
HAL Id: hal-01214973
https://hal.science/hal-01214973

Submitted on 13 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hierarchical Timed Abstract State Machines for WCET
Estimation

Vladimir-Alexandru Paun, Bruno Monsuez, Philippe Baufreton

To cite this version:
Vladimir-Alexandru Paun, Bruno Monsuez, Philippe Baufreton. Hierarchical Timed Abstract State
Machines for WCET Estimation. International Workshop on Verification and Evaluation of Computer
and Communication Systems, Nov 2013, Florence, Italy. �hal-01214973�

https://hal.science/hal-01214973
https://hal.archives-ouvertes.fr

Hierarchical Timed Abstract State Machines
for WCET Estimation

Vladimir-Alexandru Paun
UIIS

ENSTA ParisTech
828, Boulevard des Maréchaux,
91762 Palaiseau Cedex France

paun@ensta-paristech.fr

Bruno Monsuez
UIIS

ENSTA ParisTech
828, Boulevard des Maréchaux,
91762 Palaiseau Cedex France
monsuez@ensta-paristech.fr

Philippe Baufreton
Sagem - SAFRAN Electronics

Etablissement F. Hussenot - R&D
100 avenue de Paris

91344 MASSY Cedex France

In this paper we present an extension of the Abstract State Machines suited for the modelling of complex
processors in the context of system verification. Hard real-time systems use evermore elaborate processors
in an environment where certification rules are getting tighter and more explicit regarding the verification
of software. The goal of our model is to provide a base for worst-case execution time estimation, providing
abstraction capabilities that enable the scaling of analysis. The core difference between our model and the
others is that we define time as a mean to enable time accurate runs and components at different abstraction
levels that can be dynamically chosen during the execution while staying the closest possible to the original
mathematical foundation. The model is able to choose the best suited component definition in order to
respond to factors like information on data values. The time extension takes into account the fact that actions
are not instantaneous which is essential for real-time systems. Adaptable precision and separation of the
analysis from the model of the processor, make our model suited for worst-case execution time.

WCET, ASM, hard real-time systems

1. INTRODUCTION

Certification standards, like the ones that can be
found in avionics, give precise recommendation
regarding the confidence level that functional and
non-functional properties must provide. Regarding
the non-functional aspects, distinct focus is granted
to the bounding of resource consumption. Of
particular interest is the timing aspect or the ability to
estimate a tight worst-case execution time (WCET)
of tasks on a given system. Nevertheless, modern
processors have evolved in order to maximise the
maximum performance throughput with little to no
regard to the determinism of their components. Such
modern features influence the instruction timings
that can be context or history dependent. Therefore
the local worst case no longer suffice in the
estimation of the global worst case execution time. In
order to safely and precisely estimate the WCET of
a processor we need a versatile model that can take
into account all the possible component interaction
and offer the means to confine and control the
inherent state space explosion of exploring all the
execution scenarios.

Abstract State Machines (ASMs) have been used
with success in processor modelling and verification

Huggins and Campenhout (1997), and are a good
candidate to describe the underlying architecture for
worst-case execution time estimation. Despite the
formal background which makes it suited for proofs,
the ASM model can be seen as a simple language
and used accordingly with a minimum time to take in
hand.

Many approaches exist for integrating time into
ASMs, however they are either focused on the
verification of the correctness of the specification or
on the flexibility of design of embedded systems.
Based on the richness of ASMs, we create a
model better suited for WCET estimation, where
a permanent tradeoff between precision and state
space explosion can to be made through the
selection of component abstraction levels. Our
approach is different from others as we use the
time information in conjunction with the notion of
dynamic turbo-jumps that can vary the duration
of the transition from one state to the next one.
The temporal model serves as a base to introduce
hierarchical levels similar to refinements, extended
to run-time refinements, dynamically controlled by
the language in order to optimise the aforementioned
tradeoff.

c© The Authors. Published by BISL. 1
Proceedings of . . .

Hierarchical Timed Abstract State Machines for WCET Estimation
Paun • Monsuez • Baufreton

We choose to represent the delay as a semantical
information that increments a special location used
to store the current time associated to a state.
We prefer simplicity and specialisation opposed to
versatility as we only target a subset of real-time
systems, like processors and closely connected
parts of the environment. Special attention is given
to preserving the mathematical foundation of the
original basic ASM model.

1.1. Related Work

Numerous approaches to integrate time into the
ASMs exist in the literature, all for a relatively
different purpose. The main directions in the related
works are focused around the notion of time as
a durative action or as an instantaneous action.
Timed ASM with instantaneous actions were first
introduced in Gurevich and Huggins (1996). Both
paradigms are further developed in Beauquier and
Slissenko (2002), Cohen and Slissenko (2008)
and Ouimet and Lundqvist (2008) with semantics
oriented on verification. In Ouimet and Lundqvist
(2008) the Timed ASM is presented as the moves
of agents synchronised using a system clock. Their
concurrency semantics is based on synchronous
multi-agent ASMs. Moves can take time and are
associated to durative actions. Time is used to
specify the duration of a step and it is chosen
non-deterministically from the specified interval. The
parallel with the analysis of the system design for
worst-case and best-case behavior, such WCET is
also made. A detailed presentation of the use of
ASMs for precise WCET computation can be found
in Benhamamouch and Monsuez (2009). The works
in Artëmov et al. (2010) deal with continuos and
discrete time, introduce time constraints as linear
inequalities, instantaneous actions and delayed
actions with the delay chosen non-deterministically.
The model is tailored in order to enable first order
timed logic (FOTL) to automatically describe runs
of ASM. This is achieved mainly for instantaneous
actions in a form apt for formal analysis like model
checking.

