
HAL Id: hal-01214943
https://hal.science/hal-01214943v1

Submitted on 13 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptable and Precise Worst Case Execution Time
Estimation Tool

Vladimir-Alexandru Paun, Bruno Monsuez

To cite this version:
Vladimir-Alexandru Paun, Bruno Monsuez. Adaptable and Precise Worst Case Execution Time Es-
timation Tool. Languages, Compilers, Tools and Theory for Embedded Systems WiP, Jun 2012,
Beijing, China. �hal-01214943�

https://hal.science/hal-01214943v1
https://hal.archives-ouvertes.fr

Adaptable and Precise
Worst Case Execution Time Estimation Tool

Vladimir-Alexandru Paun

UEI, ENSTA ParisTech
Paris, France

paun@ensta-paristech.fr

Bruno Monsuez

UEI, ENSTA ParisTech
Paris, France

monsuez@ensta-paristech.fr

Abstract
Real-time systems are everyware. When they are integrated
into safety-critical systems, the verification of their prop-
erties becomes a crucial part. Besides the growth in com-
plexity of the embedded systems, platforms are getting more
and more heterogeneous. Being able to validate their non-
functional properties is a complex and resource consuming
task. One of the main reasons is that currently available so-
lutions focus on delivering precise estimation through tools
that are highly dependent on the underlying platform as in
order to provide precise and safe results, the architectureof
the system must be take into account. In this project we ad-
dress these issues by developing a prototype that maintainsa
good level of precision while being adaptable to a variety of
platforms by separating as much as possible the worst case
execution time estimation stage from the hardware modeling
aspects.

General Terms Hard Real-Time Systems, precision, safety,
adaptability

Keywords WCET, Abstract State Machine, Symbolic Exe-
cution

1. Introduction
With regard to the respect of the timing constraints, real-time
systems are classified in two categories: hard real-time sys-
tems (the non respect of a deadline can lead to catastrophic
consequences) and soft real-time systems (missing a dead-
line can cause performance degradation and material loss).
We analyze hard real-time systems that need precise and
safe determination of the worst case execution time (WCET)
bounds that are crucial in the certification process. Tradi-

[Copyright notice will appear here once ’preprint’ option is removed.]

tionally two approaches are used, namely dynamic and static
methods [1], we only consider the latest as dynamic meth-
ods, in the traditional sens, fail to deliver safe estimations
for modern platforms that contain, for example, pipelines
or cache memories and tend to greatly underestimate the
WCET.

In order to give a safe estimation of the WCET, all the
interactions and reachable states of the system must be an-
alyzed or over approximated, hence the need of an analy-
sis that takes into account the exact underlying architecture.
We choose to separate as much as possible the modeling
part from the analysis part in order to achieve the flexibil-
ity needed to adapt to new hardware.

In our approach we start from the system’s model and
the binary that will be executed on the final platform. An
extension of the Symbolic Execution (SE) [2], theconjoint
SE, will generate all the reachable states of the processor,
under the supervision of aprediction module that will fusion
identical and similar states in order to contain the state space
explosion and give details regarding the global precision loss
of the WCET estimation.

In the following we first take a look into the state of
the art concerning timing analysis and we continue with
the description of the high level architecture of our tool.
Subsequently we take a closer look into the formal model
used to simulate the hardware that gives us the edge in the
adaptability of our tool followed by a presentation of the
WCET estimation steps and the transformations needed to
contain the combinatorial explosion.

2. Related works
Many of the available time analysis tools show a list of
compatible hardware and present each new platform taken
into account as a new feature. One of existing methods,
OTAWA, introduced by Cass and Sainrat [4], differentiates
itself by making a first step towards adaptability as it uses a
parametrized model of a generic platform that can address a
variety of architectures but nevertheless, the process is fairly
difficult and the model lacks precision while it fails to cap-
ture the precise behavior of the platform. AbsInt, one of the

Description of the ongoing development of a precise WCET estimation tool 1 2012/4/6

leading WCET analyzers is also taking a step towards adapt-
ability by apparently looking to use a SystemC description
in order to generate an abstract model. The main issue is that
the SystemC language has only recently come to be a stan-
dard therefore descriptions of older hardware (mainly used
in hard real-time systems) are not common. To our knowl-
edge non of the other WCET tools have embraced the adapt-
ability paradigm.

