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Abstract
Hard real time systems are evolving in order to respond to the increasing demand in complex
functionalities while taking advantage of newer hardware. Software development for safety crit-
ical systems has to comply with strict requirements that will facilitate the certification process.
During this process, each part of the system is evaluated, requiring a certain level of assurance
in order to provide confidence in the product. In particular there must be a level of confid-
ence that the system behaves deterministically that may be based on functionality, resources
and time. The success of system verification depends greatly on the capacity to determine its
exact behavior. Nonetheless, hardware evolved in order to maximize the average computation
power throughput with little to no regard to the deterministic aspect. Therefore modern archi-
tectural features of processors, like pipelines, cache memories and co-processors, make it hard
to verify that all the needed properties are respected. The multi-core is furthermore difficult to
analyze as the architecture employs mechanisms that compromise strong spatial and temporal
partitioning when using shared resources without rigorous access control like shared caches or
shared input/outputs. In this paper we identify and analyze the main sources of nondetermin-
ism of the multi-cores with regard to the timing estimation. Precise determination of the worst
case execution time is a challenging task even in single-core architectures. The problems are
accentuated in the multi-core context mainly due to the resource sharing that can lead to highly
complex interactions or to nondeterminism. Most of the units that generate behaviors that are
hard to take into account can be deactivated, but it is not always easy to predict the impact
on the performance. Nevertheless some of the features cannot be disabled (such as the out of
order execution or some nondeterministic crossbar access policies) which leads to the invalida-
tion of the respective platform for applications with high criticality level. We will address the
problematic units, propose configuration or architecture guidelines and estimate their impact on
the performance and determinism of the system.
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1 Introduction

The use of complex computers in safety-critical systems creates the need to ensure that
the embedded systems act in the way they are supposed to and that consequences of a
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malfunction are completely handled in a safe manner. Different standards apply according
to the danger level of the system failure. These standards are presented in a collection of
guidelines to follow in order to empower the system with a necessary confidence level. The
respect of these recommendations determine the success of the certification process necessary
for the software approval.

In this paper we focus on the determinism issues related to the worst-case execution time
(WCET) with regards to the avionics standards of software certification that will guide the
study of potential difficulties of embedding multi-cores. For the assurance of commercial
avionics systems a document called "Software Considerations in Airborne Systems and
Equipment Certification" is used. Bearing the name DO-178B [21] in the US and ED-12B in
Europe, it describes the objectives of software life-cycle processes, process activities and the
evidence of compliance required at different software levels. Safety standards like DO-178B
and IEC-61508 [13] explicitly call for the identification of functional and non-functional
hazards and for software compliance with the relevant safety goals. In these standards three
important non-functional software characteristics related to safety are mentioned: absence
of run-time errors, execution time and memory consumption. The IEC-61508 has a great
impact on the hardware selection as it requires the absence of unpredictable timing-related
interferences which might affect real-time functions. This impacts directly the multi-cores as it
must be ensured that no inherent timing interferences between cores take place. Nevertheless,
this type of interferences are quite common and must be dealt with. Existing multi-core
architectures employ mechanisms that compromise strong spatial and temporal partitioning
when using shared resources without rigorous access control. Therefore we do not always
dispose of precise information regarding the timing of some instructions in all circumstances
due to their complex interactions with the memory and other dependencies.

The WCET estimation consists of two main steps, namely the control-flow analysis
that determines the feasible paths in a program, and the processor-behavior analysis based
on low-level analysis, hence the need to throughly determine the hardware behavior. The
choice of a hardware platform is therefore greatly influenced by the visibility on the device
internal structure as precise architectural implementation details are proprietary data often
undisclosed.

The WCET estimation in multi-cores has different levels of difficulties. The first one is
inherited from the single core world. Certain modern features in processors cannot be safely
analyzed, nor disabled, making the certification of the processor impossible. Other features
generate imprecision that will increase the safe margins needed to take in order to comply
with the safety constraints, which impacts the feasibility. The second one is introduced
by the multi-core architecture and can lead to the impossibility to determine the WCET.
Problems from a core are not only translated, when integrated into the multi-cores, but
amplified by the context of resource sharing.