The previous approaches deal with time as an
information needed primarily for system verification
which imposes certain choices regarding the
semantics of the ASM. The approach presented
in this work incorporates concepts from previous
approaches from the ASM community however it
represents the time in the simplest useful manner,
close to the basic ASM but on the other hand
adapted to generate runs that can reduce the
number of processed information. The model is
intended to give a clear vision of semantics of timed
algorithms and enables easy abstraction of external
or internal components.

To the best of our knowledge, no other attempts were
made to integrate a dynamically adaptable level of
abstraction of the ASM.

1.2. Structure of the paper

In Section 2 we give a short description of the
ASMs in general. We further introduce the temporal
extension of ASM sin Section 3, its formalisation and
the proof of some useful temporal properties. The
idea behind the hierarchical ASM is presented in
Section 4. Details and formalisation of the HTASM
model are given in Section 5 together with the outline
of the correction proof of the processor model and
the abstract processor execution.

2. ABSTRACT STATE MACHINES

The ASM thesis was introduced by Yuri Gurevich
as a reaction to the Turing thesis. One of the most
general notion of states and dynamic state changes
modern mathematics can offer is (static) algebras
as states and guarded destructive assignments for
abstract functions as basic dynamic operations.
In the science of universal algebra, first-order
structures with only functional vocabularies are
called algebras. An algebra is a Tarski structure
without the relations. It is known from the vast
mathematical logic experience that any static
mathematic reality can be faithfully represented by
a first-order structure.

2.1. ASMs in a nutshell

Abstract State Machines are a computational model
based on mathematical structures. The choice for
the mathematical structure is static algebra which
can be seen as a state. The model of the run are
groups of finite updates that make transition from
one state to another. The run proceeds either until
a final state is reached or for an infinite number of
steps. The evolution of states are achieved through
the notion of dynamic algebras by the use of
dynamic functions that change the content at certain
locations. All the function names form a set called the
vocabulary. A special function defined on this set is
in charge with the interpretation of function names.
For example, every vocabulary has the Boolean
set Bool = {true, false} as well as the natural
boolean relation names as static functions. The
interpretation of static functions is fixed throughout
the run, and translates for the Boolean set as the
natural boolean interpretation. Locations can be
defined as functions applied to the argument. The
interpretation of the functions is the content of the
locations. Changing (or defining, if there is none) the
value location (represented by the functions at the
given parameters)

f(t1, ..., tn) := t

2

Hierarchical Timed Abstract State Machines for WCET Estimation
Paun • Monsuez • Baufreton

is done through updates. The ASM is a finite set of
guarded updates: if Condition then Update.

ASMs can describe algorithms at the appropriate
abstraction level. System design can be performed
incrementally with the help of simultaneous updates
which help avoiding an explicit description of the
intermediate storage.

3. A TIMED ASM

The notion of time is important to model real-
time systems. Hard real-time systems emphasis
the notion of safety with regard to the respect of
deadlines. Determining the WCET is essential for
this kind of systems and therefore the notion of
time in the hardware model used for the estimation.
The most natural extension is to start from the
basic ASM, expanding the notion of instantaneous
updates that generate update sets in parallel with
simultaneous effect, if they are consistent. The effect
of the updates is to change the interpretation of
the updated functions at the specified location. The
consistency of the updates implies that parallel
updates do not affect the interpretation of the same
function at the same location and must be ensured
by the user.

3.1. Adding time in basic ASMs

ASM is a state-based model, characterised by an
explicit notion of state as static algebras. The state
is a first class citizen while the events are secondary
level citizens in the form of moves between states.
The basic ASM has runs that consist in moves from
on state to another. A move applies the update set
generated by all the update rules with valid guards in
that particular state. All updates are instantaneous
and applied in parallel. This influences the way
the system is designed, in our case the processor.
In order to describe it’s exact behaviour, we must
give a step by step definition of all the interacting
components.

Even though there is no explicit notion of ttime in the
basic ASM, there is a clear notion of sequentiality
that can be very easily applied to the model of a
processor where all changes are governed by a
central clock and applied in the same time after a
clock tick. Therefore the basic ASM model can be
seen as a transition system that gives a picture of
the state before and after the clock tick. By adding a
simple counter we can represent the notion of clock
tick.

We introduce a simple way to abstract certain
components that take several basic ASM moves to
complete by adding the time information to the final
group of updates. Therefore we introduce delayed

updates that model a whole set of rules in a blackbox
style. The execution of delayed rules implies the use
of a global time scale that will be discussed in the
following.

We use the notation δ to refer to a location holding
a term defined on T , (l, v, δ) ∈ U , where v is
the value of the delay. We can now introduce the
delay : U → T function that applies to the update
set associated to an update rule in U and extracts
the time information of that rule. If the rule has no
duration information, then it returns 1.

delay(U, l) =


δ , if ∃(l, v, δ) ∈ U

with δ = JtKAζ and v ∈ T
1 , otherwise.

Note that in this case v has the normal interpretation
of terms in A under ζ and can be any term that
evaluates to a time value in T .

Time also enables the notion of time-accurate
transitions. The idea is to compact the run by only
making moves that change the locations of the state
besides the current time. In this case we obtain a
conjunction of update sets that makes a move to an
equivalent state (the first that is different) with the
same equivalent duration δ =

∑
δi.

If every rule can have an associated duration,
then we can have in the same state update sets
associated to different durations and the following
scenarios.

3.1.1. No timed updates
The run is therefore equivalent to the one of a cycle-
accurate model.

B0,B1 = B0 + U0, . . . ,Bi+1 = Bi + Ui, . . .

If no time update functions are present, the CT
function is by default incremented by 1 after all the
updates are effective.

3.1.2. Single timed update
Only one timed update occurs and no other guards
of any rules are valid.

B0,B1 = B0+U0, . . . ,Bi+1 = Bi+Ui with Uj∈[0,i] =
(l, v, δ).

