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I revisit the 1-loop self-energy of an electron of mass m in a strong, constant and uniform external magnetic field B. First, I show, after Tsai [1], how, for an electron in the lowest Landau level, Schwinger's techniques [2] explained by Dittrich and Reuter [3] lead to the same integral deduced by Demeur [4] and used later by Jancovici [5]. Then, I calculate the Demeur-Jancovici integral in the range 75 ≤ L ≡ |e|B m 2 ≤ 10 000, which yields δm αm 4π 3.5 (undetermined in [5]). The (ln L) 2 , only contribution to be ever considered, gets largely damped, in particular by the large ln L which arises from the counterterm implementing suitable renormalization conditions. The former exceeds by 45% the true estimate at L = 100 and by more at lower L. The addition to existing literature is small but some consequences may be worth deeper investigations.

Generalities

I shall be concerned in this short 5 note, with the self-energy of an electron at 1-loop in the presence of a strong external, constant and uniform, magnetic field B.

The electron propagator is described by the sum of the 2 diagrams Fig. 1: 1-loop radiative correction to the mass of an electron.

in which the double horizontal lines, external as well as internal, stand for an electron of mass m in an external B. The self-energy that we shall calculate is the second diagram. For the sake of simplicity, we shall restrict external electrons to lie in the lowest Landau level. This does not apply to the internal electron propagator, which includes a summation over all Landau levels.

Historical remarks

To my knowledge, the uses 6 of the self-energy of an electron in a strong external B rely on the ln |e|B m 2 2 that has been extracted in 1969 by Jancovici [START_REF] Jancovici | Radiative Correction to the Ground-State Energy of an Electron in an Intense Magnetic Field[END_REF] from a general formula deduced by Demeur in 1953 [START_REF] Demeur | Étude de l'interaction entre le champ propre d'une particule et un champ electro-magnétique homogène et constant[END_REF] and, as far as I could see, Demeur's calculations, performed with techniques which are unfamiliar today, have not been reproduced 7 .

Despite the presence of potentially large corrections was mentioned at the end of Jancovici's paper [START_REF] Jancovici | Radiative Correction to the Ground-State Energy of an Electron in an Intense Magnetic Field[END_REF] (in there, one constant could not be determined), all terms but the (ln) 2 have been dropped, later, with the argument that they are "non-leading". I shall show below that this is untenable.

An alternate way is the one pioneered by Schwinger in the late 1940's [START_REF] Schwinger | Quantum Electrodynamics. II. Vacuum Polarization and Self-Energy[END_REF]. Calculations have been explained in details in the book by Dittrich and Reuter [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF] in 1985, which includes a long list of references. One finds there, in particular, the expression for the renormalized 1-loop mass operator Σ(π) for an electron in an external B, as deduced in 1974 by Tsai [START_REF] Tsai | Modified electron propagation function in strong magnetic fields[END_REF], which will be our starting point. At the end of his paper, Tsai states that his calculation, which uses the techniques and results of Schwinger, yields, when projected on the ground state of the electron, "...the known result of Demeur" (this correspondence is the subject of section 2).

The procedure

I go along Schwinger's way and make then use of Demeur's technique [START_REF] Demeur | Étude de l'interaction entre le champ propre d'une particule et un champ electro-magnétique homogène et constant[END_REF] to sandwich the mass operator Σ(π) between 2 "privileged" electron states | ψ > (to reproduce the terminology of Demeur and previous authors, in particular Luttinger [START_REF] Luttinger | A Note on the Magnetic Moment of the Electron[END_REF]), on mass-shell. This restricts, but greatly simplifies the calculations. This matrix element corresponds to δm of the electron at 1-loop in the presence of B, the electron mass being defined as the pole of its propagator (subsection 2.2). The privileged state, that always exists in the presence of B, is the one with energy m.