State of the art works deal with this issue either by constraining some platforms, or by
handling only a part of the issues and giving some new architectural workarounds that are
custom tailored for some applications [30, 6, 5, 15, 31, 17, 11, 10, 9, 29]. Another approach
is to gather best practices for future multi-core architectures [4] after acknowledging that
analysing current multicore architectures is impossible in general. Nevertheless a unified and
detailed approach is yet to be available.

Identifying which parts are impossible to analyze, or at what cost in precision, is key
to even considering the choice of a certain multi-core processor. Our work is intended as
a guideline in such choices, exposing the inherent problems of multi-cores and straitening
the path towards a solution in the matter. The article is structured as follows: First we
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34 On the Determinism of Multi-core Processors

explain inherent problems to the use of microprocessors in hard real-time systems. In Sec. 3
we describe the major units of the processor, identify problematic execution scenarios and
estimate the impact on the predictability and we conclude in Sec. 4.

2 Inherent problems to the use of microprocessors in hard real-time
systems

The hardware platform is a central point when analyzing a system. Therefore it is essential
to dispose of a precise model of the processor in order to determine its effective behavior.
The available information comes mainly in reference manuals and application notes that
present the processor’s architecture, how to interface it with the environment and how to
configure its different function modes. Nevertheless, information present in the user manual
is not intended for testing or verification purposes. Furthermore information relevant to the
design method and the verification methodology are only briefly discussed, if not at all in
these documents, mainly from the integrator point of view. Another issue is the questionable
validity of the information presented in the reference document altogether as contradictory
information is sometimes provided in different document.

The behavior of a microprocessor is challenging or even impossible to characterize. This
is either due to the uncertainty of the effectively calculated result or the uncertainty on
the actual time of the effective calculation. De facto, these two aspects are directly related
to the notion of data availability. The main consequence of the difficulty in architectural
optimization is an interdependence between the data and the instructions of a same task.
In the context of multitask applications, an interdependence between various tasks coming
from the commutation of the environments during the passing from one task to another, is
introduced. In the case of multi-cores additional difficulties appear in the estimation of the
WCET, like the issue of two competing processes if they share common architecture elements,
notably, memory access controllers. Futhermore challenges are given by the exchange of
data between the two applications being executed in both processors. Let us consider two
tasks, one critical task being executed in one core, and a second critical task monitoring the
calculations of the first task on the second core, it is necessary to ensure the data handled by
the two tasks is coherent. Without adding at the application level advanced synchronization
operation, it is impossible for the majority of current multi-core microprocessors to guarantee
that both applications handle the same data. In fact, due to induced latencies, nothing
prevents one of the two applications from handling data dt−1 present at t − 1 instant while
the other application handles the data d modified at t instant. In fact, one of the rare means
to remove these uncertainties would be to strongly pair the monitoring application with
the command application, by implanting communications between the two applications via
semaphores.

3 Hardware considerations

Most of the available processors were not especially designed for the hard real-time systems.
The multi-cores are no exception as their goal is to maximize the shared resource average
utilization. Data communication and synchronization between the different units are optim-
ized for maximum throughput of executed instructions. Therefore multiple execution paths
can be taken depending on the execution history, the current state of units or even local
choices based on random decisions. A natural way of analyzing the hardware components
that influence the determinism would be to first look at those who give a local impact and
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proceed to components that have a global impact. One can also start by looking into units
already present in single-cores, and proceed with units unique to the multi-cores. However, as
shaped by this section, there is a thin frontier between the two as even classical, predictable
units have a different impact when integrated in the multi-cores. Therefore the analysis
of this components can not be solely based on the analysis of the same component in the
single-core context.