This is the equivalent of a time accurate run, as we
make directly the move to a state that has significant
updates.

3.1.3. Mixed updates
Both timed and untimed updates, or timed updates
with different durations are specified.

B0,B1 = B0 + {(l0, v0, δ0), . . . , (l′0, u
′
0, δ
′
0)}, . . . , with

δ0 6= δ′0.

3

Hierarchical Timed Abstract State Machines for WCET Estimation
Paun • Monsuez • Baufreton

In this case we first apply the update set associated
with the smallest δmin = min(δi) and subtract δmin
from all the other durations. After each update, a
move is made to a new state, meaning that all
the rules are evaluated again and new update sets
are added to the update set list. This is a way to
encapsulate rules in a single black-box rule or in
other words to replace a rule definition with a less
refined version that hides the inner actions. When
all the updates in a state take one cycle, we can
say that we have a precise definition of all the units.
Updates that take several cycles hide away some
inner updates and look like less detailed definitions
of the respective unit. Certain constraints apply to
the use of such delayed versions, like the absence
of critical locations with regards to update sets that
must be applied earlier.

We first give the detailed mathematical definition of
our model and then prove some temporal properties
of the timed state transit system.

3.1.4. Detailed definition
The semantics of the delayed updates can be
completely simulated with basic ASMs constructs
and the introduction of the pre-interpreted sort Time
and the external pre-interpreted function CT that
gives the time associated to the current state.

1 executedStatus := true

2 ...

3 if C then

4 if executedStatus = true then

5 CD := CT + delay

6 executedStatus := undef

7 endif

8 if CT = CD then

9 delayedUpdateRule

10 endif

11 endif

The semantics in the above listing imposes that
the guard C remains valid throughout the whole
delay period, which might be a necessary constraint.
Eitherwise, we can use a definition similar to
the control state ASMs to simulate the delayed
application of the rule like in the listing below, where
new(CTD(ruleName)) is a function that generates a
new location to store a delay for the rule ruleName.

1 if Cr then

2 if ctl_state = 1 then

3 CTD(ruleName) := CT + delay

4 ctl_state := 0

5 endif

6 endif

7 if CT = CTD(ruleName) then

8 delayedUpdateRule

9 ctl_state := 1

10 endif

Other than the verbosity of this approach it would
be furthermore difficult to express the delay as an
interval, where the delay can take all the values from
the set {δmin, . . . , δmax}.

3.1.5. Abstract States and Update Sets
For a processor modelling, a discrete interpretation
of time suffices as all time informations of the
description are multiples of a cycle. Therefore we can
only react to external actions after the next cycle tick,
which we consider sufficient in our WCET estimation
context.

We extend the definition of the Signature from Borger
and Stark (2003), Section 2.4, in order to handle
time.

Definition 1 (Signature): A signature Σ is a finite
collection of function names. Each function name
f has an arity, a non-negative integer. Every ASM
signature contains the static constants undef, true,
false and also the external dynamic pre-interpreted
function CT that gives the value of the current time
from the pre-interpreted sort T of time.

The definitions of the state and location remain
unchanged and are presented like in Borger and
Stark (2003) from which we also adopt the notations.

Definition 2 (State). A state A for the signature Σ is
a non-empty set X, the superuniverse of A, together
with interpretations of the function names of Σ.

Definition 3 (Location). A location of A is a pair
(f, (a1, . . . , an)), where f is an n-ary function name
and a1, . . . an are elements of |A|. The value
fA(a1, . . . , an) is called the content of the location in
A.

We write A(l) for the content of the location l in A and
also A(δ) = JδKA for the value of the delay in the state
A. Depending on the interpretation of the duration δ
that we allow we can introduce a first order temporal
logic for our ASMs. This can be accomplished by
allowing the delays to be terms and associate the
same formulas like for the other locations.

The definition of updated set is modified in order to
allow delayed updates.

Definition 4 (Update and update set). An update for
A is a pair (l, v, δ), where l is a location of A, v is
an element of |A| and δ is the delay with regards to
the current time, CT . The delay δ cannot be infinitely
small and is multiple of a smallest time interval,
that can be associated to a system clock tick, for

4

Hierarchical Timed Abstract State Machines for WCET Estimation
Paun • Monsuez • Baufreton

example. The location l keeps its old value for δ
moves starting from the moment the update was
fired. The update is trivial, if v is the content of l in
A. An update set groups all updates that must be
fired with regard to the current state.

Delays associated to updates of locations imply that
the update set of a state is not always empty after the
move to the next state. However adding the notion
of update set more closely in the state of the ASM
would modify its structure. We prefer to consider
that the update set is consumed in the current state
and passed to the next state. In other words, the
next state can already have a non-empty update set
before starting the evaluation of its rules.

Due to the parallelism of the updates, we must avoid
the update clash, when a function is updated at the
same arguments in the same time.

We therefore modify the definition of the consisted
update set.

Definition 5 (Consistent update set). An update set
U is called consistent, if it has no clashing updates,
i.e. if for any location l, all elements v1, v2 and δ1, δ2
it is true that if (l, v1, δ1) ∈ U and (l, v2, δ2) ∈ U , then
either v1 = v2 either if v1 6= v2 then δ1 6= δ2.

If an update set U is consistent in a given state,
then it can be fired. In the generated new state the
dynamic functions, that had associated updates with
delay values equal to the time step of the move, are
changed according to U .

Definition 6 (Firing of updates). The result of firing
a consistent update set U in a state A is a new state
A + U with the same superuniverse as A such that
for every location l of A:

(A + U)(l) =

 v , if (l, v, δ) ∈ U.δ = 1;
A(l) , if (l, v, δ) ∈ U.δ > 1
A(l) , otherwise.

The state A+U is called the sequel of A with respect
to U , therefore (A+U)(l) is the content of the location
l after the firing of the updates in U .

