au,Y)
or, equivalently
LLL am © g B 7.[—sueB+,8(u,Y)] + uei[sueB+B(u,Y)]
om = 2(7) ppm=0 = /d isu?m?® — (14w |,
LLL (7) +-m=0 l Aw,Y) ( )
c—term
(10)

which is the expression that we have to evaluate.

2.4 A few remarks

*AtB = 0,Y - 0,8~ (1 —u)Y + O(Y?) yields ®g_g = 0. One also has Ap_g = 1 such that X(7)p—g =

am [ ds fo du e’ m*[(1 + u) — (1 + u)] = 0. This agrees with the renormalization condition (3).

* A(u,Y), which occurs by its square root, is a seemingly naughty denominator. Its zeroes uy can be written
siny _iY . . . " 2
uy =ur = 15(7},)8 with{(Y)=1-2 W + (%) . The real zeroes u; = 1 = u_ are degenerate and

are located at Y = nm, n # 0, values at which § = 0.
* The renormalized dm given by (9) is finite. The contribution x (1 + u) from the counterterm is tailored for this.

* The (infinite) counterterm does not depend on B 16,

2.5 Changing variables; the Demeur-Jancovici integral [4] [5]

We first perform the change of variables

dud dudY
(u,s) = (u,Y = eBsu) = bR LLLE (11)
S Y

In Dittrich-Reuter [3], e stands for the (negative) charge of the electron '7. Therefore, Y < 0, too, and f o ‘is =

Jo °° <X, Then, 6m in (10) becomes
am < dY iy eilBu,Y)=YT 4 4 oilB(u,Y)+Y]
omprr = / / s - (4w |, (12)
Au,Y) ——

from c—term

161t is evaluated in pp. 53-56 of [3]: dmp—g = lim,, 0 SZTW (—'yE + In + 7> where sg is the lower limit of integration for the

z'm S0
Schwinger parameter s attached to the electron propagator. It coincides with the result given by Ritus in [13].

Tynlike in [1] in which, like in Schwinger, both g and e are introduced. In there, e has the meaning of the elementary charge e > 0.



which is seen to only depend on £5. The divergence of dm occurs now at Y — 0. The change (11) introduces a

dependence of the counterterm on el IB 18,

It is interesting to expand the sole e’ﬁ into cos 8 + i sin 3, to use the expressions (9) of cos 5 and sin (3, to cast dm in
the form
sinY Y
l—u+us—e"
Au,Y)

*dy m? A
ompLL = am / du e YR | (14 ue®) —(1+u) (13)

and to notice that A(u,Y) = (1 —u + u% GHY)(I —u+ uS2Y e~ to simplify the previous expression into

am [T dY m? 14+ ue?Y
om du e ™Y S5 - — — (14w 14
LLL = / [1_U+USI§Y e ( ) (14)
Expressing sin Y in the denominator in terms of complex exponentials gives
— 0 1 : 2iY
am o m?2 22(1—|—ue ) 1+u
5 =— dY | due ™¥<E . - 15
MLLL = 9 /O /O “e 2V (1 —u) +u(e2¥ —1) Y (15)
Going to t = —4Y yields
—+1i00 1 —2t
am m?2 2(1+ue ) 1+u
) =— dt | due"tes - 16
MLLL = "or / / “e [2t(1—u)+u(1—@—2t) ¢ (16)
Last, we change to z = ut = dudt = d“ 4z and get
+i00 —2z/u
am m2 2 (1 +ue ) 1+u
om = — dz du e*eB _
M o /0 [2z(1 Tt (e Bz
, 17)
am +ioco 1 —zi ) (1 + uef2z/u) 14+u
= — dz/ du e ~TelB -
0 22(1 —u) 4+ u? (1 — e=2%/v) z

which still differs from eq. 3 of Jancovici [5] by the 2 following points:
'm.2 . 177,2 . . .
* that we have et?<5 instead of e ?<5 is due to e > 0 in [5], while, here, e < 0;
* we have foioo dt instead of fo dt; a Wick rotation is needed: f + f1/4 in finite circle T fi = 2im ) residues.