3.1 Pipeline
Present in all modern processors, the pipeline was introduced in order to increase the average
performance by ensuring that, whenever possible, an available hardware resource will be
occupied. Nevertheless, different events can introduce pipeline stalls such as structural
hazards, data hazards and control hazards.

Out of order execution (OoOE), a feature introduced in order to avoid pipeline stalls by
decoupling the issue/dispatch and the execution/completion stages, allows execution not
following the instructions program order. A fetched instruction will be executed when the
input operands and needed resources are available with no regard to whether it is the next
in order instruction. The interaction between the cache memory and instruction scheduling
influences the precision of the timing estimation.

Pipeline impact on the predictability

The impact of the pipeline varies from local influence with local monotonic optimizations to
global influences with timing anomalies that cancel the monotonicity and compositionality.
The size of the pipeline has an influence on the predictability of the WCET. A wrong branch
prediction causes n cycles penalty, where n is the pipeline depth. The pipeline depth can
further influence the predictability potentially generating more hazards as more instructions
are being treated at the same time. Besides intrinsic impacts on the predictability, the
pipeline, in conjunction with other units, can lead to precision loss or nondeterminism. For
example, in case of a L2 cache miss, the number of pipeline stages influences the memory
access time [8]. Furthermore, in the shared resources context of multi-core sharing a common
bus, the pipeline can lead to nondeterminism.

3.2 Branch Prediction Unit (BPU)
Through the BPU, processor attempts an early resolve of a branching instruction, before
its time, by applying a strategy in order to anticipate the result. The BPU strategy can be
either static or based on complex algorithms, un-deterministic in some cases. Based on this
estimation, a speculative execution is initiated that will lead eventually to a significant time
gain in the case the result is correct. The influence on the cache memory content is non
negligible as a miss-prediction is not generally followed by a cache reorganization, therefore
the cache configuration is polluted with information from the untaken path.

BPU impact on the predictability

The BPU can make incorrect branch predictions or incorrect branch target address lookup.
It is systematically active and directly impacts the temporality of the instruction change.
Furthermore, this unit relies on a set of data protection tables stored in tables. The impact is
high because of the general unpredictable success rate of the early branching target resolution.
It can be largely avoided in the case of statically resolved loops or branches that are not data
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36 On the Determinism of Multi-core Processors

dependent. Tailoring the condition of the jump taking into account the branching strategy
in order to help it succeed in the majority of cases is also a solution as long as the WCET
analyzer can take it into account. In this case, most techniques of adding watermarks in the
code with information that help or enable the prediction can be useful.

3.3 Floating Point Unit (FPU)
Floating point computation timing can also be hard to accurately estimate because of their
implementation. A micro-pipelined unit takes advantage of consecutive instructions that can
be pipelined. Units can have either a part of the FPU instructions pipelined or all of them.
Therefore consecutive pipelined and non-pipelined instructions can cause stalls, making the
timing difficult to compute especially in the case of the out of order execution.

Floating-point data formats and instruction set generally conform to the IEEE Standard
for Binary Floating-point Arithmetic, ANSI/IEEE Standard 754-1985. However, the SPARC
V8 architecture, for example, does not require that all aspects of the standard, such as gradual
underflow, be implemented in hardware [25]. This can be a problem if precise information
about the implementation is not given. One of its implementations, the GR712RC/LEON3
does not provide sufficient information on this matter and precise timings in case of this
exception could prove difficult to estimate. Similarly the ARM Cortex A9 architecture
manual, does not provide precise timing of all instructions. This is mainly due to the
unpredictable timing behavior at the instruction level generated by the unit’s structure itself
and memory system interactions [32].

FPU impact on the predictability

The impact of the FPU depends on its implementation. Instructions can take either a single
cycle to execute or several cycles but they can also be pipelined. A combination of either
way in parallel is also possible. In conjunction with the instruction rescheduling and thus
with the change of data, cascade effects can occur and lead to pathological effects like it can
be seen in some PowerPC architectures.