Since U is consistent, the state A + U is still
determined in a unique way, and those locations
have a new content in A + U with respect to A
because if we do not have immediate the updates
with δ > 1 make a move directly after the minimum
delay.

Due to the notion of update sets that can be inherited
from one state to another, we must also change
the definition of the difference between two states.
Two cases arise for the definition of the difference:

the cycle-transition where at least one update is
delayed until the next cycle and the δ-transition
for which we must modify the difference as the
locations and all their associated delay decremented
by δmin. We must also ensure that the current time
after a δ-transition will return the correct value, i.e.
incremented by the right amount of steps.

Definition 7 (Difference). Let A and B be two states
with the same superuniverse. Then

A−B =


{(l,B(l), 1) | B(l) 6= A(l)}∪
{(l, v,A(δ)− 1)}∪
{A(CT) + 1, 1)} , if ∃δ ∈ U.δ = 1;
{(l, v,A(δ)− δmin)}∪
{(CT,A(CT) + δmin, 1)} , otherwise,

where δmin = min{δi | (li, vi, δi) ∈ U} + 1, and lCT
is the location of CT , the current time function.

The original ASM lemma still holds.

Lemma 1 A + (A−B) = B.

The passage of time is represented by the update
of a special location therefore, we can look at the
update set that moves a state to another state as the
union of the update set of regular locations and the
update of the time location.

Let A, B and C be states such that A + U =
B and B + V = C. We define U = Ul + UlCT

.

The composition of update sets, which corresponds
to the sequential application of the updates, is
defined in the following way for basic ASMs,

U ⊕ V = V ∪ {(l, v) | there is no w with (l, w) ∈ V }.

In other words, the composition of the update sets
is the set of all the updates in V , some that override
locations in U , others that are generated by U and
all the updates unique to U and V .

The composition of delayed update sets U and V
is the set U ⊕ V and follows a similar principle,
containing:

• the updates that were generated by firing
the rules in U , which guaranties that the
application of the composition is equivalent to
the sequential application;

• the updates that should have fired in U and are
not overridden in V at the next state, therefore
after a JδminKA+V delay;

• all the updates that are unique to V , with the
delay incremented by JδminKA+U .

All updates were incremented with JδminKA+U in
order to maintain the consistency of the count time

5

Hierarchical Timed Abstract State Machines for WCET Estimation
Paun • Monsuez • Baufreton

function ct, that has to be equal after the firing of the
two rules to the sum of their minimum delays.

Definition 8 (Composition of update sets).

U ⊕ V =
{(l, v, JδminKA+U + JδminKA+V) | (l, v, JδminKA+U) ∈
U and there is no w with (l, w, JδminKA+V) ∈ V } ∪
{(l, v, δ + JδminKA+U) | (l, v, δ) ∈ V }

The composite of update sets still works as long as
we can compute the value of the current time in the
intermediate state (in our case B).

Lemma 2 Let U, V and W be update sets.

1. (U ⊕ V)⊕W = U ⊕ (V ⊕W)

The equality is obvious because of the
associativity of the union operation on sets.

2. If U and V are consistent, then U ⊕ V is
consistent.

The consistency of the composition is ensured
by definition and it verifies the Definition 5.

3. If U and V are consistent, then A+ (U ⊕ V) =
(A + U) + V .

Definition 9 (Move of an ASM). We say that an ASM
M makes a move from a state A to another state
B (written A

M
=⇒ B) when the main rule yields a

consistent update set U in state A and B = A + U .

3.2. Equivalence with the basic ASM

Adding the delay δ to the updates, (l, v, δ) can be
explained through classical locations. If we introduce
a mapping function ζδ : Σδ → Σ \Σδ where δ : T are
location names from a subset of the ASM vocabulary
Σ we can associate to any location from Σ \ Σδ a
duration δ. In order to represent the advancement of
the current time we can use a rule that will be fired at
each step that computes the minimal delay δmin and
adds it to a controlled function ct.

3.3. Timed ASM defined by a set of Axioms

In this section we prove the respect of the time
properties presented in Graf and Prinz (2007).

Each consistent update set has at least a location
that stores the current time. Let Ui be un update set
such that A+Ui = B and U be the set of such update
sets associated with the run of the ASM. We have

∀Ui ⊆ U ,∃l, (l, v, δ) ∈ Ui.δ = δmin.

Therefore we can define a function that gives the
time of a move for every move of the ASM. A move
takes place at the moment when at least one guard

of a rule is satisfied. Therefore the value of the
function when is the current time after the move to
the new state, which is the current time plus the
minimum delay of the updates from the start state.

Property 1 The move from a state to another takes
place at a point in time defined by the function when:

when : M → Time

Let A m1=⇒ B be a move from state A to B, we have

when(m1) = B(CT).

Property 2 Global Time: all time stamps of a run are
totally ordered, i.e. the partial order of the moves
is extended to a total preorder for their occurrence
times, i.e.

∀m1,m2 ∈M.when(m1) ≤ when(m2)∨when(m2) ≤
when(m1)

For the moves between state, the property 2 is too
strong if we look at the moves as the firing of all
updates in the update set at the next delay. This only
works for rules that are indeed in either executed in
parallel or one after the other. In the general sense
∀m1,m2 ∈M.when(m1) ≤ when(m2)∨when(m2) <
when(m1).

Property 3 Strict time progress along causal
chains: whenever two moves are causally ordered,
their occurrence times are strictly ordered, i.e.

∀m1,m2 ∈M.m1 < m2 =⇒ when(m1) < when(m2).

According to Definition 7, a move takes at least one
unit of time, therefore the property above is trivial.

Property 4 Timed order is not stronger than
causal order: causally non related events are not
comparable in the timed order, i.e.

∀m1,m2 ∈ M.m1 ≤ m2 ⇐⇒ when(m1) ≤
when(m2).