3. The global architecture of the WCET
estimation tool

The two main entries of the tool are the processor model and
the program binary, as depicted in Figure 1. The processor

is regarded as the union of it’s componentsµP =
n⋃

i=0

Ci

and modeled as a hierarchical timed abstract state machine,
described further in the paper, that has the useful feature of
enabling multiple definitions for a same componentCi. A
supervisor that we call theOracle decides what abstraction
level is best suited for the current context in order to optimize
theprecision to state explosion ratio. An external value ana-
lyzer is used to obtain information regarding the instruction
order, their addresses and the control flow graph of the pro-
gram. Symbolic execution is used to symbolically execute
each instruction of the program, meaning that each variable
has initially a symbolic value (as we generally do not posses
exact information on it’s value) that gets refined by accumu-
lating all the informations and decisions taken during execu-
tion. One of the advantages of this method is that it manages
to simulate the interactions inside the processor in detail, for
example capturing by construction the timing anomalies [5].
TheSE generates all reachable states of the processor, mean-
ing that we have to manage a rapidly increasing state space.
Our fusion stage consists in merging as much states as possi-
ble without affecting to much the precision of the estimation.
We achieve this by using the prediction module that will first
identify the states that are good candidates for merging and
then estimate the impact of the fusion on the global analy-
sis. After browsing and evaluating the processor’s states,the
time corresponding to the worst path is selected.

4. Timed Hierarchical Abstract State
Machines

4.1 Abstract State Machine Formalism

The sequential ASM Thesis, introduced in [6] proves the iso-
morphic modeling of any algorithm. The sequential ASM
algorithm consists of a set ofrules applied tostates in a
sequence of steps assimilated to arun. States are struc-
tures in the sense of first-order logic, with relations trated
as Boolean-valued functions. A finite collection of function
names having a fixed arity is called avocabulary, Γ. A state
S of vocabularyΓ is a non-empty setX , together with the
interpretation of all function names inΓ overX , therefore
holding the values of all the variables at a specific step.Up-

Processor

Hierarchical

ASM Model

Program

Value

Analysis

CFG

instr order

instr address

Symbolic inputs

State

Fusion
WCET

Prediction Module

Conjoint

 Symbolic

Execution

C1

C1

ASM1

C1

ASMm

Cn

Cn

ASM1

Cn

ASMp

...

...

...

Oracle
choose train

Figure 1. Global architecture of the WCET estimation tool

dates represent the simplest change that can occur to a state
by the change of the interpretation of a function at one par-
ticular tuple of arguments. LetR be a rule that gives rise to a
set of updates. In order to executeR atS all the updates are
triggered in the corresponding update set. Thus we have the
update rule, the block rule, a sequence of transitions rules
that are executed simultaneously, the conditional ruleif g
then R0 else R1 endif, etc.

4.2 Hierarchical Timed ASM

Possessing a precise and versatile model of the processor
is very important. Nevertheless having access to an usable
HDL code, is rarely the case for platforms used in hard real-
time systems, that are fairly outdated, and even if it exists,
their is no common, unified description language. Ideally we
should use the description of the processor as an input and
generate an usable model for the analysis. As the lack of
availability and standardization makes the task impossible,
the need to create a model for each platform is mandatory.
This is one of the bottlenecks in the adaptability of current
tools, and we consider that the modeling part should be
therefore an separated straightforward engineering task that
can be made on the fly and without disposing of precise
knowledge with regard to the rest of the tool. Therefore we
chose to use the abstract state machine, a method that bridges
the gap between human understanding and formulation of
real-world problems and the deployment of their algorithmic
solutions, in our case, the modeling of the processor, that
showed it’s efficiency as a specification method in numerous
practical applications (e.g. see [7], [10]).

