
HAL Id: hal-01214891
https://hal.science/hal-01214891

Submitted on 13 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Challenges for the Parallelization of Loosely Timed
SystemC Programs

Denis Becker, Matthieu Moy, Jérôme Cornet

To cite this version:
Denis Becker, Matthieu Moy, Jérôme Cornet. Challenges for the Parallelization of Loosely Timed
SystemC Programs. IEEE International Symposium on Rapid System Prototyping, Oct 2015, Ams-
terdam, Netherlands. �hal-01214891�

https://hal.science/hal-01214891
https://hal.archives-ouvertes.fr


Challenges for the Parallelization of Loosely Timed
SystemC Programs

Denis Becker∗†

Denis.Becker@st.com
Matthieu Moy†

Matthieu.Moy@imag.fr

∗STMicroelectronics, F-38019 Grenoble, France
†Univ. Grenoble Alpes, VERIMAG, F-38000 Grenoble, France

CNRS, VERIMAG, F-38000 Grenoble, France

Jérôme Cornet∗

Jerome.Cornet@st.com

Abstract—SystemC/TLM models are commonly used in the in-
dustry to provide an early SoC simulation environment. The open
source implementation of the SystemC simulator is sequential.
The standard doesn’t impose sequential executions, but makes
this choice the easiest by imposing coroutine semantics. With the
increasing size and complexity of models, and the multiplication
of computation cores on recent machines, the parallelization of
SystemC simulations is a major research concern.

There have been several proposals for SystemC paralleliza-
tion, but most of them are limited to cycle-accurate models. In
this paper we give an overview of the practices in one industrial
context. We explain why loosely timed models are the only
viable option in this context. We also show that unfortunately,
most of the existing approaches for SystemC parallelization can
fundamentally not apply to these models. We support this claim
with a set of measurements performed on a platform used in
production at STMicroelectronics.

This paper both surveys existing techniques and identifies un-
solved challenges in the parallelization of SystemC/TLM models.

I. INTRODUCTION

Transaction level modeling (TLM) allows to simulate
systems-on-chip (SoC) orders of magnitude faster than register
transfer level (RTL), which is a key advantage for the em-
bedded software development. TLM models can be designed
early in the design flow, where information about the detailed
microarchitecture and precise timing may not be available.
Within TLM, multiple timing styles exist, depending on the
level of detail needed and/or available. The loosely timed (LT)
style being the most abstract timed style of TLM is a relevant
choice for the industrial development of embedded software,
because it allows to take advantage of the early situation by
abstracting and therefore speeding up the simulation.

SystemC offers an API with parallel semantics to model
at TLM level. It is used to model hardware, itself intrisically
parallel. A SystemC program consists of threads and methods
that are executed by a scheduler, which guarantees that the
order of their execution respects the constraints specified in
the model. According to the SystemC standard [1], a scheduler
must behave as if it was implementing coroutine semantics.
It means that for each execution order, there must exist a
sequential scheduling that reproduces the same case. The
SystemC simulation kernel given by the Accellera Systems

Initiative (ASI, formerly OSCI) is a sequential implementation.
Thus, the execution of a SystemC simulation with it only
uses the resources of one core. An advantage of a sequential
implementation is that it makes the determinism of executions
easier to implement and eases the reproducibility of errors. A
drawback is that it cannot exploit the parallelism of the host
machine. With the increasing size of models, the simulation
time is the major bottleneck of complex hardware systems
simulation. The parallelization of SystemC simulation is not
straightforward, and is a major research concern.

For more than a decade now, there have been several
proposals for SystemC parallelization. An approach chosen in
[2], [3], [4] is to run multiple processes concurrently inside a
delta cycle, with a synchronization barrier at the end of each
one. Parallel discrete event simulation (PDES) has also been
exploited. First, with a conservative approach [5], [6], [7], [8],
where all the time contraints are strictly fulfilled. Then with a
more optimistic approach, by using temporal decoupling [9],
[10], which consists in relaxing the synchronization with a time
quantum as a possible delay between two processes. An other
work [11] combined different methods; the parallelization
inside delta cycles with relaxed synchronizations. Optimistic
(non-conservative) approaches may need a rollback mechanism
in case the simulation went through an invalid path. To
conclude with this panorama, sc_during allows specifying
that some parts of the simulation can be run concurrently with
the rest of the platform [12].