’HLZ
“#TelB the contribution on the infinite 1/4 circle is vanishing. That the residue at z = 0 vanishes is trivial as

“+100

Because of e
long as u is not strictly vanishing. The expansion of the terms between square brackets in (17) at z — 0 writes indeed
u—1+(—§+%u+u)z+ (—Z - L+ 3% + u) 224+0(23), which seemingly displays poles atu = 0. However, without
expanding, it also writes, then, 5> — ; = 0, which shows that the poles at v = 0 in the expansion at z — 0 are fake and
that the residue at z = 0 always Vamshes. Other poles (we now consider eq. (16)) can only occur when the denominator
of the first term inside brackets vanishes. That the corresponding u pele ﬁ should be real constrains them to
occur at t — inm,n € N > 0 and u — 1. In general, they satisfy 2¢(1 — u) + u(1 — e=2") = 0 which, setting
t =t +ito, 11,12 € R, yields the 2 equations e 72! cos 2ty = 1 + 2nt1, e 21 sin2ty = —2nty, n = 1_7“ > 0.
Since t; — 0, one may expand the first relation at this limit, which yields cos 2t5 — 1 = 2t (n+cos 2ta). As ty — n,
cos 2ty > 0 and cos 2ty — 1 < 0, which, since > 0, constrains ¢; to stay negative '° . Therefore, the potentially
troublesome poles lie in reality on the left of the imaginary ¢ axis along which the integration is done and should not

be accounted for when doing a Wick rotation. It gives

o e[ 2 Lo
omLLL =2 / dz/ due ‘[2z(17u)+u2(1*6*22/“)_ N ] "

from c—term

8To summarize in a symbolic (and dirty) way, this change of variables amounts to rewriting dmrr; = (oo + 77( IelB )) — o0 as dm =

(oo +n( IeIB) ( |€\B )) (oo +¢ (%)) ( is the dependence on <3 generated by the change of variables. We shall then regularize the
canceling infinities to get rid of them and calculate separately 17 + ¢ and —¢ which give respectively the (ln le ‘B) and In % terms.

19The 2nd relation then tells us that sin 2t2 < 0, which means that the poles correspond to t2 = nm — €, > 0.



(18) is now the same as Jancovici’s eq. 3 [5] (see eqs. (20,21) below). This proves in particular that the latter (and

therefore Demeur’s calculation [4]) satisfy the same renormalization conditions (3), which was not clear in [4].
3 Calculating Jancovici’s integral [5]
3.1 Generalities and definition
Along with Jancovici [5], let us write the rest energy of the electron
(h)|e|B

Eo = m(c?) (1 + % I(L)) L= (19)

in which, at all orders in B

0o 1 2(1 —2z/v 1 0o 1
I(L):2/ dz efz/L/ dv ( tve ) _ 1t :2/ dzefZ/L/ dv f(v,2),
0 0 22(1 —v) + 02 (1 — e=22/v) z 0 o

(20)
(o, 2) 2<1+1}€_22/U) 1+wv
v,2) = — .
22(1 —v) + 02 (1 — e=22/v) z
Jancovici [5] defines accordingly (we set hereafter h = 1 = ¢)
sm =22 1(L). 1)
47
I(L) has been obtained from Demeur’s original integral [4] 20 2!
1 ; 2iLw
dw w 2iLw(ve +1)
D(L) = dv (1 — — " . 22
(L) /0 v +U)/ w |w] ¢ (14 v)[ve?lw + 2 Lw(l — v) — ] 22)
after subtracting its value at B = 0 < L = 0 and after the change of variables z = —iLvw. Therefore, (21)

corresponds to the magnetic radiative corrections to the electron mass, after subtracting the self-energy of the “free”

(i.e. at B = 0) electron 2. The latter corresponds to the term oc 1% in the integrand of (20). Accordingly, (21)
satisfies 5m “3° 0. Demeur’s calculation concerns what he calls, after Luttinger [15], the “privileged state” of the
electron which has energy m.

We want an analytical expression for I(L) valid for large values of the magnetic field, say @ > 75. That I(L) can

m

easily be integrated numerically makes checks easy.

3.2 First steps: a simple convergent approximation for L = eB/m? > 75

The 2 integrals in (20) both diverge at = — 0. The cancellation of the divergences is ensured by the first renormalization

condition (3), but its practical implementation needs a regularization.

