
HAL Id: hal-01214957
https://hal.science/hal-01214957v1

Submitted on 13 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hierarchical Timed Symbolic Abstract State Machines
for precise WCET estimation

Vladimir-Alexandru Paun, Bruno Monsuez, Philippe Baufreton

To cite this version:
Vladimir-Alexandru Paun, Bruno Monsuez, Philippe Baufreton. Hierarchical Timed Symbolic Ab-
stract State Machines for precise WCET estimation. IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, Aug 2013, Taipei, Taiwan. �hal-01214957�

https://hal.science/hal-01214957v1
https://hal.archives-ouvertes.fr

Hierarchical Timed Symbolic Abstract State
Machines for precise WCET estimation

Vladimir-Alexandru Paun
UIIS ENSTA ParisTech

828, Boulevard des Maréchaux,
91762 Palaiseau Cedex

Email: paun@ensta-paristech.fr

Bruno Monsuez
UIIS ENSTA ParisTech

828, Boulevard des Maréchaux,
91762 Palaiseau Cedex

Email: monsuez@ensta-paristech.fr

Philippe Baufreton
Sagem - SAFRAN Electronics

Etablissement F. Hussenot - R&T
100 avenue de Paris, 91344 MASSY Cedex France

Email: philippe.baufreton@sagem.com

Abstract—The Abstract State Machines have been around
for a while, earning their place in the embedded system world.
Their formal background makes them suited for proofs, their
refinement design method eases the system engineering and their
apparent simplicity steepens the end user’s learning curve. The
numerous extensions that followed have adapted the ASMs to
most of the real-time system needs. Our aim is to provide a
safe, precise and adaptable worst-case execution time (WCET)
estimation for processors featuring modern components. The
safety property implies that among all the possible processor
states, generated by the binary for all possible inputs, the ones
that cause the maximal execution time must be considered.
However, complex architectural components, designed to speedup
the average case, make it impossible to infer local timing decisions
to the global systems as the monotony is broken by the timing
anomalies. Therefore, a large number of states must be analysed,
generating a combinatorial explosion. Our approach starts with
a value analysis of the binary code performed by abstract
interpretation. The inherent imprecision of its results is taken into
account by the initially concrete abstract state machine processor
model. Through the use of an internal oracle, it can dynamically
adapt to the lack or imprecision of information by choosing a
different hierarchy level for all the impacted components. This
kind of execution optimises the granularity of the run based on
several strategies. State merging is also used, in order to further
counter the state space explosion, in the detriment of precision.
The merging is based on identified similar states through the
use of equivalence classes. This also offers a leverage on the
tradeoff between the precision and scalability of the analysis.
Time, different abstraction levels of the processor during the
same run and symbolic execution are directly added in the ASM
model, as opposed to other approaches. This provides us with
the needed architectural adaptability and full control over the
main target of the analysis: precise WCET estimation. Taking
into account a new processor becomes an engineering task as a
new model for the processor is given in our extension of the ASM,
with little syntactical differences. This in made possible by the
seamless integration of the WCET estimation alongside the ASM
semantics, which must not be changed whenever a new platform
is considered.

I. INTRODUCTION

In order to safely and precisely estimate the WCET of a
processor we need a versatile model that can take into account
all the possible component interaction and offer the means
to confine and control the inherent state space explosion of
exploring all the execution scenarios. Abstract State Machines
(ASMs) have been used with success in processor modelling
and verification [1], and proved in our case to ne the best

candidate to describe the underlying architecture for worst-
case execution time estimation. Despite the formal background
which makes it suited for proofs, the ASM model can be seen
as a simple language and used accordingly with a minimum
time to take in hand.

II. ABSTRACT STATE MACHINES

A. Timed ASM

The addition of time to the ASMs is not new and is present
in different shapes. Timed ASM with instantaneous actions
were first introduced in [2]. Both paradigms are further devel-
oped in [3] and [4] with semantics oriented on verification.
The approach presented in this work incorporates concepts
from previous approaches from the ASM community however
it represents the time in the simplest useful manner, close to the
basic ASM but on the other hand adapted to generate runs that
can reduce the number of processed information. A complete
formal definition of the new model is available, therefore the
verification capabilities of the ASMs are preserved. One of
the first step to counter the state space explosion is to enable
a time-accurate model for the processor, by allowing the step
of the run to change in order to make a transition directly to a
different new state. Timed ASM were also designed in order
to conform with the set of axioms defined in [5] like global
tine, srict time progress along causal chains, absence of Zeno
computations, global urgency, etc.

B. Hierarchical ASM

Precise WCET estimation is dependent on the precision of
the hardware model. However generating all the exact states
of the processor at every step of the run triggers a state-space
explosion. We introduce the concept of dynamic choice of the
refinement granularity in what we call Hierarchical ASMs.
Therefore, the model itself, is able to chose on the fly the
appropriate abstraction level for a given rule among several,
user-defined, definitions. This can be particularly useful in the
case of a processor design as the precision on the values of
manipulated data, given by a value analyser for example, is
not always on pair with the level of detail of the processor
model. The main idea is to adapt the level of abstraction of
the processor description to the precision given by the value
analysis in order to master or reduce the state-space explosion
inherent to the WCET analysis. The definition of the ASMs is
modified in order to allow not only a single rule definition for a

rule name, but multiple, chosen according to the oracle among
a list associated to each rule. A rule name assignment for an
ASM state is a function that assigns to each rule name, a rule
definition taking into account the choices of the Oracle and the
critical locations. Choosing a certain definition for a rule name
may imply also the automatic choice for other rules, explained
by the notion of critical locations that we introduced for rules
that use other rules locations. When conceiving the HTASM
execution, we must choose the way we deal with the update
sets associated with the execution trace. We need to be able
to come back from an abstract state to a more concrete one.
This means that the abstract run will potentially cover more
concrete executions. In order to be able to resume to a concrete
state we must be able to reconstruct the exact definition of the
store equivalent to a particular concrete execution. In order to
achieve this we can associate update sets to a certain rule name
definition and collect them into an update bag that will not
modify the general superuniverse but only allow us to recreate
the exact state corresponding to the concrete state. In this way,
ASMs can naturally deal with multiple parallel executions.

