Vladimir-Alexandru Paun
email: paun@ensta-paristech.fr

Bruno Monsuez
email: monsuez@ensta-paristech.fr

Adaptable and Precise Worst Case Execution Time Estimation Tool

Keywords: Hard Real-Time Systems, precision, safety, adaptability WCET, Abstract State Machine, Symbolic Execution

Real-time systems are everyware. When they are integrated into safety-critical systems, the verification of their properties becomes a crucial part. Besides the growth in complexity of the embedded systems, platforms are getting more and more heterogeneous. Being able to validate their nonfunctional properties is a complex and resource consuming task. One of the main reasons is that currently available solutions focus on delivering precise estimation through tools that are highly dependent on the underlying platform as in order to provide precise and safe results, the architecture of the system must be take into account. In this project we address these issues by developing a prototype that maintains a good level of precision while being adaptable to a variety of platforms by separating as much as possible the worst case execution time estimation stage from the hardware modeling aspects.

Introduction

With regard to the respect of the timing constraints, real-time systems are classified in two categories: hard real-time systems (the non respect of a deadline can lead to catastrophic consequences) and soft real-time systems (missing a deadline can cause performance degradation and material loss). We analyze hard real-time systems that need precise and safe determination of the worst case execution time (WCET) bounds that are crucial in the certification process. Tradi-[Copyright notice will appear here once 'preprint' option is removed.] tionally two approaches are used, namely dynamic and static methods [START_REF] Wilhelm | The Worst-Case Execution Time Problem Overview of Methods and Survey of Tools[END_REF], we only consider the latest as dynamic methods, in the traditional sens, fail to deliver safe estimations for modern platforms that contain, for example, pipelines or cache memories and tend to greatly underestimate the WCET.

In order to give a safe estimation of the WCET, all the interactions and reachable states of the system must be analyzed or over approximated, hence the need of an analysis that takes into account the exact underlying architecture. We choose to separate as much as possible the modeling part from the analysis part in order to achieve the flexibility needed to adapt to new hardware.

In our approach we start from the system's model and the binary that will be executed on the final platform. An extension of the Symbolic Execution (SE) [START_REF] Lundqvist | An Integrated Path and Timing Analysis Method based on Cycle-Level Symbolic Execution[END_REF], the conjoint SE, will generate all the reachable states of the processor, under the supervision of a prediction module that will fusion identical and similar states in order to contain the state space explosion and give details regarding the global precision loss of the WCET estimation.

In the following we first take a look into the state of the art concerning timing analysis and we continue with the description of the high level architecture of our tool. Subsequently we take a closer look into the formal model used to simulate the hardware that gives us the edge in the adaptability of our tool followed by a presentation of the WCET estimation steps and the transformations needed to contain the combinatorial explosion.

Related works

Many of the available time analysis tools show a list of compatible hardware and present each new platform taken into account as a new feature. One of existing methods, OTAWA, introduced by Cass and Sainrat [START_REF] Cass | A framework for experimenting WCET computations[END_REF], differentiates itself by making a first step towards adaptability as it uses a parametrized model of a generic platform that can address a variety of architectures but nevertheless, the process is fairly difficult and the model lacks precision while it fails to capture the precise behavior of the platform. AbsInt, one of the leading WCET analyzers is also taking a step towards adaptability by apparently looking to use a SystemC description in order to generate an abstract model. The main issue is that the SystemC language has only recently come to be a standard therefore descriptions of older hardware (mainly used in hard real-time systems) are not common. To our knowledge non of the other WCET tools have embraced the adaptability paradigm.

The global architecture of the WCET estimation tool

The two main entries of the tool are the processor model and the program binary, as depicted in Figure 1. The processor is regarded as the union of it's components µP

= n i=0 C i
and modeled as a hierarchical timed abstract state machine, described further in the paper, that has the useful feature of enabling multiple definitions for a same component C i . A supervisor that we call the Oracle decides what abstraction level is best suited for the current context in order to optimize the precision to state explosion ratio. An external value analyzer is used to obtain information regarding the instruction order, their addresses and the control flow graph of the program. Symbolic execution is used to symbolically execute each instruction of the program, meaning that each variable has initially a symbolic value (as we generally do not posses exact information on it's value) that gets refined by accumulating all the informations and decisions taken during execution. One of the advantages of this method is that it manages to simulate the interactions inside the processor in detail, for example capturing by construction the timing anomalies [START_REF] Reineke | A vDefinition and Classification of Timing Anomalies[END_REF].

The SE generates all reachable states of the processor, meaning that we have to manage a rapidly increasing state space.

Our fusion stage consists in merging as much states as possible without affecting to much the precision of the estimation. We achieve this by using the prediction module that will first identify the states that are good candidates for merging and then estimate the impact of the fusion on the global analysis. After browsing and evaluating the processor's states, the time corresponding to the worst path is selected.

Timed Hierarchical Abstract State Machines 4.1 Abstract State Machine Formalism

The sequential ASM Thesis, introduced in [START_REF] Gurevich | Evolving Algebras[END_REF] proves the isomorphic modeling of any algorithm. The sequential ASM algorithm consists of a set of rules applied to states in a sequence of steps assimilated to a run.