Each of these approaches have been proved experimentally
to be efficient on some benchmarks, but the representativity
of these benchmarks compared to industrial case-studies is
questionable. Indeed, not much of the works above target LT
simulations, while our experience is that such models are better
suited for fast and early simulation.

One difficulty is that real case studies are often confidential,
and hardly available for the research community working on
parallel simulation. Conversely, most research tools are not
publicly available, hence a fair comparison on case-studies is
not possible. Our claim is that the challenges raised by the
parallelization of LT SystemC models are fundamentally dif-
ferent from the ones in cycle-accurate or other fine-granularity
models. As a consequence, many of the existing approaches
cannot work on LT models. To support this claim, we present
measurements performed on an industrial LT platform and



we give an overview of some practices at STMicroelectronics
(ST). By giving these measurements, we show that some
approaches cannot work by construction on the LT model we
want to parallelize, and thus that any of the implementations
using the considered technique won’t be efficient.

We believe this paper provides a better understanding of
the potential bottlenecks of various parallelization approaches
on such platforms. It should help both the design of effi-
cient parallelization solutions and the design of representative
benchmarks. We also propose a comprehensive survey of the
existing solutions with a critical analysis. Section II give
some background information. Then in Section III we present
a panorama of the research works about the parallelization
of SystemC simulations. Section IV presents the method we
used to perform those measurements on this platform, and the
results we obtained. We discuss these results in Section V.

II. BACKGROUND

A. SystemC Scheduling

As a reminder, we first present in Figure 1 an abstract of
how the SystemC simulator behaves, as stated in the SystemC
standard [1]. In this paper, the locution SystemC process means
indifferently SC_THREAD or SC_METHOD (SC_CTHREAD
are not in the scope of this paper).

Initializationstart

Evaluation

Update

Delta no-
tification

Timed no-
tification

End of
simulation

P = ∅

P = ∅

P 6= ∅ P = ∅

P 6= ∅

Figure 1. Behaviour of a SystemC simulator. P is the set of runnable
processes.

The scheduler starts with an initialization phase that we
don’t detail here. In the evaluation phase, the runnable pro-
cesses are executed with no particular order. The immediate
notifications produced by these executions are then triggered.
If there are runnable processes after the notifications, then the
evaluation phase continues. Otherwise, the scheduler moves to
the update phase, followed by the delta notification phase. The
immediate notification loop is implicit on the figure, within
the evaluation phase box. A delta cycle corresponds to the
loop: evaluation, update and delta notification. At the end of
a delta cycle, if there are no runnable processes, the scheduler
checks timed events. If there are timed events, it picks the
earliest one, sets the current simulation time to its time, and
notifies the time change. A timed cycle corresponds to the loop:
evaluation, update, delta notification and time notification. For
concision we didn’t represent the other sets that are involved
in the scheduling algorithm.

B. Temporal Decoupling

In this subsection we remind what temporal decoupling is
and we present some implementation aspects in ST. Before
the standardization of TLM, temporal decoupling was already
used in abstract SystemC models. It consists in defining a local
time for each process. A process can increase its local time
and then get ahead of the SystemC timestamp. This is called a
low cost timing annotation because it only operates on a local
variable and induces no SystemC operation. Then to keep time
consistency, a local time purge is defined. To purge the local
time means to perform a SystemC wait with the local time
value, and then reset it. Two purge systems can be used:

1) Implicit, using a time quantum. If a local time counter
gets ahead of the time quantum, then the process purges
its local time.

2) Explicit, using a synchronization method. When this
method is called during the execution of a process, the
local time counter is purged.