3.4 Level 1 Cache
Memories for instructions and data are implemented in order to make the most common case
fast, benefiting from a program’s spatial locality and temporal locality. Not taking this fact
into account in the WCET estimation gives highly pessimistic timing estimations. Cache
memory is usually organized in different levels, some local to the core and others situated
outside the core. Different cache replacement strategies must be implemented in order to
optimize the performance because a strategy that can fit all the possible cases is impossible
to find. Therefore the average case performance is optimized. Commonly used strategies are
LRU, pseudo LRU, FIFO or round robin and MRU each having a different impact on the
predictability of the system. The analysis of the Level 1 cache must be made in conjunction
with the other units and is discussed within the timing anomalies in the following.

Impact on the predictability

Worst-case analysis on cache memories is a challenging problem, mainly because they are
conceived in order to maximize the average performance. Achieving good results for data
cache analysis, for example, is still an open problem, as they are difficult to statically analyze.
An approach that enables time-predictable caching, is to lock cache blocks. Combining
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cache locking with cache partitioning for multiple tasks in the case of task preemption can
improve the predictability in some cases [26]. Unknown abstract cache states during the
analysis generate loose WCET bounds. For example, unified cache for instruction and data
can break down all the information on abstract cache states. After accessing n unknown
addresses in an n-way set-associative cache all the cache lines will be unclassified in the
analysis. Therefore, separation between the instruction and data cache memories should be
chosen whenever possible (the problem still holds for shared caches and is discussed in the
Level 2 cache section). For this reason Harvard architectures, with physically separate signal
pathways for instructions and data, should be privileged in despite of the von Neumann
architecture. Context switch or cache misses it can lead to a relatively high global impact due
to timing anomalies or Translation Lookaside Buffer (TLB) strategies. In order to improve
the performances of the cache memory, instruction and data locality could be increased using
compiler techniques for example (code reposition, loop permutation, tiling [28] etc.). When
performing the WCET analysis, the most problematic features to analyze are the replacement
policies for set-associative caches [12]. Pseudo-round-robin and the 4-way associative cache
is also a difficult combination in the Motorola ColdFire 5307 [23]. In order to ensure the
time-predictability of processors, locally deterministic update strategies for caches should be
used. According to [22] the LRU strategy performs best in terms of predictability, far ahead
pseudo-LRU and FIFO.

3.5 Scratchpad
Scratchpad memories (SPMs) are used to guarantee a unit can work without main memory
contention in a system employing multiple processors. As the memory access latencies are
predictable, scratchpad memories have become popular for real-time embedded systems.
However, the difficulty of allocating code/data to scratchpad memory lies now with the
compiler. Scratchpad memory works like a local store and act like "software caches" therefore
the strategy is implemented in software and the interactions in the global hardware must be
analysed. Timing anomalies with regard to the replacement strategy should be integrated
into the hardware model. The most convenient approach to manage the SPM is using
static allocation [18] but dynamic SPM allocation is more efficient (it can use profile-based
optimization but multiple strategies exist). Analyzing dynamic strategies is challenging,
especially the software implemented ones that give optimal allocation for the average execution
time. Some WCET-centric techniques exist but they do not handle all architectures.

3.6 Memory Management Unit (MMU) and Translation Lookaside
Buffer

The TLB is a cache that MMU use to improve virtual addresses translation speeds. The time
needed to determine the physical address depends on the number of performed operations.
TLB time access is variable. In order to enforce the predictability, the MMU can be
deactivated (however the performance loss is significant) or by reducing the size and thus
complexity of the TLB (the TLB main entries can be blocked in order to ensure their
persistence). A solution is to increase the TLB size so that we only have hits but we still
have the problem of an error in the translation that is detected late and takes an undefined
(even if still reasonable) time to be corrected. Typical user manuals [1] give upper bounds
in the TLB miss case. Timing anomalies invalidate the monotonicity assumption in the
general case [27], which means that we cannot directly use the upper-bound information as
the worst-case scenario. Therefore, without precise information on the exact behavior all
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38 On the Determinism of Multi-core Processors

possible cases must analyzed, leading to a potential state space explosion. In order to reduce
the potential temporal variability, the MMU should be disabled. Nevertheless due to the
consequences on the global performances it is not recommendable.