For the time being, we forbid conditions on the
delays, therefore the time order is induced only by
the casual order.

Property 5 Absence of Zeno computations: In any
infinite run, there is no upper bound of the time val-
ues attached with moves, i.e. ∀R isInfinite(R) =⇒
∀t ∈ Time ∃m ∈ R.when(m) > t.

The Property 5 is satisfied because if the number of
moves is infinite we will always have a new move with
the current time, when(m) superior at least with one
time unit then the previous one.

6

Hierarchical Timed Abstract State Machines for WCET Estimation
Paun • Monsuez • Baufreton

Property 6 Minimal time distance: There is a
lower bound of the time differences between non-
simultaneous causally ordered moves, i.e. ∃δ ∈
Duration ∀R ∀m1,m2 ∈ R.m1 < m2 =⇒
when(m2)− when(m1) > δ.

The minimal duration allowed in our update
semiotics is one, therefore such a δ exists.

Property 7 Events at discrete steps: Any two
moves occur either at the same instant or the time
differences between their occurrence times are a
multiple of a given value,

∃δ ∈ Duration ∀R ∀m1,m2 ∈ R∃k ∈ N.when(m1)−
when(m2) = k ∗ δ.

According to our definition, the value of the minimal
delay is 1. The value of the other delays δmin is a
multiple of the minimal delay hence k = 1.

Property 8 Local urgency: The time of each state
change of each run is minimal.

Property 9 Global Urgency: The earliest state
change amongst all distributed agents is taken.

Updates sets are composed of updates and different
associated delays. According to Definition 7, the
time progress is defined as the minimal delay in the
updates list.

Time
The time is an integrated part in the ASM. We
associate time to an update set in the following way.
If no time information is present, the time associated
to the update set is equal to one as in one cycle.
We can hide away details of the implementation of a
rule by associating to an update set a time superior
to one. We use the term timed rule or update to
distinguish the last one from the regular one-cycle
case. The interpretation is that we see the more
complex rule that would have executed in several
cycles as a turbo rule where the only thing that
matters is the result, or the final update set. Several
conditions must be satisfied in order to be able to use
a timed rule. From the refinement point of view, the
one-cycle update corresponds to the most refined
version of the ASM which is sufficient inout case to
model the processor behavior. We will now take a
look at the timing properties of our state transition
system.

Duration as interval
An interesting extension is the possibility to add
duration intervals for certain actions. There is a
difference between our notion of duration interval
and the one presented in Artëmov et al. (2010)
where the delay is chosen non-deterministically from

the interval. We will use the notion of interval in
order to simulate traces of abstract runs. When such
a duration interval is associated to an update, the
pipeline of the processor will generate different time
results for different availability times from the interval.
A problem for the WCET estimation occurs when the
resulting durations are not monotonic with respect
to the availability values from the time interval. This
is called a timing anomaly, because it generates
unexpected results like a cache miss being optimistic
than a cache hit with regards to the execution time.

Being able to use imprecise intervals for a certain
action comes in hand when using the model in
pair with a value analyser that gives imprecise
information. In this case a parallel execution of all
the different scenario must be made.

Our interest, with regard to the WCET estimation, is
to execute in parallel only until a merging point is
reached, where it would be safe to return to a single
execution flow that will generate the highest global
execution time.

Therefore we must introduce the notion of stores
and parallel stores. We can thus handle the multiple
generated runs, each time such an interval is
encountered. The problem with this type of execution
is the inherent state-space explosion, hence we
introduce the notion of reference store and at every
execution point that deals with an duration interval
we will keep a history of all the update sets that must
be applied in order to get into that respective state
of that particular run. This is equivalent to keeping
a list of all the locations that have been modified
since the splitting point if we merge all the updates.
The merging consists of keeping only the final value
for the same location. To even further compact
the update sets, we can compare the locations to
the ones from the original store and eliminate the
information if it’s redundant.

After reducing the update sets several scenarios
arise.

• an update set becomes empty. This means that
except for the count time, we arrive in the same
state as the one where the execution split. In
this case we can fusion it with the original run,
keeping the greater count time.

• an update set becomes identical to the one of
another run, we can thus fusion and eliminate
it, preserving the maximal count time.

• un update set becomes similar to one of
another run. The notion of similarity is to be
further discussed. The intuition is that we can
reach two states that have differences only in

7

Hierarchical Timed Abstract State Machines for WCET Estimation
Paun • Monsuez • Baufreton

non-interfering locations, so the two can be
merged.

States of ASMs are static algebras, therefore we can
use this fact to create equivalence classes between
different states of the parallel runs in order to reduce
the state space explosion when searching for similar
states.

4. A HIERARCHICAL ASM (DYNAMIC CHOICE
OF ASM REFINEMENTS)

The hierarchical notion of ASMs in already present
in the ASM literature as a basis for the incremental
design by refinements. Besides the compactness
and good readability of specifications, ASMs offer a
homogenous formalism for all levels of abstraction.
We believe that the notion is not fully exploited as the
level of abstraction of ASM is fixed at the beginning
of the modelling phase. We introduce the concept
of dynamic choice of the refinement granularity in
what we cal Hierarchical ASMs. Therefore, the model
itself, is able to chose on the fly the appropriate
abstraction level for a given rule among several,
user-defined, definitions. This can be particularly
useful in the case of a processor design as the
precision on the values of manipulated data, given by
a value analyser for example, is not always on pair
with the level of detail of the processor model. The
main idea is to adapt the level of abstraction of the
processor description to the precision given by the
value analysis in order to master or reduce the state-
space explosion inherent to the WCET analysis.