Using a human readable and machine executable lan-
guage makes the difference when it comes to speeding up the
process of the hardware description. However some impor-
tant features were not included in the original version of the
ASMs [6] like the timing aspects hence updates are consid-

Description of the ongoing development of a precise WCET estimation tool 2 2012/4/6

ered immediate. Ouimet et all. [8] introduced the concept of
durative actions by adding delays directly in the syntax; our
approach is similar. In [9] a prototype of a simulator for re-
active timed ASMs that verifies the respect of requirements
specifications. Besides the timing aspects we enrich the orig-
inal model with hierarchical feature that enables us to give
different definitions on several abstraction levels of the same
processor component.

The goal of hierarchical ASMs is to provide at any time
during the analysis, the right level of abstraction in order
to prevent the combinatorial explosion. We know that we do
not always dispose of precise information during the analysis
(e.g. data memory address, availability in the cache, etc.)
therefore using the most precise description of the fetching
mechanism, for example, would be useless, on the other
hand, a less precise, more abstract, definition could help
reduce the number of generated states.

The hierarchical definition of components integrates
seamlessly into the ASM formalism. Basically, theoracle
is an ASM module that imports all the needed function defi-
nitions and exports the needed functions or rules. Each hier-
archical module is defined as a control state ASM (cf. [10])
using in it’s condition the result from theoracle that decides
which implementation is appropriate for the current context.

selected(Fetch1)

and

FetchOK

Fetch1 rule

selected(Fetch1)

and

FetchOK

Fetch2 rule

forall fetch in FETCHER

forall comp in uP

Select(DECODE) rule

Select(FETCH) rule

...

Figure 2. The oracle and the fetcher modules

FETCH =
forall fetch∈ FETCHERdo FETCH1(fetch), FETCH2(fetch)
In Figure 3 we have two definition of the Fetch stage,

the first one corresponding to the more abstract version that
will typically be chosen if we have no precise information
on the exact fetch address. Generally we have a family of
abstraction for each component of the processor,αCi

=
m⋃

j=0

αj so thatCi

αj

→ C
αj

i . Let T(Cαj

i) be the contribution

FETCH

if FetchOK then

 FetchQueue:=getNextInstr()

 t:+=[t_min, t_max]

endif

if FetchOK then

 FetchAddr:=getExactFetchAddr()

 howMany:=FetchAddr MOD 4

 FetchQueue:=BurstAccess(

 FetchAddr,howMany)

 t:+=[t_BurstFetch]

endif

Figure 3. Different definitions of the fetcher

of the abstract component to the global execution time. We
must haveT(Cαj

i) w T(Ci).

5. Conjoint Symbolic Execution
The use ofSE to analyze the intra-processor interactions has
been used with good results in [3], however the method suf-
fers from the lack of a precise hardware model and inac-
curate merging strategies that lead to important overestima-
tions. The basicSE consists in replacing the variables with
symbolic values and extending the operations in order to take
this into account. The interpretation of the assignment rule is
straightforward. Letp(pc) beQ, p(xi) beEi andp(α ← β)
be the oldp where the value ofα is changed toβ. A spe-
cial treatment is applied to conditional instructions thatuse
thepc to explore all the possible scenarios. The expressions
conjoined in thepc are of formQ > 0 whereQ is a poly-
nomial over symbolic values. LetR be this expression we
thus have three possible cases: we can determine from the
pc that the condition is always true(pc ⊃ R andpc 6⊃ ¬R),
analogue for always false or we can not determine if the con-
dition is true or false,pc ⊃ R andpc ⊃ ¬R, therefore the
execution will continue along both branches, generating two
new paths.

The first step of our conjointSE deals with the program’s
CFG that is regarded as an input for the processor’s model
SE.

