Critical Groups of Simplicial Complexes
Résumé
We generalize the theory of critical groups from graphs to simplicial complexes. Specifically, given a simplicial complex, we define a family of abelian groups in terms of combinatorial Laplacian operators, generalizing the construction of the critical group of a graph. We show how to realize these critical groups explicitly as cokernels of reduced Laplacians, and prove that they are finite, with orders given by weighted enumerators of simplicial spanning trees. We describe how the critical groups of a complex represent flow along its faces, and sketch another potential interpretation as analogues of Chow groups.
Nous généralisons la théorie des groupes critiques des graphes aux complexes simpliciaux. Plus précisément, pour un complexe simplicial, nous définissons une famille de groupes abéliens en termes d'opérateurs de Laplace combinatoires, qui généralise la construction du groupe critique d'un graphe. Nous montrons comment réaliser ces groupes critiques explicitement comme conoyaux des opérateurs de Laplace réduits combinatoires, et montrons qu'ils sont finis. Leurs ordres sont obtenus en comptant (avec des poids) des arbres simpliciaux couvrants. Nous décrivons comment les groupes critiques d'un complexe représentent le flux le long de ses faces, et esquissons une autre interprétation potentielle comme analogues des groupes de Chow.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...