Since the TLM-2 standard [13], temporal decoupling has
been introduced in the TLM API. For the development of LT
models, ST has made the choice to use temporal decoupling
with explicit synchronizations, combined with time ranges,
which are a typical LT construction. The pseudo-code of
the low cost timing annotation and the local time purge
respectively is as follows:

void annotate_LT(sc_time min, sc_time max) {
local_min += min;
local_max += max;

}
void synchronize() {

wait(RAND_BETWEEN(local_min, local_max));
local_min = local_max = 0;

}

This synchronize method (used at ST) picks a random
value within the min and max local times. We will see in
Section V that time ranges could be better used, but evenso
the benefits for our test case are barely perceptible, which
illustrates the claim we made in Section I.

C. Problematics

The parallelization of LT SystemC/TLM simulations im-
plies to solve several challenges. We do not present classic
problematics inherent to software parallelization, but focus
on issues that are induced specifically by such models in an
industrial context.

A SystemC parallelization solution must not introduce race
conditions. In TLM/LT models, communications are made by
transactions done through ports, exports and/or sockets. This
causes intermodule function calls. For example, two initiators
(e.g. CPUs) that concurrently access the same target (e.g. a
RAM) will concurrently call the same function of this target.
That makes the target component itself a shared resource,
which introduces a race condition (if not protected).

In the industry, simulations are often heterogeneous. That
means that parts of the models can be designed for high
level synthesis (HLS) or at RTL level. A subset of the model
can even be a real hardware component. An industrially



compliant parallelization solution must be able to deal with
this heterogeneity.

An other huge challenge for SystemC parallelization is
the adaptability on existing platforms. Indeed, as for every
technology change, the migration has a cost. This cost must
be put in perspective with the time saved if the parallelization
solution was in production: a solution that requires an impor-
tant effort may not be profitable even if it shows substantial
performance benefits. This is also weighted by the lifecycle of
the platform. In ST the platforms have a short lifespan (6-8
months in average) and are designed using components taken
from ST libraries. In other industrial contexts the platforms
have a longer life, that can reach several years, and then more
time can be spent on the design.

III. RELATED WORK

A. Parallelization Inside Delta Cycles

A conservative PDES with lookahead has been imple-
mented in [14]. The solution works on top of the SystemC
kernel, which remains unchanged. However, to apply this
solution, the model must be written in compliance with some
provided templates. It explicitly targets RTL-like platforms,
because the solution is based on low-level SystemC features
like sc_signal, which tends to be unused in TLM models.
This proposal comes with a lot of future work propositions,
and is not industrially applicable as-is. Some of the proposed
ideas are addressed by more recent papers.

The works presented in [5], [2], [3] use the fact that within
a delta cycle, the execution order of the processes is undefined.
This assertion is exploited to concurrently run the runnable
processes of the same delta cycle. A synchronization barrier
is placed at the end of each delta cycle. The processes are
partitionned into groups that will be executed by an instance
of the SystemC simulator on a specific core. In [5] all the
processes of a module have the same affinity. In [2] the authors
have experimented different strategies to balance the load on
the available cores. Those works have showed good speed-
ups for specific cases. However we can notice that due to the
synchronization barrier, all the SystemC simulator instances
are always at the same delta cycle. It clearly appears that a
necessary condition to have a significant speed-up is to have a
sufficient number of concurrently runnable processes in every
delta cycle. We will see that this is far from being the case
when we consider LT models.

A high degree of parallelization can be achieved by ex-
ploiting GPUs. This has been studied by [4], [15], [16]. In
[4], [16] the authors have chosen the CUDA programming
model. The proposed tool in [4] is a source-to-source translator
which produces a CUDA-style code from a RTL-synthesizable
SystemC model. High speed-ups are achieved, however we can
notice that all the test cases are pipelined platforms at RTL
level. So there is independency of data between the pipeline
stages and the computations are performed on clock edges
(fixed and high number of runnable tasks in each cycle). In
[15] the authors compared a CUDA and an OpenCL imple-
mentation. The work presented in [16] consists in exploiting
both GPU and multi-CPU architectures. It supports mixed-
abstraction simulations. The parallelization is performed within
delta cycles, with support for immediately notified processes.