In general, virtual memory raises predictability issues at two levels. First at the level
of address translation that provides mapping between virtual to physical pages requires a
TLB lookup. If the mapping is absent from the TLB a page table lookup is performed. The
duration of address translation is hard-to-predict, because not all mappings can be stored in
the limited capacity of the TLB or because the TLB might be shared between concurrent
processes. Second at the level of paging activity as knowing whether or not a reference to a
virtual page will result in a page fault. This is hard to predict because physical memory is
shared between concurrent processes.

Impact on the predictability

The virtual addressing and tasks using the shared cache the MMU has a global impact. In
the case of multi-cores it is problematic to ensure the micro-TLB coherency. Choosing to
handle the TLBs separately introduces new problems of guaranty.

3.7 BUS
As competition for resources grows, the natural solution was to use techniques that enable
the access from master to slave, and utilization of shared resources in general. Through
the use of switching mechanism, permission is granted to one master or the other, which
introduces the need of a bus arbiter. Therefore a controller is usually implemented following
different strategies that are more or less straightforward. The first difficulty comes from the
implementation of the aforementioned strategies. In the case of multi-cores, the resolve of
access conflicts is not always deterministic. Therefore at a given processor execution step, a
strongly dataflow dependent transition can be made with no way of determine which of the
competing units will have gain access to the shared resources. This behavior, otherwise seen
as random, at possibly every program point makes it impossible for the analysis to converge
to a useful result.

In the following, we will refer to the AMBA AHB bus protocol, an open standard widely
used that give a good case study enabling us to pin-point more general advantages and
disadvantages of interconnection protocols. Some of the features it provides, are the following:
split transactions, several bus masters, burst transfers, pipelined operations and single-cycle
bus master handover. The bus arbiter ensures that only one bus master at a time is allowed
to initiate data transfers. The arbiter also receives requests from the slaves that wish to
complete SPLIT transfers [3].

Preventing starvation

The arbitration algorithm between the channels can ensure that if the current owner requests
the interface again it will always acquire it. The starvation problems are avoided in the
LEON 3FT implementation of the AMBA AHB since the DMA engines always deassert their
requests between accesses [2].

Preventing deadlocks

The SPLIT and RETRY transfer responses can both produce deadlocks. The deadlock can
occur when different masters try to access a slave that issues SPLIT and RETRY responses
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in a way that the slave is unable to deal with. If a slave issues a RETRY response only one
master must access it at a time. More importantly, this constraint is not enforced by the
AMBA AHB protocol and should be ensured by the system architecture. According to the
GR712RC manual, cache snooping should always be enabled in SMP systems to maintain
data cache coherency between the processors [2].

On master data concurrency

The bus arbiter of the AMBA AHA can manage up to 16 bus masters. It grants bus
access according to the master’s priority. The signals used are: HBUSREQx, HLOCKx,
HGRANTx, HMASTER[3:0], HMASTLOCK and HSPLIT[15:0] as described in [3]. When a
master is granted access, the HGRANTx signal is generated by the arbiter that indicates the
appropriate master is currently the highest priority master requesting the bus. After the
current transfer completes, the HREADY signal is HIGH and the arbiter will change the
HMASTER[0:3] signal to indicate the bus master number. The ownership of the data bus is
delayed from the ownership of the address bus. When the HREADY signal is HIGH, the
master that owns the address bus will continue to own the address bus until its transfer will
be completed. Several problems can occur from this behavior.

(a) When the master is in burst mode, performing bursts of undefined length, it should
continue to assert the request until it has started the last transfer. A problem occurs if
the arbiter cannot predict when to change the arbitration at the end of an undefined
length burst, leading to the impossibility to accurately determine the timing of the
transfer. This is what happens in our case study also.