C. The Oracle

Whenever multiple definitions for a rule name are available,
the Oracle is in charge with choosing the most adapted, ac-
cording to different strategies. For example, if a rule definition
depends on locations that are unknown, a more abstract version
of that component is selected, that either no longer depends
on those locations or allies to a whole set of values for
those locations. The Oracle can also be trained, based on
dynamic predictions for example it will try to minimise the
state numbers based on previous success correlated to active
locations and their values.

D. Symbolic ASM

Symbolic execution (SE) has already been used success-
fully in WCET estimation. Our analysis generates all the
reachable states of the processor under all the reachable states
of the program by doing a conjoint symbolic execution of the
processor model and the binary. We integrated the SE directly
into the ASMs, modifying the run in order to take into account
symbolic values (completely unknown or baring information
from the value analysis), from an additional universe, and
adding the interpretation of symbolic terms.

E. State Merging

An instruction needs and generates a certain context in
order to execute on a processor. The conjunction of this con-
texts generate similar processor states for different execution
histories, [6]. Therefore the processor will find itself in similar
states. This allows us to create equivalence classes for the
generated states, differentiated by the notion of a distance
that takes advantage of the formal definition of the processor
model. Therefore, the search for merging state candidates is
greatly improved with every new defined class. For example we
can have identical states, where all the location values and rule
definitions are the same or similar states. The decision to merge
identical states is take automatically. On the other hand, similar
states must be further analysed in order to decide if they should
be merged. At this moment the dynamic prediction module
takes over and compares the results of the execution before

and after the state merge in order to make the choice. This
module has another purpose that is to backtrack on the path
that led to identical states in order to identify other potentially
similar states.

III. USE CASES

The ability to estimate the impact of state merging on the
resulting WCET is important to give an idea about its inherent
over-approximation. Our analysis allows the control of the state
merging threshold which enables the user to decide whether a
precise but long and resource consuming estimation or a less
precise but faster one should be performed. Having the choice
can be particularly handy, as quick product cycles influence the
development process, meaning code modifications take place
more often with minor changes. However, in the general case,
a safe WCET estimation implies a complete system WCET
analysis, which may lead to delays for the new interruptive,
agile development process. Therefore a faster and less precise
analysis can be useful, especially that in early development
stages, the system in conceived in order to have a higher
temporal budget reserves in order to allow later evolutions.

IV. CONCLUSIONS

We have presented the structure of our tool that estimates
the WCET with a custom precision. Thanks to the conjoint
symbolic execution, all the reachable states of the processor,
running the binary, are generated. The possibility to make
delayed transition is presented as a support for abstracting
the processor components in order to achieve a more com-
pact simulation. We have also introduced a model that can
dynamically refine the components of the processor, preparing
a framework where run-time abstraction can be made in both
ways between the concrete and the more abstract definition.
In order to further reduce the state space explosion, merging
is used through the dynamic prediction model. The tool is
currently in the implementation phases, however prototypes of
a previous version, using state merging and a classical ASM
processor model had give good results regarding the precision
of the estimation on benchmarking code examples.

REFERENCES

[1] J. K. Huggins and D. V. Campenhout, “Specification and Verification of
Pipelining in the ARM2 RISC Microprocessor,” ACM Transactions on
Design Automation of Electronic Systems, vol. 3, pp. 563–580, 1997.

[2] Y. Gurevich and J. Huggins, The railroad crossing problem: An
experiment with instantaneous actions and immediate reactions,
ser. Lecture Notes in Computer Science, H. Kleine Bning, Ed.
Springer Berlin Heidelberg, 1996, vol. 1092. [Online]. Available:
http://dx.doi.org/10.1007/3-540-61377-3 43

[3] D. Beauquier and A. Slissenko, “A First Order Logic for Specification
of Timed Algorithms: Basic Properties and a Decidable Class,” Annals
of Pure and Applied Logic, vol. 113, no. 1–3, pp. 13–52, 2002.

[4] M. Ouimet and K. Lundqvist, “The Timed Abstract State Machine
Language: Abstract State Machines for Real-Time System Engineering,”
Journal of Universal Computer Science, vol. 14, no. 12, pp. 2007–2033,
Jun. 2008.

[5] S. Graf and A. Prinz, “Time in State Machines,” Fundamenta
Informaticae, vol. 77, no. 1-2, pp. 143–174, May 2007. [Online].
Available: http://dl.acm.org/citation.cfm?id=1365972.1365978

[6] B. Benhamamouch and B. Monsuez, “Computing worst case execution
time (WCET) by Symbolically Executing a time-accurate Hardware
Model,” in International MultiConference of Engineers and Computer
Scientists, vol. II, 2009, pp. 3–8.