They have benched their solution on a set-top box model,
which was implemented in order to be used as a bench. This
induces that some optimizations have been made, that may hide
the real amout of refactoring needed to efficiently parallelize
an existing industrial platform.

In [17] is presented the RAVES hardware platform. Each
evaluation phase is parallelized (i.e. even after immediate noti-
fications). Though, the new aspect here is that the authors have
implemented a hardware architecture which implements their
parallel SystemC kernel, and the actual embedded software
running on it is the platform model. The results are promising,
but again their test cases mostly model cycle-accurate MPSoC.

B. Dependency Analysis

The SystemC standard states that within a delta cycle, the
execution order of the processes is undefined. However that
doesn’t mean that they can be run concurrently. Indeed, one
must consider the case of shared memory and/or resources.
Most of the work presented in the previous section have
made strong hypothesis about the models, that avoids race
conditions. On existing platforms, it happens that most of
the time these hypothesis are not fulfilled. To prevent race
conditions, some researchers have chosen to look into static
dependency analysis.

In [18] a parallel SystemC simulator with static analy-
sis of dependencies is presented. A static analysis tool first
scans the model in order to produce a dependency scheme.
Then this dependency scheme is provided as input to the
modified SystemC simulator, which uses it to schedule in
parallel different processes. The main idea is that a runnable
process can be run if it is independant with each running
process. As we presented in Subsection II-C the case where
mutiple components perform transactions to the same target
is equivalent to a shared resource access. However the static
analysis as presented here doesn’t include the resolving of
transaction addresses.

In [19] the authors also present a simulator which performs
static analysis to prevent data, timing or event conflicts. The
technique is similar to branch prediction in hardware. The
parallelization is performed within delta cycles.

The solution presented in [20] uses both static and dynamic
analysis to propose an adaptative algorithm and tool flow
for SystemC/RTL parallelization. Their current solution is
based on RTL features, e.g. sc_signal, however they used
sufficient abstractions in their algorithm to keep hope for future
TLM support (planned as a future work by the authors).

C. Distributed Time/Relaxing Synchronizations

In [6] a programmation paradigm for many-cores and
many-clusters modeling in SystemC is presented. The work
is based on the PDES principle and proposes a conservative
synchronization with a lookahead time. Multiple instances of a
SystemC simulator are run. To avoid deadlocks, the sending of
null messages (which only contains a timestamp) is introduced.
The handling of interrupts is proposed by the addition of
a timestamp to it, with a polling in the beginning of each
CPU loop. This removes the asynchronous characteristic of
interruptions, but guarantees that they will be noticed in a



meaningful time. Their test bench consists in comparing a
cycle accurate bit accurate (CABA) simulation to a TLM one,
in order to balance the time saving with the loss of precision.
The conclusion of their work is that for a very acceptable
loss of precision, they can simulate models at TLM speed,
so approximately 50 times faster than for CABA simulations.
However we can identify two major drawbacks in their bench.
The first one is that the software task is very basic: wait for
an interrupt and then display a message on the terminal, in a
loop. The second one is that the best speedup is reached for
the platform with the biggest number of simulated cores (i.e.
39). On our industrial platform, the number of simulated cores
is low (no more than 7) and obviously the software is more
complex. The next work completes this one by proposing an
implementation of this simulator: TLM-DT (Distributed Time).

TLM-DT is presented in [7], [21]. It is compliant with
the TLM2 standard, however it needs to shift from a global
time to a distributed time, which induces to modify all the
timing information in the model. This solution reaches good
performances on MPSoC and NoC platforms. However, those
platforms are composed of many instances of similar if not
identical components. This regularity in the architecture in-
duces a different profile from platforms with lots of hardware
Intellectual Properties (IPs).