Hierarchical Timed ASM

Possessing a precise and versatile model of the processor is very important. Nevertheless having access to an usable HDL code, is rarely the case for platforms used in hard realtime systems, that are fairly outdated, and even if it exists, their is no common, unified description language. Ideally we should use the description of the processor as an input and generate an usable model for the analysis. As the lack of availability and standardization makes the task impossible, the need to create a model for each platform is mandatory. This is one of the bottlenecks in the adaptability of current tools, and we consider that the modeling part should be therefore an separated straightforward engineering task that can be made on the fly and without disposing of precise knowledge with regard to the rest of the tool. Therefore we chose to use the abstract state machine, a method that bridges the gap between human understanding and formulation of real-world problems and the deployment of their algorithmic solutions, in our case, the modeling of the processor, that showed it's efficiency as a specification method in numerous practical applications (e.g. see [START_REF]ASM homepage[END_REF], [START_REF] Borger | Abstract State Machines: A Method for High-Level System Design and Analysis[END_REF]). Using a human readable and machine executable language makes the difference when it comes to speeding up the process of the hardware description. However some important features were not included in the original version of the ASMs [START_REF] Gurevich | Evolving Algebras[END_REF] like the timing aspects hence updates are consid-

Description of the ongoing development of a precise WCET estimation tool

2 2012/4/6 ered immediate. Ouimet et all. [START_REF] Ouimet | The Timed Abstract State Machine Language: Abstract State Machines for Real-Time System Engineering[END_REF] introduced the concept of durative actions by adding delays directly in the syntax; our approach is similar. In [START_REF] Slissenko | Simulation of Timed Abstract State Machines with Predicate Logic Model-Checking[END_REF] a prototype of a simulator for reactive timed ASMs that verifies the respect of requirements specifications. Besides the timing aspects we enrich the original model with hierarchical feature that enables us to give different definitions on several abstraction levels of the same processor component. The goal of hierarchical ASMs is to provide at any time during the analysis, the right level of abstraction in order to prevent the combinatorial explosion. We know that we do not always dispose of precise information during the analysis (e.g. data memory address, availability in the cache, etc.) therefore using the most precise description of the fetching mechanism, for example, would be useless, on the other hand, a less precise, more abstract, definition could help reduce the number of generated states.

The hierarchical definition of components integrates seamlessly into the ASM formalism. Basically, the oracle is an ASM module that imports all the needed function definitions and exports the needed functions or rules. Each hierarchical module is defined as a control state ASM (cf. [START_REF] Borger | Abstract State Machines: A Method for High-Level System Design and Analysis[END_REF]) using in it's condition the result from the oracle that decides which implementation is appropriate for the current context.

Conjoint Symbolic Execution

The use of SE to analyze the intra-processor interactions has been used with good results in [START_REF] Lundqvist | A WCET Analysis Method for Pipelined Microprocessors with Cache Memories[END_REF], however the method suffers from the lack of a precise hardware model and inaccurate merging strategies that lead to important overestimations. The basic SE consists in replacing the variables with symbolic values and extending the operations in order to take this into account. The interpretation of the assignment rule is straightforward. Let p(pc) be Q, p(x i) be E i and p(α ← β) be the old p where the value of α is changed to β. A special treatment is applied to conditional instructions that use the pc to explore all the possible scenarios. The expressions conjoined in the pc are of form Q > 0 where Q is a polynomial over symbolic values. Let R be this expression we thus have three possible cases: we can determine from the pc that the condition is always true (pc ⊃ R and pc ⊃ ¬R), analogue for always false or we can not determine if the condition is true or false, pc ⊃ R and pc ⊃ ¬R, therefore the execution will continue along both branches, generating two new paths.

The first step of our conjoint SE deals with the program's CFG that is regarded as an input for the processor's model SE.

Smart State Fusion

One of the major drawbacks of the SE comes from its quality of generating every feasible path, that for a real-life industrial program generates a combinatorial explosion that is not obviously containable. What still remains challenging today is to handle this explosion while still remaining precise enough. This translates to finding a way of eliminating some of the states, and we choose the technique of states fusion that will try to generate an abstract state capable of capturing the respective states features, with regards to the goal, but remain as compact as possible. It has been proven in [START_REF] Benhamamouch | Computing worst case execution time (wcet) by symbolically executing a timeaccurate hardware model (extented version)[END_REF] that because of the finite number of states that a processor can have and because of the constrains generated by the execution contexts at a certain point we will have states that regardless of the different history, will generate identical or very similar new states. One major step in having precise fusions is to determine when to make them and what changes to apply. States can be of two types: identical, meaning that they have either all the elements that are the same, in this case we can suppose that an eventual fusion will not impact the precision of the analysis, or similar, some of the components are not the same so we proceed to another analysis to determine to which extent they are different. Therefore similar states can be strongly or weakly similar, meaning that the impact of the fusion will be acceptable or not. For the instant this estimation is done dynamically by our prediction module. Its goal is to evaluate the impact in the future of a fusion by unrolling the tree for several steps (generally equal to the pipeline depth), continuing the execution along the paths before and after fusion and comparing the result. Further details about this technique can be found in [START_REF] Benhamamouch | Computing worst case execution time (wcet) by symbolically executing a timeaccurate hardware model (extented version)[END_REF].

Conclusions

The world of embedded software is no longer integrating simple hardware/software therefore critical systems are becoming more and more difficult to prove and certify. The growth in complexity and variety increases the need of versatile analyze methods and adapted tools, that can easily and as costless as possible deal with a large panel of architectures. To this end we presented a novel approach that is able to respond to the evergrowing demands and to place itself into a real industrial context.

Figure 2 .Figure 3 .

 23 Figure 2. The oracle and the fetcher modules

Figure 4 . 5 .

 45 Figure 4. The Dynamic Fusion -snapshot of the Prediction Module