In our present terminology, it corresponds to the Lowest Landau Level (LLL) and, on mass shell, it satisfies the Dirac

equation (π / + m)| ψ >= 0, π = p -eA 8 .
5 This is why I do not pay a fair enough tribute to the many authors that contributed to this subject, and I apologize for this. I will instead insist on very small details, generally not mentioned, that can help the reader. 6 Some important steps can be found in [START_REF] Yu | Radiative corrections to the electron mass operator in the twodimensional approximation of quantum electrodynamics[END_REF] [7] [START_REF] Yu | Massovii operator : adnologarifmitcheskaja polevaja asimptotika[END_REF], [START_REF] Gusynin | Electron self-energy in strong magnetic field: summation of double logarithmic terms[END_REF], [START_REF] Kuznetsov | Electron mass operator in a strong magnetic field[END_REF], in the book [START_REF] Kuznetsov | Electroweak Processes in External Electromagnetic Fields[END_REF] and in the review [START_REF] Miransky | Quantum field theory in a magnetic field; from quantum chromodynamics to graphene and Dirac semimetals[END_REF] in which one can find a large amount of other important references. 7 They have been critically examined and completed by Newton [START_REF] Newton | Radiative Effects in a Constant Field[END_REF] at small values of |e|B m 2 , but this path seems to have then been abandoned. 8 I use Schwinger's metric (-, +, +, +).

Then, I show how changes of variables cast δm in the form deduced by Demeur [START_REF] Demeur | Étude de l'interaction entre le champ propre d'une particule et un champ electro-magnétique homogène et constant[END_REF] and used by Jancovici [START_REF] Jancovici | Radiative Correction to the Ground-State Energy of an Electron in an Intense Magnetic Field[END_REF]. It is a convergent double integral that only depends on |e|B m 2 . Its rigorous exact analytical evaluation lies beyond my ability. However, a trick due to M.I. Vysotsky in his study the screening of the Coulomb potential in an external magnetic field [START_REF] Vysotsky | Atomic levels in superstrong magnetic fields and D = 2 QED of massive electrons: screening[END_REF] comes to the rescue: the part of the integrand that resists analytical integration can be nearly perfectly fitted inside the range of integration by a simpler function that can be analytically integrated.

2 The self-energy Σ in external B of an electron in the lowest Landau level; equivalence between the calculations of Schwinger and Demeur

2.1 The general formula for the electron self-energy operator at 1-loop

From now onwards we rely on the operatorial expression of the self-energy of an electron in an external B deduced by Tsai [START_REF] Tsai | Modified electron propagation function in strong magnetic fields[END_REF] 9 in the formalism of Schwinger (in the whole paper "c-term" stands for "counterterm")

Σ(π) = αm 2π ∞ 0 ds s 1 0 du e -isu 2 m 2 1 √ ∆ e -isΦ 1 + e -2iσ 3 Y + (1 -u)e -2iσ 3 Y π / m +(1 -u) 1 -u ∆ + u ∆ sin Y Y e -iσ 3 Y -e -2iσ 3 Y π / ⊥ m -(1 + u) -(m + π /) 1 -u m -2imu(1 -u 2 )s c-term (1) 
in which the notations are the following 10 11 Y = eB s u,

∆ = (1 -u) 2 + 2u(1 -u) sin Y cos Y Y + u 2 sin Y Y 2 , Φ = u(1 -u)[m 2 -π / 2 ] + u Y [β -(1 -u)Y ]π 2 ⊥ -u 2 e 2 σ µν F µν , tan β = (1 -u) sin Y (1 -u) cos Y + u sin Y Y . (2) 
This formula has been obtained with an internal photon in the Feynman gauge (like Demeur [START_REF] Demeur | Étude de l'interaction entre le champ propre d'une particule et un champ electro-magnétique homogène et constant[END_REF]) and and internal electron propagator in an external B as determined by Schwinger 12 (including all Landau levels). The variables of integration s and u are deduced from the Schwinger's parameters s 1 and s 2 , respectively for the electron and for the photon 13 and both integrated from 0 to ∞, by the change

s 1 = su, s 2 = s(1 -u).
The counterterm is determined by the 2 equations (3.39) and (3.40) of [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF] 

lim π /→-m lim B→0 Σ(π) = 0, lim π /→-m lim B→0 ∂Σ(π) ∂π / = 0. (3) 
They ensure that, after turning off B, (π / → / p), the renormalization conditions Σ(p) p /+m=0 = 0 and ∂Σ(p) ∂p / p /+m=0 = 0 are fulfilled 14 . The renormalized electron mass (pole of its propagator), is then (i.e. at B = 0) defined by

m = m 0 + δm, δm = Σ(p) p /+m=0 . ( 4 
)
9 This is eq. (3.44) p.52 of Dittrich-Reuter [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF]. The expressions for Φ and ∆ are given in their equations (3.38b) and (3.38c) (see also footnote 11). 10 e stands here for the charge of the electron e = -|e| < 0.