Based on TLM-DT, the authors of [22], [8] have devel-
opped their own parallel implementation of a SystemC/TLM
simulator. It is based on a PDES algorithm and designed
for clustered platforms. Both implicit and explicit synchro-
nizations have been implemented to bound temporal errors.
Their analysis is common to SystemC and SpecC languages.
They particularly focus on protecting the shared parts of the
simulation, i.e. the simulation kernel and the communications,
and have included locks in their scheduling algorithm. They
present promising results on hardware-parallelized versions of
video decoding and image encoding models. A drawback of
such an approach is that if there is no parallelization in the
description of the critical part of the platform, e.g. here it is
the video/image decoding/encoding, the given algorithm won’t
achieve a significant speed-up.

An optimistic approach of PDES has been studied in [9].
The optimistic characteristic does not come from a rollback
mechanism (contrary to what optimistic means in other re-
search papers) but from a weak synchronization mechanism.
The platform is divided into groups of modules, which are
simulated by a specific instance of a SystemC simulator.
Synchronizations are performed when a time quantum has been
overlapped. It is also possible to define transaction-specific
time behaviour. This approach makes strong hypothesis about
shared variables: it considers that shared variables (except the
ones from the SystemC kernel) has been either well protected
or purposely not protected.

In [10] is proposed a parallel SystemC simulator implemen-
tation called SCope. They run multiple instances of a sequential
SystemC kernel, each one on a different worker thread. Each
instance has access to some objects of the simulation (i.e.
modules, ports, threads, etc). Simulator instances are allowed
to run at different simulation times: a lookahead time is
defined. Their results showed a good speed-up on a four-cores
host, for the model of a specific hardware structure called
EURETILE which is similar to a network-on-chip.

D. Tasks with Duration

In [23] the authors present jTLM. This is a Java exper-
imentation framework for TLM simulation. The interest is
that it can exploit multi-core architectures, by introducing a
different timing approach: tasks with duration, as alternative
to instantaneous computations followed by a time elapse. This
notion has been extended in a SystemC framework called
sc_during [12]. It consists in defining some parts of the
simulation to be independant with the rest of the platform
during a specified amount of time. This new information is
then used to run tasks from different modules in parallel with
each other. This solution needs some refactoring in the code of
the platform to actually parallelize it, but it has the advantage
to let legacy SystemC code running as-is, sequentially. This
solution explicitly targets LT models; the notion of tasks with
duration is not meaningful for clock sensitive processes.

E. Other Works

The authors of [24], [25] present a parallel TLM simulation
kernel not based on a SystemC layer. That removes the
modeling level genericity offered by SystemC, but allows
fine optimizations. The authors have implemented a dynamic
load balancing strategy to compute the number of simulator
instances to run, and the amount of tasks to give to each one.

In [26] the authors present an analysis of the execution
semantics of both SystemC and SpecC. They have imple-
mented an extension to the SpecC simulation kernel to support
multicore simulation. However, the semantics of SystemC and
SpecC are different, notably in their definition of signals.
In SpecC, signals are defined as monitors: each of their
accessors/modificators are in mutual exclusion.

A parallel implementation of SystemCASS, a cycle accu-
rate version of SystemC, is presented in [27]. The authors
have implemented a SystemCASS simulator that executes all
the transitions (Mealy or Moore) of the same cycle in parallel
(it can be seen as an equivalent to parallelization inside delta
cycle techniques).

IV. MEASURES

One important issue when one tries to parallelize software
is to find which approach will be the most efficient, depending
on the profile of the application. We have an industrial platform
at our disposal. It models a set-top box including video and
audio encoding and decoding. The software running on it is a
modified Linux kernel. In this section, we will describe some
characteristics of this platform, in order to provide an example
of an industrial LT platform.

We have modified the ASI implementation of the SystemC
kernel to add track generation, in order to get interesting
measurements. The following parts will present the results on
the industrial platform we had at our disposal.

A. Overview

This platform is composed of ≈ 900, 000 lines of code
including ≈ 750, 000 lines of C++ code (given by cloc). It
contains 850 modules hierarchically organized. Counting only
the leaf modules leads to the number of 750 modules. There
are 1068 registered SC_THREAD and 163 SC_METHOD.