(b) A different behavior can lead to a data inconsistency. Using a central multiplexer, each
potential master present on the bus can drive out the address of the transfer immediately
without having to wait to be granted the bus.
Let HADDRM1 = addr1 at clk1 and HADDRM1 = addr2 at clk2 and the first master,
M1 be granted master at clk1. If HADDRM2 = addr1 at clk2, the data at addr1 is
still unmodified but it will be as M1 still owns the data bus which leads to data access
consistency conflict at addr1. The time needed to resolving such a conflict is hard to
estimate. A typical example is the case of sharing un-partitioned memory. In order to
avoid this case, a strong coupling is recommended between the monitoring application
and the command application, by implementing the communication though semaphores.

(c) A case where the timing is difficult to compute is when both M1 and M2 drive out the
same addr1 on the same slave, M1 is granted ownership of the bus and then it is stalled
by the arbiter that grants the bus ownership to M2. If M2 needs to access addr1 we
cannot precisely determine the time when M2 will finish its action.
For example, this can occur in shared un-partitioned or partitioned memory.

Impact on the predictability

The bus and its arbitration strategy are at the core of the predictability and determinism
issues. Because the main role is to grant access to different participants to the shared
resources, certain properties must be ensured (fairness, deadlocks prevention) while still
being able to ensure good average performances and timing predictability. Therefore when
choosing a particular architecture for the hard real-time systems, certain bus architectures and
arbitration algorithms should be privileged. Most of the multi-core architectures implement
round-robin-like arbiters which allows considering an upper bound on the latency of the
access to the shared resources. In [19] a round-robin-like bus arbiter to the shared memory
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hierarchy in a multi-core architecture is proposed that facilitates the systems predictability.
The round robin arbiter can avoid the bus starvation. Nevertheless, the maximum length of a
burst for each peripheral connected to the bus influences the maximum delay induced by bus
contention. This may lead to high maximum delay bounds and may not be enough to provide
firm real time guarantees for heavily loaded systems. Furthermore, having variable burst
lengths, combined with the ability to pause them (split transfers), influences the predictability
of the WCET. Bus contention can be avoided by using the TDMA bus arbitration with the
cost of wasting bus band when the bus load is low. By manipulating the TDMA time slots,
the maximum delay bound on transactions is controllable by the designer.

3.8 Direct Memory Access (DMA)
DMA allows access to the system memory independently from the CPU. Therefore the
processor can proceed with its computations while waiting for relatively slow input/output
data transfer. In the multi-core case, DMA is also used for intra-chip data transfer.

Error handling

The DMA controller does not generally detect deadlocks in its communication channels, so it
is up to the system to manually abort the DMA transfer. The DMA unit can be disabled
not without a strong impact on the performances of certain class of applications.

3.9 Level 2 cache
Level 2 cache memory can be either private to each core or shared among cores. Data hazard
is one of the factors that become even more prominent in the case of multi-cores because
of memory sharing, even though already present in the non-shared L1 memory. Moreover,
timing anomalies render the result hard to predict like in the case when a cache miss from a
core can reconfigure the memory in a state that is, timing wise, beneficial to the other. This
also applies in other cache related scenarios. The problems that can occur in the analysis of
the interactions with the pipeline are detailed in the timing anomalies part.

Level 2 cache impact on the predictability

The impact of the shared cache is high and global and gets amplified in the context switch case.
Modeling the behavior of shared caches between cores is practically impossible because of the
possible interactions between concurrent threads running on different cores [23]. When using
a shared cache with parallel programs running on the multi-core processor, a cache-coherency
mechanism must be implemented. The WCET analysis of such systems must calculate
the worst-case delay caused by maintaining the cache coherence between different cores.
Furthermore, resource contention and inter-thread conflicts among the program threads
should be considered. Under the assumption that the bus strategy can be statically analyzed,
the second level of cache can be made predictable by partitioning the L2 cache for each core
[24].