11 There is a sign misprint in the definition (3.38b) of Φ in [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF], which has been corrected here. The correct sign is the one in eq. (3.35) of [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF]. 12 See for example [START_REF] Tsai | Modified electron propagation function in strong magnetic fields[END_REF]. 13 For example 1 k 2 -i = i ∞ 0 ds 2 e -is 2 (k 2 -i ) . 14 These renormalization conditions are carefully explained in p. 38-41 of [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF].

Defining the electron mass in the presence of B

The propagator of a Dirac electron in an external field A µ is

G = 1 π / + m 0 + Σ(π) . (5) 
We define, in analogy with eq. ( 4), the mass of the electron as the pole of its propagator by

m = m 0 + Σ(π) π /+m=0 ⇔ δm = Σ(π) π /+m=0 . ( 6 
)
δm depends on the external field. Note that the mass-shell is defined by

π / 2 ≡ -π 2 + e 2 σ µν F µν = -m 2 = p 2 .
2.3 Projecting Σ(π) on the "privileged state": δm for the lowest Landau level

The spectrum of a Dirac electron in a pure magnetic field directed along z is [START_REF] Beretsetskii | Quantum Electrodynamics[END_REF] 2

n = m 2 + p 2 z + (2n + 1 + σ z ) |e|B, (7) 
in which σ z = ±1 is 2 × the spin projection of the electron on the z axis. So, at n = 0,

σ z = -1, p z = 0, n = m:
this so-called "privileged state" is nothing more than the lowest Landau level.

We can consider 

A µ =         A 0 = 0 A x = 0 A y = xB A z = 0         such that F 12 = B is
ψ n=0,s=-1,py=pz=0 = 1 √ N |e|B π 1/4 e -|e|B 2 x 2         0 1 0 0         , N [11] 
= L y L z dimensions along y and z .

Following [START_REF] Yu | Radiative corrections to the electron mass operator in the twodimensional approximation of quantum electrodynamics[END_REF], in order to determine δm for the (on mass-shell) LLL, we shall sandwich the general self-energy operator (1) between two states | ψ > defined in [START_REF] Yu | Massovii operator : adnologarifmitcheskaja polevaja asimptotika[END_REF] and satisfying (π / + m)| ψ >= 0.

The expression (1) involves π / that we shall replace by -m, ∆ that needs not be transformed, and Φ which involves

m 2 -π / 2 , π 2 ⊥ and σ µν F µν . The only non-vanishing component of F µν being F 12 = B, σ µν F µν = σ 12 F 12 + σ 21 F 21 = 2σ 12 F 12 ≡ 2σ 3 B 15 . Since the electron is an eigenstate of the Dirac equation in the presence of B, m 2 -π / 2 can be taken to vanish. π 2 ⊥ ≡ π 2 1 + π 2 2
is also identical, since the privileged state has p z = 0 and we work in a gauge with

A z = 0, to π 2 ≡ π 2 + π 2 0 . One has π / 2 = -π 2 + e 2 σ µν F µν such that π 2 ⊥ = -π / 2 + π 2 0 + σ 3 eB.
Since our gauge for the external B has A 0 = 0, π2 0 = p 2 0 , which is the energy squared of the electron, identical to m 2 for the privileged state. Therefore, on mass-shell, π 2 ⊥ = σ 3 eB. When sandwiched between privileged states,

< ψ | σ 3 | ψ >= 0 1 0 0 diag(1, -1, 1, -1)         0 1 0 0        
= -1 such that σ 3 can be replaced by (-1) and Φ shrinks to u eB 1 -β Y . σ 3 can also be replaced by (-1) in the exponentials of (1).

Σ(π) in ( 1) also involves a term proportional to π / ⊥ . Since the privileged state has p z = 0 and we work at

A z = 0, this is also equal to γ. π = γ µ π µ -γ 0 π 0 = π / + γ 0 p 0 . < ψ | π / | ψ >= -m such that < ψ | π / ⊥ | ψ >=< ψ | -m+γ 0 p 0 | ψ >. Since γ 0 = diag(1, 1, -1, -1), eq. (8) yields < ψ | π / ⊥ | ψ >= -m+p 0 .
The energy p 0 of the privileged state | ψ > being equal to m, this term vanishes.