Following Jancovici [5], one splits /(L) into [~ dz = [ dz+ [ dz, with a large enough such that e~2*/* < 1 can
be neglected inside f (v, z). Since v € [0, 1], this requires at least a > 1, that we check numerically. /(L) can then be

approximated by

a 1 00 1
2 1+0v
~ —z/L —z/L _
(L) 2/0 dze /O dvf(v,z)+2/a dz e /O dv <02+22(1_U) - ) (23)

in which the second integral is manifestly convergent. We focus on the first one, which includes the two canceling

divergences. It turns out, as in [5], that, for L large enough, for example L > 75, its numerical value decreases with a

201t is eq. (21) of § 8: “La self-énergie de 1’électron”, p. 78 of [4].
211t has been manifestly obtained with an internal photon in the Feynman gauge (see eq. (1) p. 56 of [4]).
22See Demeur [4] chapitre III “Les corrections radiatives magnétiques”, § 1 “La self-énergie”, p.55



and that one can go very safely down to a = 1 at which it is totally negligible with respect to the value of the full 7 3.

We thus approximate, for L > 75 2*

L>75 o0 1 2 14+v
I(L) =2 —Z/L/ - . 24
@B [ e od“<v2+241—v> . ) 29

The second contribution to (24), which comes from the counterterm, is easily integrated, and one gets

o) 1
) &’ 2/1 dz e—z/L/O dv 112++(1—v) ~3T(0,1/L) =2 J(L) — 3T(0,1/L) (25)

J(L)

in which I'(0, z) is the incomplete Gamma function I'(0, z) = f:o % dt. The integral fol dv can be

2
v24+22(1—v)
easily performed analytically, too, leading to

I>7s 2/00 - In (z — 14 /z2(z— 2))
1

I(L) =

P —3T(0,1/L) . (26)

from c—term

J(L)
The result of the change of variables done in subsection 2.5 associated with the regularization-approximation just

performed is a sum of 2 finite integrals. The most peculiar and also the most important for our purposes is the second

le| B
m2

one which originates from the counter-term and includes the large In generally ignored. Its occurrence is non-

trivial and only appears through the change of variables (11) (see footnote 16).

3.3 Further evaluation

In(z—-1 z(z—2
J(L) = floo dz e=*/t g(2), g(z) = (\/:(27—;))) cannot be integrated exactly but, following [16], one can find

an accurate approximation for the integrand

Inz =« 1
Japp(2) = — 9 28

as shown on Fig. 2 below where the 2 curves for the exact g (blue) and the approximate g,,,, (yellow) are practically

B=1175 @7)

indistinguishable.

z

20 w0 % % 100
Fig. 2: exact (blue) and approximate (yellow) values for the integrand g(z) of J(L).

ithout the £ —=5, g would go to O instead of Z at z = 1. is term yields in particular the term o< +5— in the
Without the § 25, g would go to 0 instead of 7 at 1. Th yields in particular the t = th

expansion of J,,, at L — oo. The integration can now be done analytically, leading to

o Inz =7 1 s 1 1

(L) = dze #/t [ =2+ 2 — | = = EaxpIntegralE|B, —| + Meij 1,1 -1,

Iul0) = [ a8 (24 T L) = % Baptuteqrat s[5, 1+ MetjerGHO. (1 1)}, (10,00, ()}, 7]
from%z% froml“Tz

(28)

23We proceed as follows. Though £(0, z) = 0, f(v, z) cannot be integrated fol dv at small z because, as already mentioned in subsection 2.5,
its expansion has (fake) poles at v = 0 and numerical integration becomes itself hazardous. To achieve it safely, we regularize the first integral
in (23) by introducing a small parameter ¢, replace fol dv f(v, z) with fel dv f(v,2), then decrease e = 1073,1076, 1077 ... while checking
stability.

24The term 12 was neglected in eq. (4) of [5], where only In? are focused on.

z



We compare in Fig. 3 the integrals J(L) (blue) and J,;,, (L) (yellow), which prove extremely close to each other.

J
30

20+

%,

Fig. 3: exact (blue) and approximate (yellow) values for J(L).

L L L L L L
400 600 800 1000 1200 1400

3.4 Final result

The final result is obtained by expanding J,,,(L) and T'(0,1/L) at large L

Looo 1 [ 1 7% w6 1 -1+ 155 1
awpp = — | =LT[1 - — =4+ —— ——InL(2yg—InL)+ ———— —),
Japp 15 <2 [ ﬂHO(L2)>+2+12 B_1+7r 5 In (2ve —InL) + 7 +O(L2)
1 1
I'0,1/L) b —vg+InL+ I + O(ﬁ) (comes from the counterterm)
(29)
which yields for I(L) written in (26)
L375 w @ aT[-p] .
Iapp(LaB) ~ Tk +3’YE +ﬁ + F + W — 1nL<2’YE + 3 ) + (11’1 L)
from c—term from c—term
1 T 1
1 o3 )
+L(2_ﬁ 3 +0(753) (30)

from c—term

3\ 9 ™ m  al[1-8 1 v 1
2) + +(2—B_5>+O(L22)'

4 + -1 6 Lh-1 L
The terms under-braced “from c-term” result from the subtraction of the electron self-energy at B = 0; they include a

= <lnL—'yE —

large —3(In L — g ), which therefore originates from the counterterm (together with part of the constant term in dm).