Correctness of the hierarchical ASM
A Hierarchical ASM has multiple definitions for
different sub-ASMs (we will use this term for the time
being with no regards to the Structured ASMs) that
correspond to different levels of refinement that we
call abstractions. As during the same run, either of
the available hierarchy levels can be selected, we
must ensure that the run in correct with regard to
the semantics of the processor and also with regards
to the time estimation. Informally, the correctness of
the model is granted by ensuring all the hierarchical
level of the sub-ASM have the same input and output
(signatures), that their initial and final states are
equivalent and the intermediate runs produce also
equivalent states, in the same order.

4.1. Cycle-accurate vs time-accurate model

The time-accurate ASM can be seen as a simple
case of ”hierarchy” as the refinement is correct by
definition because in the (m, 1) refinement all the
intermediate states are identical (the reason to use
the time-accurate model in the first place). The top
edge of the commutative diagram represents the

State S

State S∗ S∗′

S′

m steps of M︷ ︸︸ ︷
τ1...τm

≡≡

σ1

cycle-accurate model and the bottom part the time-
accurate model. The equivalence notion ≡ between
locations of interest in corresponding states is trivial
to prove and follows from the definition of the time-
accurate model. Except for the time function, the
pair of start and end states are identical so we have
S = S∗ and S′ = S∗′.

5. HIERARCHICAL TIMED ABSTRACT STATE
MACHINES

5.1. Preambule

ASMs have the nice property of being able to
describe any algorithm at its right abstraction level.
One major difference in the concept of ASMs with
regards to other state transition systems is that the
values of the support set remain the same while
the transfer functions change after an update. The
relation between functions and data is reversed,
instead of having mutable data structures with
immutable functions, we have immutable data which
is operated on by mutable and immutable functions.
A data selector cane be seen as a single argument
function over the selected data domain and the other
way around. The assignment of an expression to a
variable field f of a record x can be re-interpreted as
an update of the mutable function f at the position
x. In other words instead of changing values, the
interpretation of functions, for the right arguments
gets changed, associating the function name at
the respective arguments to a new value from the
superuniverse. We have thus only immutable data
serving as index structures for possibly mutable
functions. The abstract state machines approach
leads naturally to components which are adaptable.

As an extension to this logic, we introduce HTASMs
not only as transition systems that change the
interpretation of functions according to the rules
but also the interpretation of the interpretation of
functions. This is achieved through the extension
of the model, with an oracle that will modify
the interpretation of function names, making them
depend on different set of rules.

The decisions of the Oracle can be modelled either
based on the internal state of the HTASM (watching
certain locations can trigger a decision to use a

8

Hierarchical Timed Abstract State Machines for WCET Estimation
Paun • Monsuez • Baufreton

more abstract state when suited - for example when
no timing anomalies can occur) or on external,
monitored locations (for example when we have
insufficient precision on certain values we can switch
to a definition of an unit that can work with the larger
- more imprecise - domain).

5.2. Mathematical foundation of HTASM

According to the abstract-state postulate an algo-
rithm does not distinguish among isomorphic types.
A state is just a certain implementation of its iso-
morphism type. Looking at the way elements of
the base set are accessed, allows us to identify
a good manner to introduce multiple views of the
same operation. Base set elements are accessed
through ground terms that contain functions from the
vocabulary of the state. By allowing multiple defini-
tions for a function we access different ground terms
leading to an equivalent operation with regarding to
the semantics of the processor and its temporality for
example.

The classic ASM refinement techniques provides
us with the ability to build an abstract model with
an equivalence notion between data in locations of
interest in corresponding states. We want to be able
to use multiple refinements levels during the same
execution of the algorithm that ensure a correct
result with regard to the target property.

Contrary to the refinement concept we want to make
moves in both senses, from the refined version
to the more abstract and vice-versa. This would
not be possible in the general case, nevertheless
thanks to the target property (the temporal over-
approximation) we can make jumps in both ways.

A(n−1)

A(n)

Ω

A

Figure 1: Dynamic HTASM abstraction level switch

We hereby extend Definition 2 of the state to take
into account the different levels of abstraction.

Definition 10 (HTASM State). A state A for the
signature Σ is a non-empty domain X = XSet ∪Xα,
the superuniverse of A, together with interpretations
of the function names of Σ in one or more domains.

For each rule name we can give a definition for
each universe of X. Therefore the values of terms,
functions and their arguments, can be imprecise.

Definition 11 (Critical rule). A rule is called critical
if it changes the interpretation of terms used in
the guard formula of another rule, hence a rule
dependency exists.

In the case of a function term, we speak of critical
locations.

Definition 12 (Critical location). A location is called
critical if it is involved in a critical rule.

Let ri be a non trivial update rule (li, v) at location
li = (f, (a1, ..., an)) and let R be a guarded update
if ϕ then r where ϕ is a function formula depending
on a location location l. If l = li then l is a critical
location.

cloc(r,A) = {li ∈ U : ∃lj ∈ ϕ.li = lj}

In the case of a variable term, we speak of critical
variables.

Definition 13 (Critical variable). A variable is called
critical if it’s involved in a critical rule.

Let ri be a non trivial update rule (li, v) at location
li = (f, (a1, ..., an)) and let R be a guarded update if
ϕ then r where ϕ is a function formula depending on
a location l. If l = li then l is a critical location.

To describe the behaviour of a precision guided
HTASM abstraction level choice, we now introduce
the abs-construct which combines simultaneous
atomic updates of basic TASMs in a global state with
a choice of rules to apply.

We denote the abstraction level choice of two
HTASM rules P , Q by P abs Q and define its
semantics as the effect either executing P in the
given state A or Q in the same state A, depending
on which domain critical locations belong too, where
U is the set JP KA of updates produced by P in A.

Definition 14 Let P and Q be HTASM rules.