Gathering all information and simplifications leads finally to

δm LLL ≡ Σ(π) π /+m=0 LLL = αm 2π ∞ 0 ds s 1 0 du e -isu 2 m 2 e -isΦ(u,Y ) ∆(u, Y ) 1 + ue 2iY -(1 + u) c-term , Y = eBsu, Φ(u, Y ) = u eB 1 - β(u, Y ) Y = ueB - β(u, Y ) s , ∆(u, Y ) = (1 -u) 2 + 2u(1 -u) sin Y cos Y Y + u 2 sin Y Y 2 , sin β(u, Y ) p.49 of [3] = (1 -u) sin Y ∆(u, Y ) , cos β(u, Y ) (3.31) of [3] = (1 -u) cos Y + u sin Y Y ∆(u, Y ) , (9) 
or, equivalently

δm LLL ≡ Σ(π) π /+m=0 LLL = αm 2π ∞ 0 ds s 1 0 du e -isu 2 m 2 e i[-sueB+β(u,Y )] + u e i[sueB+β(u,Y )] ∆(u, Y ) -(1 + u) c-term , (10) 
which is the expression that we have to evaluate.

A few remarks

* At B → 0, Y → 0, β ∼ (1 -u)Y + O(Y 2 ) yields Φ B=0 = 0. One also has ∆ B=0 = 1 such that Σ(π) B=0 = αm 2π ∞ 0 ds s 1 0 du e -isu 2 m 2 [(1 + u) -(1 + u)] = 0.
This agrees with the renormalization condition (3). * ∆(u, Y ), which occurs by its square root, is a seemingly naughty denominator. Its zeroes u ± can be written * The renormalized δm given by ( 9) is finite. The contribution ∝ (1 + u) from the counterterm is tailored for this. * The (infinite) counterterm does not depend on B 16 .

u + = u * -= 1-sin Y Y e iY ξ(Y ) , with ξ(Y ) = 1 -2 sin Y cos Y Y + sin Y

Changing variables; the Demeur-Jancovici integral [4] [5]

We first perform the change of variables

(u, s) → (u, Y ≡ eBsu) ⇒ du ds s = du dY Y . (11) 
In Dittrich-Reuter [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF], e stands for the (negative) charge of the electron 17 . Therefore, Y < 0, too, and

∞ 0 ds s = -∞ 0 dY Y .
Then, δm in [START_REF] Kuznetsov | Electron mass operator in a strong magnetic field[END_REF] becomes

δm LLL = αm 2π -∞ 0 dY Y 1 0 du e -iuY m 2 eB e i[β(u,Y )-Y ] + u e i[β(u,Y )+Y ] ∆(u, Y ) -(1 + u) f rom c-term , ( 12 
)
16 It is evaluated in pp. 53-56 of [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF]:

δm B=0 = lim s 0 →0 3αm 4π -γ E + ln 1 im 2 s 0 + 5 6
, where s 0 is the lower limit of integration for the Schwinger parameter s 1 attached to the electron propagator. It coincides with the result given by Ritus in [START_REF] Ritus | Lagrangian of an intense electromagnetic field and quantum electrodynamics at short distances[END_REF]. 17 unlike in [START_REF] Tsai | Modified electron propagation function in strong magnetic fields[END_REF] in which, like in Schwinger, both q and e are introduced. In there, e has the meaning of the elementary charge e > 0.

which is seen to only depend on eB m 2 . The divergence of δm occurs now at Y → 0. The change [START_REF] Kuznetsov | Electroweak Processes in External Electromagnetic Fields[END_REF] introduces a dependence of the counterterm on |e|B m 2 18 .

It is interesting to expand the sole e iβ into cos β + i sin β, to use the expressions (9) of cos β and sin β, to cast δm in the form

δm LLL = αm 2π -∞ 0 dY Y 1 0 du e -iuY m 2 eB (1 + u e 2iY ) 1 -u + u sin Y Y e -iY ∆(u, Y ) -(1 + u) (13) 
and to notice that

∆(u, Y ) = (1 -u + u sin Y Y e +iY )(1 -u + u sin Y Y e -iY
) to simplify the previous expression into

δm LLL = αm 2π -∞ 0 dY Y 1 0 du e -iuY m 2 eB 1 + u e 2iY 1 -u + u sin Y Y e +iY -(1 + u) . (14) 
Expressing sin Y in the denominator in terms of complex exponentials gives

δm LLL = αm 2π -∞ 0 dY 1 0 du e -iuY m 2 eB 2i 1 + u e 2iY 2iY (1 -u) + u (e 2iY -1) - 1 + u Y . ( 15 
)
Going to t = -iY yields