6. Smart State Fusion
One of the major drawbacks of the SE comes from its qual-
ity of generating every feasible path, that for a real-life in-
dustrial program generates a combinatorial explosion thatis
not obviously containable. What still remains challenging
today is to handle this explosion while still remaining pre-
cise enough. This translates to finding a way of eliminating
some of the states, and we choose the technique of states
fusion that will try to generate an abstract state capable of

Description of the ongoing development of a precise WCET estimation tool 3 2012/4/6

capturing the respective states features, with regards to the
goal, but remain as compact as possible. It has been proven
in [11] that because of the finite number of states that a pro-
cessor can have and because of the constrains generated by
the execution contexts at a certain point we will have states
that regardless of the different history, will generate identical
or very similar new states. One major step in having precise
fusions is to determine when to make them and what changes
to apply. States can be of two types: identical, meaning that
they have either all the elements that are the same, in this
case we can suppose that an eventual fusion will not impact
the precision of the analysis, or similar, some of the compo-
nents are not the same so we proceed to another analysis to
determine to which extent they are different. Therefore sim-
ilar states can be strongly or weakly similar, meaning that
the impact of the fusion will be acceptable or not. For the
instant this estimation is done dynamically by our predic-
tion module. Its goal is to evaluate the impact in the future
of a fusion by unrolling the tree for several steps (generally
equal to the pipeline depth), continuing the execution along
the paths before and after fusion and comparing the result.
Further details about this technique can be found in [11].

Figure 4. The Dynamic Fusion - snapshot of the Prediction
Module

7. Global algorithm
1. Start from the initial state: where all the components have

the unknown value andpc is set totrue

2. For every variable that we encounter and that we do not
have the exact value, assign a symbolic value

3. Activate the first ASM model and then add the guard
conditiong to thepc

4. Choose from theoracle the appropriate version of the
ASM modules

5. Compute the update set of the current step

6. Apply the update set (taking into account that some terms
will have symbolic values)

7. Add the result of the update set to the global system state

8. Add the generated states to the collection of next states
to be executed

9. Add the duration of the transition to the global time

10. Repeat from point 2. until the collection of next states is
empty

8. Conclusions
The world of embedded software is no longer integrating
simple hardware/software therefore critical systems are be-
coming more and more difficult to prove and certify. The
growth in complexity and variety increases the need of ver-
satile analyze methods and adapted tools, that can easily and
as costless as possible deal with a large panel of architec-
tures. To this end we presented a novel approach that is able
to respond to the evergrowing demands and to place itself
into a real industrial context.

References
[1] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,

D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F.
Mueller, I. Puaut, P. Puschner, J. Staschulat, P. StenstromThe
Worst-Case Execution Time Problem Overview of Methods and
Survey of Tools,ACM Transactions on Embedded Computing
Systems (TECS), Volume 7, Issue 3, April 2008.

[2] T. Lundqvist and P. Stenstrom, An Integrated Path and Timing
Analysis Method based on Cycle-Level Symbolic Execution, in
Real-Time Systems, Volume 17, 183-207, November 1999.

[3] T. Lundqvist, A WCET Analysis Method for Pipelined
Microprocessors with Cache Memories, Goteborg, Sweeden,
2002.

[4] H. Cass and P. Sainrat, Otawa, A framework for experimenting
WCET computations,ERTS06, 2006.

[5] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J.
Eisinger, and B. Becker, A vDefinition and Classification of
Timing Anomalies,WCET06, 2006.

[6] Yuri Gurevich, Evolving Algebras 1993: Lipari Guide, Specifi-
cation and Validation Methods, ed. E. Brger,Oxford University
Press, 1995, 9–36.

[7] University of Michigan, ASM homepage.
http://www.eecs.umich.edu/gasm/.

[8] M. Ouimet and K. Lundqvist, The Timed Abstract State
Machine Language: Abstract State Machines for Real-Time
System Engineering,JUCS, 2007.

[9] A. Slissenko and P. Vasilyev, Simulation of Timed Abstract
State Machines with Predicate Logic Model-Checking,JUCS,
2008.

[10] E. Borger and R. Stark, Abstract State Machines: A Method
for High-Level System Design and Analysis,Springer-Verlag,
2003.

[11] Bilel Benhamamouch, Bruno Monsuez: Computing worst
case execution time (wcet) by symbolically executing a time-
accurate hardware model (extented version),International
Journal of Design, Analysis and Tools for Circuits and Systems,
Volume 1, No. 1, November 2009.

Description of the ongoing development of a precise WCET estimation tool 4 2012/4/6