JP abs QKA = JP KA � JQKA

U�V =

 {(l, t) | (l, t) ∈ U} , if g ∈ guard(P,A)
=⇒ Dom(t) ∈ Dom(g)};
V , otherwise.

where guard(P,A) denotes the function that returns
the last values of the locations used in the guards of
P and Dom(t) the functions that returns the type of
domain of the super universe of t.

5.3. Correctness proof outline

Safety-critical systems require a certain level
of confidence regarding the respect of some

9

Hierarchical Timed Abstract State Machines for WCET Estimation
Paun • Monsuez • Baufreton

constraints. In order to ensure a level of confidence
to the system, tools are used to verify the respect
of functional and non-functional properties. One of
the advantages of using a formal model for the
processor description is the foundation to build
proofs of correctness. We provide in the following the
intuition on how this can be achieved.

We distinguish two cases that both benefit from the
formal support of the model. Firstly, we need to prove
that the processor model is correct with regards
to the real processor that will used in the actual
system and secondly that all the abstraction levels
of the processor are correct refinements of HTASMs.
ASMs provide a stepwise refinement method that
allows the designer of the system to start with a
high-level description of the system that is refined
step by step into the final version which can be
proven correct with regard to the initial one. If
a processor SystemC description is available, we
can automatically generate a correct HTASM model
using techniques described in Muller et al. (2004)
with minor modifications because all the additions to
our language preserve the nice properties of ASMs.

In order to prove that the different abstraction
levels of the HTASM are correct we can use
similar techniques used to prove the correctness
of compilers, Goos and Zimmermann (2000).
Program transformation used in compilers consists
in transforming the control and data-flow graphs.
In other words, the observable behaviour of the
program must be preserved. In our case, we
use as an input for the processor model the
compiled code of the program. The transformation
consists in two steps: data mapping and operation
mapping. When compiling a source code, the initial
graph depends on values that are known only at
compilation time, and the stack and heap are being
mapped into the internal register system of the target
processor. Similarly we have a high level vision of
the architecture in the form of the binary (after the
value analysis step which provides information about
loop counter, variable interval values, addresses,
etc.) based on instructions from the ISA of the
processor and a low level vision based on microcode
operations that describe the exact behaviour at byte
level of a particular ISA implementation (the actual
processor).

In Figure 2, the top graph represents the most
abstract model (the binary code) and the bottom
one the most concrete model (the processor).
Proving the correctness of the two models comes
to independently prove the correctness of the data
mapping and conditional graph rewrite rules. The
data mapping assigns a new semantics (by means
of an HTASM A′µP) to the binary code using the

AµP

A
(n)
µP

Figure 2: HTASM refinement

concepts of the data part of the target language. The
behavioural part is kept, therefore the corectenns of
the mapping can be shown by proving that A′µP 1-1-
refines AµP .

ASMs are transition systems which transfer static
algebras. The abstract state machines make use of
the following abstraction principle, while limited to the
notion of evolving algebras:

5.4. Abstract processor execution

Analysing all reachable states of a processor makes
the WCET estimation safe. Nevertheless, because
of the state space explosion we must eliminate as
much individual state handling as possible.

The HTASM model is custom tailored to confine the
state space explosion of the undergoing analysis.
After a number of safe, abstract steps the analysis
goes back to a concrete state that corresponds to
the global worst case. If the information regarding
that state is lost or it is decided to be computationally
expensive, the state is safely over-approximated by
choosing a more pessimistic one.

We provide in the following a schematic view of the
use of the model in the WCET estimation.

1. Complete the value analysis of the binary. We
obtain information on the CFG, instructions,
loop counters, register values, addresses, etc.

2. Start the conjoint symbolic execution (SE) on
the HTASM model of the processor.

3. (a) It the value is exact → use the concrete
HTASM A

(0)
µP .

(b) If the value is imprecise (set, interval, etc.)
→ use abstract HTASM A

(i)
µP . We deal

with symbolic values → all or some if the
parameters of the functions (locations of
the units functions) are intervals.
What is the type of dependency?

10

Hierarchical Timed Abstract State Machines for WCET Estimation
Paun • Monsuez • Baufreton

• unit type
• functional (an instruction needs or

depends on a certain value) → split
the domain set (the universe of the
HTASM) in different sub-domains that
satisfy the constraint.

A''

x''

y''

z''

x

y

z

f A

gA

A A'

fB

gB

A'

X

Y

Z

x'

y'

z'

B'

f A

gA

fA(x)fA(x)

gA
(y,z)

fB(X)

gA
(y,z)

gB(Y,Z)

fA''(x)

gA''(y,z)

X

Y

Z

B

fB(X)

gB(Y,Z)

A''
�x X Choose

Figure 3: HTASM abstract execution

5.5. Handling Timing Anomalies

The evolution of processor architecture made the
timing analysis more complicated. Among the
consequences of modern processor features, timing
anomalies (TA) have an important impact on the
WCET estimation, by braking the compositionally
of the analysis. Timing anomalies in the context of
WCET analysis were first described by Lundqvist
and Stenström (1999). Hardware acceleration
mechanism produce interferences that lead to timing
anomalies, i.e., a local timing change causes an
either larger or inverse change of the global timing.

The abstract execution problem comes to:

• being able to handle many potential states;

• at any moment either we have precise
information about values → next step or we
don’t and we must identify the worst case. If
we don’t know if the worst case can occur, we
must suppose that it will.

Usually, the WCET analysis is confronted, at each
execution step, to either a great overestimation of
the WCET or a complex analysis of the precise worst
case path.

Our idea is to use the timing anomalies identification
techniques, presented in Wenzel et al. (2005) and
Eisinger et al. (2006), to partition the analysis space
in several categories corresponding to the presence
or absence of the TA.