δm LLL = αm 2π +i∞ 0 dt 1 0 du e ut m 2 eB 2 1 + u e -2t 2t(1 -u) + u (1 -e -2t ) - 1 + u t . (16) 
Last, we change to z = ut ⇒ du dt = du dz u and get

δm LLL = αm 2π +i∞ 0 dz 1 0 du e z m 2 eB 2 1 + u e -2z/u 2z(1 -u) + u 2 1 -e -2z/u - 1 + u z = αm 2π +i∞ 0 dz 1 0 du e -z m 2 |e|B 2 1 + u e -2z/u 2z(1 -u) + u 2 1 -e -2z/u - 1 + u z (17) 
which still differs from eq. 3 of Jancovici [START_REF] Jancovici | Radiative Correction to the Ground-State Energy of an Electron in an Intense Magnetic Field[END_REF] by the 2 following points:

* that we have e +z m 2 eB instead of e -z m 2 eB is due to e > 0 in [START_REF] Jancovici | Radiative Correction to the Ground-State Energy of an Electron in an Intense Magnetic Field[END_REF], while, here, e < 0; * we have i∞ 0 dt instead of ∞ 0 dt; a Wick rotation is needed:

+i∞ 0 + 1/4 inf inite circle + 0 ∞ = 2iπ residues.
Because of e -z m 2 |e|B the contribution on the infinite 1/4 circle is vanishing. That the residue at z = 0 vanishes is trivial as long as u is not strictly vanishing. The expansion of the terms between square brackets in (17) at z → 0 writes indeed u-1+(-5 3 + 4 3u +u)z+ -7 3 -1 u 2 + 7 3u + u z 2 +O(z 3 ), which seemingly displays poles at u = 0. However, without expanding, it also writes, then, 2 2z -1 z = 0, which shows that the poles at u = 0 in the expansion at z → 0 are fake and that the residue at z = 0 always vanishes. Other poles (we now consider eq. ( 16)) can only occur when the denominator of the first term inside brackets vanishes. That the corresponding u pole = 2t 2t+e -2t -1 should be real constrains them to occur at t → inπ, n ∈ N > 0 and u → 1. In general, they satisfy 2t(1 -u) + u(1 -e -2t ) = 0 which, setting

t = t 1 + it 2 , t 1 , t 2 ∈ R, yields the 2 equations e -2t1 cos 2t 2 = 1 + 2ηt 1 , e -2t1 sin 2t 2 = -2ηt 2 , η = 1-u u ≥ 0.
Since t 1 → 0, one may expand the first relation at this limit, which yields cos 2t 2 -1 = 2t 1 (η + cos 2t 2 ). As t 2 → nπ, cos 2t 2 > 0 and cos 2t 2 -1 < 0, which, since η > 0, constrains t 1 to stay negative 19 . Therefore, the potentially troublesome poles lie in reality on the left of the imaginary t axis along which the integration is done and should not be accounted for when doing a Wick rotation. It gives

δm LLL = αm 4π 2 ∞ 0 dz 1 0 du e -z m 2 |e|B 2 1 + u e -2z/u 2z(1 -u) + u 2 1 -e -2z/u - 1 + u z f rom c-term . ( 18 
)
18 To summarize in a symbolic (and dirty) way, this change of variables amounts to rewriting (18) is now the same as Jancovici's eq. 3 [START_REF] Jancovici | Radiative Correction to the Ground-State Energy of an Electron in an Intense Magnetic Field[END_REF] (see eqs. (20,21) below). This proves in particular that the latter (and therefore Demeur's calculation [START_REF] Demeur | Étude de l'interaction entre le champ propre d'une particule et un champ electro-magnétique homogène et constant[END_REF]) satisfy the same renormalization conditions (3), which was not clear in [START_REF] Demeur | Étude de l'interaction entre le champ propre d'une particule et un champ electro-magnétique homogène et constant[END_REF].