B. Number of Runnable Processes

To measure the theoretical efficiency of parallelization
inside delta cycles (e.g. [14], [5], [2], [3], [4], [17]) we measure
the number of runnable processes at the beginning of each delta
cycle. This measurement gives an upper bound of the degree of
parallelization achievable with such techniques. Due to shared
resources, the real degree of parallelization may be fewer than
this upper bound. Indeed a runnable process may share a
dependency with an other one, making the concurrent run of
those two processes not consistent with coroutine semantics.

The measurement consists in counting the number of
runnable processes by adding a count in the SystemC kernel
in each delta cycle. Figure 2 shows that most of the time, the
number of runnable processes is low, almost always less than
or equal to 3. This result indicates that the approaches which
need the hypothesis of a great amount of runnable processes
in each delta cycle cannot be efficient on this model. Note that
the case where zero SC_THREAD are runnable represents the
case of SC_METHOD-only cycles.

0 % 50 % 100 %

boot+init

mpeg2

h264

mpeg2 → h264

0 Proc. 1 2 3 4 and more

(a) SC_THREAD only

0 % 50 % 100 %

boot+init

mpeg2

h264

mpeg2 → h264

1 Proc. 2 3 4 and more

(b) SC_THREAD and SC_METHOD

Figure 2. Partitionning of delta cycles, by number of runnable processes, for
four different test cases.

C. Wall-Clock Duration

We are also interested in identifying the most wall-clock
time consuming processes, to highlight the critical parts of the
simulation. Our goal being to parallelize the simulation, this
helps to have correct hypothesis about the profile of process
executions in the SystemC simulator. In order to do this, we
measure the wall-clock time elapsed during the execution of
each SystemC process. To perform this measurement, we use
the clock_gettime() function provided by the <ctime>
header and the Linux library librt. We use it to only get
the real computation time, which does not include the sleeping
periods of the OS process. Figure 3 presents the repartition of
wall-clock time between different categories:

• processes from simulated CPU cores (Cores)

• processes from simulated hardware modules (IPs)
• SystemC kernel (Kernel)

0 % 50 % 100 %

boot+init

mpeg2

h264

mpeg2 → h264

Cores Kernel IPs

Figure 3. Partitionning of the wall-clock time elapsed, by category of
processes, for four different test cases.

This is a coarse-grain view of the wall clock time partition.
From these results, we deduce that for this platform, most of
the wall clock time is elapsed in IP modules, describing hard-
ware components. We can also notice that the time elapsed in
the SystemC kernel is far from being negligible. This is mainly
due to a high rate of immediate event notifications, especially
in video encoding and/or decoding cases which involves a
lot of computations in hardware IP modules. The fact that
most of the computation time is spent in IP models instead
of cores brings its set of problems. Indeed, the behaviour of
CPU models is often more predictible because the CPU have
a more systematic behaviour.

An other interesting result is that ≈ 50% of the computa-
tion time is spent in only 4 or 5 processes depending on the
case. For the boot+init and the transcoding (mpeg2 → h264)
cases, it is even ≈ 80%. The rest of the computation time
consists in small amounts in different processes.

V. DISCUSSION

A. Parallelization Inside Delta Cycles

As we have seen in Section IV, the number of runnable
processes at the beginning of each delta cycle is too low
to expect an interesting speed-up with parallelization inside
delta cycles for such platforms. In Subsection II-B, we have
presented the LT time decoupling mechanisms used at ST.
We have thought of an optimization in the time picking, that
could increase the number of runnable processes in each delta
cycle. Indeed, when a synchronization point is reached, the
current ST implementation picks a random value within the
time range, and sends it to the SystemC kernel with wait. So
the kernel doesn’t have the range bounds: it can’t exploit the
range information.

One can think that if the SystemC kernel could exploit
this information, we could optimize the number of runnable
processes at each cycle. So we have implemented such a
strategy, and we will see that the improvements are quite low.
To exploit ranged waits, we have added this function to the
SystemC kernel:

void wait(sc_time min, sc_time max);

This function has the following semantics: yield to the
kernel, and wake up the current thread on a time included
in the given range. To illustrate how we choose the best value



in order to maximize the number of runnable processes in the
next delta cycle, we present an example. Let us consider the
following code in two distinct SC_THREAD that we consider
independant with each other:

void mod1::compute() {
// ...
wait(sc_time(1, SC_NS), sc_time(5, SC_NS));
// ...