At L > 75 the term o 1/L can be very safely neglected and one can approximate

Iopp(L,B) = (InL—~p— - f+—+—+7+0(z), B~ 1.175 (31)

L>75 3 2_9 ™ 2w T[1-4] 1
2 AT 17 6 A1

which is very different, as we shall see, from the brutal approximation I, =~ (In L)? that has been systematically

used in the following years. At 8 = 1.175, one gets explicitly

L>7

20.4164 1
Topp(L, 8= 1.175) "2 In L(In L — 4.15443) — -

W +21.6617+O(L21). (32)

‘We plot in Fig. 4 the different contributions to the Demeur-Jancovici integral: the yellow curve is the constant term, the
green one is the inverse power, the red one the In contribution, the violet one the (ln)2, and the blue curve is the global
result. The comparison between the violet and blue curve is that between the systematically used (In)? approximation
and our accurate evaluation (31). A large cancellation between (In)? and In terms 2> makes in particular the role of

the large constant important.

25They exactly cancel at In L & 4.15443 < B = 63 By, where By = % is the “Schwinger critical field”.
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Fig. 4: contributions to the Demeur-Jancovici integral; constant term (yellow), inverse power (green), In (red), In?
(violet), sum of all (blue).

The (In L)? exceeds by 45% the true estimate at L = 100 and still by 32% at L = 10000. These values of L correspond
to already gigantic magnetic fields that cannot be produced on earth (hundred times the Schwinger “critical” B..). The
absolute difference increases with L while the relative difference decreases very slowly. One needs L > 2 1017 for the

relative error to be smaller than 1/10, which is a totally unrealistic value of B.

Jancovici mentioned at the end of his work [5] a refined estimate I(L) ~ (In2L —yg — )* + A with —6 < A < +7.
Actually, the value A = 3.5 yields a good agreement with our calculation in the range 75 < L < 100000, as shown
in Figs. 5. It corresponds t0 I(L) sancovici = (In L)? — 1.768 In L + 5.416.

i i
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Fig. 5: comparison between the present calculation of I(L) (blue) and Jancovici’s final refined estimate with
A=35I(L) ~ (In2L — vg — 2)? + 3.5 (yellow).

A comparison is due between the present calculation (32) and Jancovici’s, in particular because the former involves
(InL + ...)? as seen in (30) while the latter involves (In2L + ...)2. The result is that, though being very close
numerically, the former includes, in addition to the In?, large canceling (In, constant and inverse power) contributions,
while the latter includes smaller log, constant and no inverse power. This could raise questions about which evaluation
is closer to the exact result. However, the accuracy of the “analytical approximation” to J(L) that we performed in
subsection 3.3 and the fact that it is hard to know how Jancovici got his “tedious but straightforward” [5] estimate tend

to support our calculation and the presence, in particular, of a large single logarithm.

3.5 Concluding remarks and two challenges

In view of these results, it appears that one cannot reasonably approximate the integral of Demeur-Jancovici (nor the
lelBy2 )2; IP\B

corresponding dm of the electron) by the sole term proportional to (In at least, the large single In (with

opposite sign) and the large constant of (30) should be included in all estimates.

Renormalization conditions are essential since, at order «, forgetting about the counterterm dumps, among others, the

large In LelB ‘B and leads to erroneous results. That counterterms have to be determined order by order in the perturbative
\GIB

series constitutes the first challenge in any resummation process, necessary at very large values of In or for theories

10



more strongly coupled than standard QED. We have no proof that this has been achieved yet. The second challenge

concerns extending the present calculation to electrons lying in higher Landau levels. Both tasks look very non-trivial.

Though it is premature to make any prospect, the sharp damping of dm that we have found with respect to previous
approximations nevertheless suggests that physical consequences should also be substantially weakened. This is left

for later investigations.

Acknowledgments: it is a pleasure to thank J.B. Zuber for helping me to improve and correct the first version of this

work.
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