δm LLL = ∞ + η( |e|B m 2 ) -∞ as δm = ∞ + η( |e|B m 2 ) + ζ( |e|B m 2 ) -∞ + ζ(
3 Calculating Jancovici's integral [START_REF] Jancovici | Radiative Correction to the Ground-State Energy of an Electron in an Intense Magnetic Field[END_REF] 3

.1 Generalities and definition

Along with Jancovici [START_REF] Jancovici | Radiative Correction to the Ground-State Energy of an Electron in an Intense Magnetic Field[END_REF], let us write the rest energy of the electron

E 0 = m(c 2 ) 1 + α 4π I(L) , L = ( )|e|B (c 3 )m 2 (19)
in which, at all orders in B

I(L) = 2 ∞ 0 dz e -z/L 1 0 dv 2 1 + v e -2z/v 2z(1 -v) + v 2 1 -e -2z/v - 1 + v z = 2 ∞ 0 dz e -z/L 1 0 dv f (v, z), f (v, z) = 2 1 + v e -2z/v 2z(1 -v) + v 2 1 -e -2z/v - 1 + v z .
(20)

Jancovici [START_REF] Jancovici | Radiative Correction to the Ground-State Energy of an Electron in an Intense Magnetic Field[END_REF] defines accordingly (we set hereafter = 1 = c) δm = αm 4π I(L). 

D(L) = 1 0 dv (1 + v) dw w w |w| e ivw 2iLw(v e 2iLw + 1) (1 + v)[v e 2iLw + 2iLw(1 -v) -v] (22) 
after subtracting its value at B = 0 ⇔ L = 0 and after the change of variables z = -iLvw. Therefore, (21) corresponds to the magnetic radiative corrections to the electron mass, after subtracting the self-energy of the "free" (i.e. at B = 0) electron22 . The latter corresponds to the term ∝ 1+v z in the integrand of (20). Accordingly, (21) satisfies δm B→0 → 0. Demeur's calculation concerns what he calls, after Luttinger [START_REF] Luttinger | A Note on the Magnetic Moment of the Electron[END_REF], the "privileged state" of the electron which has energy m.

We want an analytical expression for I(L) valid for large values of the magnetic field, say |e|B m 2 > 75. That I(L) can easily be integrated numerically makes checks easy.

3.2 First steps: a simple convergent approximation for L ≡ eB/m 2 > 75

The 2 integrals in (20) both diverge at z → 0. The cancellation of the divergences is ensured by the first renormalization condition (3), but its practical implementation needs a regularization.

Following Jancovici [START_REF] Jancovici | Radiative Correction to the Ground-State Energy of an Electron in an Intense Magnetic Field[END_REF], one splits

I(L) into ∞ 0 dz = a 0 dz + ∞ a dz, with a large enough such that e -2z/v 1 can be neglected inside f (v, z). Since v ∈ [0, 1]
, this requires at least a ≥ 1, that we check numerically. I(L) can then be approximated by

I(L) ≈ 2 a 0 dz e -z/L 1 0 dv f (v, z) + 2 ∞ a dz e -z/L 1 0 dv 2 v 2 + 2z(1 -v) - 1 + v z , (23) 
in which the second integral is manifestly convergent. We focus on the first one, which includes the two canceling divergences. It turns out, as in [START_REF] Jancovici | Radiative Correction to the Ground-State Energy of an Electron in an Intense Magnetic Field[END_REF], that, for L large enough, for example L > 75, its numerical value decreases with a and that one can go very safely down to a = 1 at which it is totally negligible with respect to the value of the full I 23 .

We thus approximate, for L ≥ 75 24

I(L) L≥75 ≈ 2 ∞ a=1 dz e -z/L 1 0 dv 2 v 2 + 2z(1 -v) - 1 + v z . (24) 
The second contribution to (24), which comes from the counterterm, is easily integrated, and one gets

I(L) L≥75 ≈ 2 ∞ 1 dz e -z/L 1 0 dv 2 v 2 + 2z(1 -v) J(L) -3 Γ(0, 1/L) = 2 J(L) -3 Γ(0, 1/L) (25) in which Γ(0, z) is the incomplete Gamma function Γ(0, z) = ∞ z e -t t dt. The integral 1 0 dv 2 v 2 +2z
(1-v) can be easily performed analytically, too, leading to

I(L) L≥75 ≈ 2 ∞ 1 dz e -z/L ln z -1 + z(z -2) z(z -2) J(L) -3 Γ(0, 1/L) f rom c-term . ( 26 
)
The result of the change of variables done in subsection 2.5 associated with the regularization-approximation just performed is a sum of 2 finite integrals. The most peculiar and also the most important for our purposes is the second one which originates from the counter-term and includes the large ln |e|B m 2 generally ignored. Its occurrence is nontrivial and only appears through the change of variables [START_REF] Kuznetsov | Electroweak Processes in External Electromagnetic Fields[END_REF] (see footnote 16).