Wenzel et al. (2005) proposes a criterion that
provides a necessary but not sufficient condition

for timing anomalies to occur. Our model is based
on relation between locations that are stored
in functions and guarded updates, capturing by
definition the timing anomalies. These relations are
exploited to identify the necessary condition for the
TA to occur. We can safely assume that if the
necessary conditions are not satisfied, TA will not
occur and we can use the divide and conquer
analysis approach.

Therefore we create functions that evaluate the
timing anomalies that can occur, obtaining the
following cases:

• no TA are possible→ chose the worst case;

• some TA might occur → analyse all the cases
or suss abstraction techniques.

1
2
3
4
5

TA

Figure 4: Timing anomalies partitioning

In the category where no TA can occur, we have
an order on the states defined by a distance on
abstract states based on the temporal impact and
further relations on locations. This can also be
used for defining similarities between states and
perform merging based on techniques presented in
Benhamamouch and Monsuez (2009).

Abstraction Levels

Figure 5: Timing anomalies identified paths through
relations between locations

6. CONCLUSION

We have proposed an extension of the ASM model
that handles time and dynamic abstraction in a
simple manner. The possibility to make delayed
transition is presented as a support for abstracting
the processor components in order to achieve a
more compact simulation. Some temporal properties
of the system were enumerated and discussed. We

11

Hierarchical Timed Abstract State Machines for WCET Estimation
Paun • Monsuez • Baufreton

have also introduced a model that can dynamically
refine the components of the processor, preparing a
framework where run-time abstraction can be made
in both ways between the concrete and the more
abstract definition. The adaptability of the analysis,
given by the separation of the processor model and
the analysis, the ease of use, the preservation of
the formal background after the model extensions,
the adaptability to imprecise value analysis, the state
space explosion confinement techniques through
abstractions and fusions and the built-in capturing
of timing anomalies makes our model adaptable for
the WCET estimation. An WCET tool based on this
model is under development.

REFERENCES

Anlauff, M. (2000). XASM- An Extensible,
Component-Based Abstract State Machines Lan-
guage. In Y. Gurevich, P. Kutter, M. Odersky, and
L. Thiele (Eds.), Abstract State Machines - Theory
and Applications, Volume 1912 of Lecture Notes
in Computer Science, pp. 69–90. Springer Berlin
Heidelberg.

Artëmov, S. N., Y. Matiyasevich, G. Mints, and
A. Slissenko (2010). Simulation of Timed Abstract
State Machines with Predicate Logic Model-
Checking. Ann. Pure Appl. Logic 162(3), 173–174.

Beauquier, D. and A. Slissenko (2002). A First Order
Logic for Specification of Timed Algorithms: Basic
Properties and a Decidable Class. Annals of Pure
and Applied Logic 113(1–3), 13–52.

Benhamamouch, B. and B. Monsuez (2009).
Computing worst case execution time (WCET
) by Symbolically Executing a time-accurate
Hardware Model. In International MultiConference
of Engineers and Computer Scientists, Volume II,
pp. 3–8.

Borger, E. and R. F. Stark (2003, June). Abstract
State Machines: A Method for High-Level System
Design and Analysis. Springer-Verlag New York,
Inc.

Cohen, J. and A. Slissenko (2008). Implementation
of Sturdy Real-Time Abstract State Machines by
Machines with Delays. In Proc. of the 6th Intern.
Conf. on Computer Science and Information
Technology (CSIT’2007), September 24–28,
2007, Yerevan, Armenia. Organized by National
Academy of Science of Armenia in cooperation
with Test Technology Technical Council of IEEE
Computer Society. National Academy of Science
of Armenia.

Eisinger, J., I. Polian, B. Becker, A. Metzner,
S. Thesing, and R. Wilhelm (2006). Automatic

identification of timing anomalies for cycle-
accurate worst-case execution time analysis. In
M. S. Reorda, O. Novk, B. Straube, H. Kubatova,
Z. Kotsek, P. Kubalk, R. Ubar, and J. Bucek (Eds.),
DDECS, pp. 15–20. IEEE Computer Society.

Gaul, T. (1995). An Abstract State Machine
specification of the DEC-Alpha Processor Family.
Technical report, University of Karlsruhe.

Goos, G. and W. Zimmermann (2000). Verifying
compilers and asms or asms for uniform descrip-
tion of multistep transformations.

Graf, S. and A. Prinz (2007, May). Time in State
Machines. Fundamenta Informaticae 77(1-2),
143–174.

Gurevich, Y. and J. Huggins (1996). The
railroad crossing problem: An experiment with
instantaneous actions and immediate reactions.
In H. Kleine Bning (Ed.), Computer Science
Logic, Volume 1092 of Lecture Notes in Computer
Science, pp. 266–290. Springer Berlin Heidelberg.

Huggins, J. K. and D. V. Campenhout (1997).
Specification and Verification of Pipelining in the
ARM2 RISC Microprocessor. ACM Transactions
on Design Automation of Electronic Systems 3,
563–580.

Lundqvist, T. and P. Stenström (1999). Timing
anomalies in dynamically scheduled microproces-
sors. In Proceedings of the 20th IEEE Real-Time
Systems Symposium, RTSS ’99, Washington, DC,
USA, pp. 12–. IEEE Computer Society.

Muller, W., J. Ruf, and W. Rosenstiel (2004). An asm
based systemc simulation semantics. In W. Muller,
W. Rosenstiel, and J. Ruf (Eds.), SystemC, pp. 97–
126. Springer US.

Ouimet, M. and K. Lundqvist (2008, June).
The Timed Abstract State Machine Language:
Abstract State Machines for Real-Time System
Engineering. Journal of Universal Computer
Science 14(12), 2007–2033.

Wenzel, I., R. Kirner, P. Puschner, and B. Rieder
(2005). Principles of timing anomalies in
superscalar processors. In Proceedings of
the Fifth International Conference on Quality
Software, QSIC ’05, Washington, DC, USA, pp.
295–306. IEEE Computer Society.

12

