The enumeration of fully commutative affine permutations
Résumé
We give a generating function for the fully commutative affine permutations enumerated by rank and Coxeter length, extending formulas due to Stembridge and Barcucci–Del Lungo–Pergola–Pinzani. For fixed rank, the length generating functions have coefficients that are periodic with period dividing the rank. In the course of proving these formulas, we obtain results that elucidate the structure of the fully commutative affine permutations. This is a summary of the results; the full version appears elsewhere.
Nous présentons une fonction génératrice qui énumère les permutations affines totalement commutatives par leur rang et par leur longueur de Coxeter, généralisant les formules dues à Stembridge et à Barcucci–Del Lungo–Pergola–Pinzani. Pour un rang précis, les fonctions génératrices ont des coefficients qui sont périodiques de période divisant leur rang. Nous obtenons des résultats qui expliquent la structure des permutations affines totalement commutatives. L'article dessous est un aperçu des résultats; la version complète appara\^ıt ailleurs.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...