Further evaluation

J(L) ≡ ∞ 1 dz e -z/L g(z), g(z) = ln z-1+ √ z(z-2) √ z(z-2)
cannot be integrated exactly but, following [START_REF] Vysotsky | Atomic levels in superstrong magnetic fields and D = 2 QED of massive electrons: screening[END_REF], one can find an accurate approximation for the integrand

g app (z) ≈ ln z z + π 2 1 z β , β = 1.175 (27) 
as shown on Fig. 2 below where the 2 curves for the exact g (blue) and the approximate g app (yellow) are practically indistinguishable. Fig. 2: exact (blue) and approximate (yellow) values for the integrand g(z) of J(L).

Without the π 2 1 z β , g would go to 0 instead of π 2 at z = 1. This term yields in particular the term ∝ 1 L β-1 in the expansion of J app at L → ∞. The integration can now be done analytically, leading to

J app (L) = ∞ 1 dz e -z/L ln z z + π 2 1 z β = π 2 ExpIntegralE[β, 1 L ] f rom π 2 1 z β + M eijerG[{( ), (1, 1)}, {(0, 0, 0), ( )}, 1 L ] f rom ln z z .
(28) 23 We proceed as follows. Though f (0, z) = 0, f (v, z) cannot be integrated 1 0 dv at small z because, as already mentioned in subsection 2.5, its expansion has (fake) poles at v = 0 and numerical integration becomes itself hazardous. To achieve it safely, we regularize the first integral in (23) by introducing a small parameter , replace 1 0 dv f (v, z) with 1 dv f (v, z), then decrease = 10 -3 , 10 -6 , 10 -9 . . . while checking stability. 24 The term 1+v z was neglected in eq. ( 4) of [START_REF] Jancovici | Radiative Correction to the Ground-State Energy of an Electron in an Intense Magnetic Field[END_REF], where only ln 2 are focused on.

We compare in Fig. 3 the integrals J(L) (blue) and J app (L) (yellow), which prove extremely close to each other. 

Final result

The final result is obtained by expanding J app (L) and Γ(0, 1/L) at large L

J app L→∞ 1 L β π 2 L Γ[1 -β] + O( 1 L 2 ) + γ 2 E 2 + π 12 6 β -1 + π - 1 2 ln L (2γ E -ln L) + -1 + π 4-2β L + O( 1 L 2 ), Γ(0, 1/L) L→∞ -γ E + ln L + 1 L + O( 1 L 2 ) (comes from the counterterm) (29) 
which yields for I(L) written in (26)

I app (L, β) L≥75 ≈ γ 2 E +3γ E f rom c-term + π β -1 + π 2 6 + π Γ[1 -β] L β-1 -ln L 2γ E + 3 f rom c-term + (ln L) 2 + 1 L π 2 -β -2 -3 f rom c-term + O( 1 L ≥2 ) = ln L -γ E - 3 2 2 - 9 4 + π β -1 + π 2 6 + π Γ[1 -β] β-1 + 1 L π 2 -β -5 + O( 1 L ≥2 ). (30) 
The terms under-braced "from c-term" result from the subtraction of the electron self-energy at B = 0; they include a large -3(ln L -γ E ), which therefore originates from the counterterm (together with part of the constant term in δm).

At L ≥ 75 the term ∝ 1/L can be very safely neglected and one can approximate

I app (L, β) L≥75 ≈ ln L -γ E - 3 2 2 - 9 4 + π β -1 + π 2 6 + π Γ[1 -β] L β-1 + O( 1 L ), β ≈ 1.175 (31) 
which is very different, as we shall see, from the brutal approximation I app ≈ (ln L) 2 that has been systematically used in the following years. At β = 1.175, one gets explicitly

I app (L, β = 1.175) L≥75 ≈ ln L(ln L -4.15443) - 20.4164 L 0.175 + 21.6617 + O( 1 L ≥1 ). (32) 
We plot in Fig. 4 the different contributions to the Demeur-Jancovici integral: the yellow curve is the constant term, the green one is the inverse power, the red one the ln contribution, the violet one the (ln) 2 , and the blue curve is the global result. The comparison between the violet and blue curve is that between the systematically used (ln) 2 approximation and our accurate evaluation (31). A large cancellation between (ln) 2 and ln terms25 makes in particular the role of the large constant important. (violet), sum of all (blue).

The (ln L) 2 exceeds by 45% the true estimate at L = 100 and still by 32% at L = 10000. These values of L correspond to already gigantic magnetic fields that cannot be produced on earth (hundred times the Schwinger "critical" B c ). The absolute difference increases with L while the relative difference decreases very slowly. One needs L > 2 10 17 for the relative error to be smaller than 1/10, which is a totally unrealistic value of B.