3.10 Timing Anomalies
Timing anomalies inside a given core influence the WCET estimation of integrating multi-
cores in the case of shard memory because of the tight coupling of its internal units and the
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shared resources. Therefore we cannot ignore the WCET estimation problems of single cores
as they are translated into the multi-core case also.

Example of timing anomalies in multi-cores A timing anomaly occurs when a local worst
case contributes to the global favorable case. In the case of multi-core, such an example is a
cache miss on one core that generates a series of cache hits on the other and vice versa. An
example of each of these timing anomalies is given. The architectural setup is configured of
two cores with private L1 cache memory but shared L2 cache memory (instruction and data).

a A cache miss on one core can generate an overall improvement of the global WCET.
Let l be the cache line that will replace the obsolete line in the cache according to the
implemented strategy. If l contains information that will benefit the second core then it
can generate several cache hits that were not predicted. Furthermore, this line will be
promoted in the priority hierarchy and could furthermore avoid future misses of the first
core.

b A cache hit on the first core generates the persistence of a cache line in the disadvantage
of another that will be replaced after a future cache miss. If the replaced cache line would
have generated several cache hits on the second core, the overall timing performance is
affected. A first core’s cache hit followed by a cache miss is worse than a first core’s cache
miss followed by a cache miss.

c Timing amplification example as a generalization of b) A series of cache hits on the first
core with a higher frequency, then the cache accesses of the second core make that every
cache miss of the first core lead to the elimination of the second core’s cached lines and a
great amount of cache misses.

Timing anomalies remarks

As previously stated, several types of timing anomalies exist. Some are inherent to instruction
execution order and are generally caused by greedy scheduler that will change the instruction
execution order causing inversion or amplification of the execution time difference. Others
are caused by parallel decomposition and divide et impera approaches to WCET estimations.
As the first ones cannot be avoided, the others may prove essential for the possibility to
construct an efficient processor behaviour analysis that does not need to search the whole
state space for the whole program at once. The timing anomalies determine three infeasibility
criterions in the following.
Criterion a) Let p be the processor architecture model, we say that the estimation of the

WCET or more generally the processor behaviour analysis cannot be completed on behalf
of the parallel decomposition (PD(p)) if there is no other scalable method that can do
the analysis of p without the PD(p). In other words, not applying parallel decomposition
can affect the scalability and applicability of the estimation method. We proceed by
questioning the safeness and efficiency on dealing with parallel timing anomalies. [16]
formalizes the different types of timing anomalies and presents cases when the parallel
timing anomalies can lead to the underestimation of the WCET with parallel composition.

Criterion b) The use of parallel decomposition in the processor behaviour analysis leads
to the underestimation of the WCET in the case of coupled parallel timing anomalies.
This point can be referred to in order to decide the use of parallel decomposition. In [14]
a solution to take into account timing anomalies in general is described. The method
uses compilation techniques and modifies the binary by instruction injection in order to
avoid timing anomalies. The main idea is to interfere with the prefetch stage and ensure
that we start with an empty or flushed prefetch window hence there is never an excess
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instruction waiting to be executed. It can be seen as a compile time method to disable
the instruction prefetch in the case where all the slots of the instruction prefetch queue
are filled with NOPs. The reference also provides estimation of the overhead when using
this method as ranging between 33% and 300%. This leads us to another infeasibility
criterion that is related to the maximum overhead allowed for the target platform.

Criterion c) Let Ot(p) be the upper-bound of the overhead on a target platform and Op(p)
be the overhead of filling prefetch slots with NOPs. If Op(p) > Ot(p) then the analysis
does not pass the feasibility test.

Table 1 Architectural impact on the determinism.

Unit Problems /
Failure mode

Problem
fre-
quency

Solutions Impact
Level

TLB TLB misses
times are hard
to predict

M/ L Increase the TLB size M

TLB TLB error L None => disable M/H
MMU The time to ac-

cess the tables
can take several
cycles

M Depends on the availability of the be-
havioural model and corresponding tim-
ings. Disabling the MMU will only af-
fect performances if we use its features.
This means, flat address mapping, no
memory protection in the case a pro-
cess reads/writes the address space of
another process and not least, when
performing a context switch there is no
longer possible to identify the cached
lines of a certain process.