Jancovici mentioned at the end of his work [START_REF] Jancovici | Radiative Correction to the Ground-State Energy of an Electron in an Intense Magnetic Field[END_REF] a refined estimate I(L) (ln 2L -γ E -3 2 ) 2 + A with -6 ≤ A ≤ +7. Actually, the value A = 3.5 yields a good agreement with our calculation in the range 75 ≤ L ≤ 100 000, as shown in Figs. A comparison is due between the present calculation (32) and Jancovici's, in particular because the former involves (ln L + . . .) 2 as seen in (30) while the latter involves (ln 2L + . . .) 2 . The result is that, though being very close numerically, the former includes, in addition to the ln 2 , large canceling (ln, constant and inverse power) contributions, while the latter includes smaller log, constant and no inverse power. This could raise questions about which evaluation is closer to the exact result. However, the accuracy of the "analytical approximation" to J(L) that we performed in subsection 3.3 and the fact that it is hard to know how Jancovici got his "tedious but straightforward" [START_REF] Jancovici | Radiative Correction to the Ground-State Energy of an Electron in an Intense Magnetic Field[END_REF] estimate tend to support our calculation and the presence, in particular, of a large single logarithm.

Concluding remarks and two challenges

In view of these results, it appears that one cannot reasonably approximate the integral of Demeur-Jancovici (nor the corresponding δm of the electron) by the sole term proportional to (ln |e|B m 2 ) 2 ; at least, the large single ln |e|B m 2 (with opposite sign) and the large constant of (30) should be included in all estimates.

Renormalization conditions are essential since, at order α, forgetting about the counterterm dumps, among others, the large ln |e|B m 2 and leads to erroneous results. That counterterms have to be determined order by order in the perturbative series constitutes the first challenge in any resummation process, necessary at very large values of ln |e|B m 2 or for theories more strongly coupled than standard QED. We have no proof that this has been achieved yet. The second challenge concerns extending the present calculation to electrons lying in higher Landau levels. Both tasks look very non-trivial.

Though it is premature to make any prospect, the sharp damping of δm that we have found with respect to previous approximations nevertheless suggests that physical consequences should also be substantially weakened. This is left for later investigations.

  the only non-vanishing component of the classical external F µν . Then, the wave function of the privileged state of energy m writes[START_REF] Luttinger | A Note on the Magnetic Moment of the Electron[END_REF] [START_REF] Kuznetsov | Electroweak Processes in External Electromagnetic Fields[END_REF] 

Y 2 .

 2 The real zeroes u + = 1 = u -are degenerate and are located at Y = nπ, n = 0, values at which β = 0.

|e|B m 2 ) 2 2 and ln |e|B m 2

 222 . ζ is the dependence on eB m 2 generated by the change of variables. We shall then regularize the canceling infinities to get rid of them and calculate separately η + ζ and -ζ which give respectively the ln |e|B m terms.19 The 2nd relation then tells us that sin 2t 2 < 0, which means that the poles correspond to t 2 = nπ -, > 0.

  has been obtained from Demeur's original integral [4] 20 21
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 55 Fig. 5: comparison between the present calculation of I(L) (blue) and Jancovici's final refined estimate with A = 3.5, I(L) (ln 2L -γ E -3 2 ) 2 + 3.5 (yellow).

[γ 1 , γ 2 ] = diag(1, -1, 1, -1) like in[START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF].

It is eq. (21) of § 8: "La self-énergie de l'électron", p. 78 of[START_REF] Demeur | Étude de l'interaction entre le champ propre d'une particule et un champ electro-magnétique homogène et constant[END_REF].

It has been manifestly obtained with an internal photon in the Feynman gauge (see eq. (1) p. 56 of[START_REF] Demeur | Étude de l'interaction entre le champ propre d'une particule et un champ electro-magnétique homogène et constant[END_REF]).

See Demeur[START_REF] Demeur | Étude de l'interaction entre le champ propre d'une particule et un champ electro-magnétique homogène et constant[END_REF] chapitre III "Les corrections radiatives magnétiques", § 1 "La self-énergie", p.55

They exactly cancel at ln L ≈ 4.15443 ⇔ B ≈ 63 B 0 , where B 0 ≡ m 2 |e| is the "Schwinger critical field".
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