H

Scratch-
pad

Application con-
trolled -> hard
to estimate the
timings

Analysing dynamic strategies is not an
easy task, especially when being soft-
ware implemented that give optimal al-
location for the average execution time.
Some WCET-centric techniques exist
but they do not handle all architectures.

M

L1 cache Timing anom-
alies

H Construct complex, accurate processor
model

H

L2 cache Timing anom-
alies

H Deactivate H
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Table 1 – continued from previous page
Unit Problems /

Failure mode
Problem
fre-
quency

Solutions Impact
Level

L2 cache Data conflicts M Partition (core access separation) Par-
tial solution by considering inter-thread
instruction conflicts [30] Only solutions
for instruction caches in some configura-
tions are presented in [11]. [6] Addresses
only instruction caches with no code
sharing, LRU strategy, no data –instruc-
tion memory interference, without tim-
ing anomalies, so a very restricted en-
vironment. [7] Deals with inter-thread
interferences but in a restricted archi-
tecture. No details are given concerning
the shared resources granting policy or
about the BUS context.

H

L2 cache Unknown beha-
viour induced by
the arbiter

L Deactivate H

L3 cache Timing anom-
alies

H Partition M/H

L3 cache Data conflicts M/L Deactivate M/H
BUS Arbitration,

timing anom-
alies, memory
interference

H None for the general case In [6] a very
restricted “BUS” is analysed with fully
separated code and data accesses and no
inter-process communication through
shared memory and TDMA based static
scheduling where a fixed length bus slot
is allocated to each core in a round-
robin fashion.

H

Arbiter Nondeterministic None H
Arbiter Starvation Software supervision, but the risk of

using it is even higher. DMA engines
should always deassert their requests
between accesses in order to prevent
starvation.

H

Arbiter Deadlocks Prevent by careful hardware integration
of the bus arbiter protocol. Can rarely
be disregarded by construction.

H

Pipeline Timing anom-
alies

H Construct complex, accurate processor
model. A solution to take into account
all the timing anomalies (that might
prove efficient in the multi-core case) is
presented in [20].

H

FPU High complexity Construct complex, accurate processor
model

M/L
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Table 1 – continued from previous page
Unit Problems /

Failure mode
Problem
fre-
quency

Solutions Impact
Level

FPU Mixes multi-
cycle instruc-
tions (for which
timing estim-
ation is not
always possible)
and single cycle
instructions

None M/H

FPU Can generate
computational
errors. Timing
of exception
catching is hard
to precisely
determine

Must analyse the fault tolerant mech-
anism. If the behaviour is taken into
account at each step, might prove very
costly.

M/H

ALU Can generate
computational
errors.

L Construct complex, accurate processor
model taking into account the fault tol-
erance.

M/L

BPU In the strategy
is fixed and the
prediction is
wrong, the time
penalty is very
important.

M Construct complex, accurate processor
model

H

BPU If the prediction
strategy is not
fixed, it can be
very difficult to
model or even
impossible if ran-
domness is used.

L None H

4 Conclusion

Software verification and quality assurance process of hard real-time systems in general
are of great importance. Non-functional properties, such as timing, are highly dependent
on the underlying hardware platform. Nevertheless, there is a rising demand to integrate
more complex processors, such as the multi-cores, even though many problems are yet to be
solved in single-cores. Powerful industrial WCET estimation tools available today can do
nothing against the lack of information regarding the exact behavior of the platform or the
nondeterministic behavior of certain units. Therefore the choice of the processor is crucial in
ensuring the success of the system verification.

We have presented the behavior of several units that pose problems concerning the WCET
estimation, found either in multi-cores or single-cores. Each unit description is followed by
the problematic behavior and the remarks regarding its impact on the predictability. The
results can be used to invalidate certain units or architectures and also as a guideline for
further analysis.
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