}
void mod2::compute() {

// ...
wait(sc_time(3, SC_NS), sc_time(7, SC_NS));
// ...

}

A graphical representation of executions of this model is
shown on Figure 4. We can see the processes (on the left side)
and rectangles (on the middle part) which indicates the time
interval in which the execution of the corresponding process
is valid. The times actually simulated by the simulator are
represented by dashes.

mod1.compute

mod2.compute

possible
execution times

time simulated
by the kernel

(a) A random time

mod1.compute

mod2.compute

(b) An optimal time

Figure 4. Execution diagrams of two processes using wait with a time
range, for two different time choice policies: a random value (a) and a value
which maximizes the number of eligible processes (b) in the next cycle.

With this representation, it clearly appears that depending
on the times that are simulated, we have a different number
of runnable processes on a different number of cycles:

• In the case of Figure 4(a), there are two simulated times,
each with one runnable process.

• In the case of Figure 4(b), there is only one simulated
time, with two runnable processes. Thus this case induces
a higher degree of parallelization for an approach inside
delta cycles.

To implement such a strategy, we had to bind the ST
annotate/synchronize API (see Section II) with this newly
added wait. The computation of the simulated time is no longer
performed in the synchronize method, but is dedicated
to the modified SystemC kernel. Finally, the last part is to
implement a policy to choose the next time to simulate, in the
kernel. To choose the next simulated time value, we choose the
minimum value of all the upper bounds, for all the registered
time events. By chosing the minimum value of all the upper
bounds, we guarantee that the next time is not too late (i.e.
that we don’t skip any registered timed event). Moreover, it is
the farthest valid time, so it will trigger the biggest number
of processes, for the next time cycle. Then each timed event
whose range includes this value is popped and triggered. Note
that with this strategy, we are still compatible with the old

wait by defining a time range with both bounds equal to the
same time value.

By implementing this policy, we increase the number of
runnable processes at the beginning of each cycle for an
execution. The final purpose is to determine if this increased
value is high enough to justify the use of parallelization inside
delta cycles techniques. We have run again the simulations of
our industrial platform for the same test cases to measure the
same metrics with this improvement. In Figure 5, we see that
in most cases, the number of processes is still very low, even
if in we have more occurences of cycles with 3 and 4 or more
runnable processes.

Those results illustrate our point: parallelization inside
delta cycles will not efficiently parallelize the simulation of
such models, even after performing a non-trivial optimization.
Indeed, the maximum speed-up achievable (if we exclude all
the race condition problematics) is no more than 4.

0 % 50 % 100 %

boot+init

mpeg2

h264

mpeg2 → h264

0 Proc. 1 2 3 4 and more

(a) SC_THREAD only

0 % 50 % 100 %

boot+init

mpeg2

h264

mpeg2 → h264

1 Proc. 2 3 4 and more

(b) SC_THREAD and SC_METHOD

Figure 5. Partitionning of delta cycles, by number of runnable processes, for
four different test cases, with optimized time picking within time ranges.

B. Usability on Existing Platforms

We have seen that parallelization inside delta cycles tech-
niques are hardly efficient on our TLM/LT model. Then we can
ask the question about the main other existing approaches.

A solution working on existing platforms with no refac-
toring will be easily accepted in the industry, where code
refactoring of huge models is not conceivable. We can take
the example of TLM-DT. To apply this solution, one must
first adapt the platform code to fit TLM-DT API. Concerning
TLM-DT, we can also point out that it targets MPSoC or
NoC models. This provides the hypothesis that most of the
simulation time is spent on the numerous similar CPU/core
models. However, we have seen that most of the time is spent
on IP modules.



In the case of sc_during the amount of refactoring
needed is debatable. Indeed, this approach works on top of
the SystemC kernel, so existing platforms will continue to
work just like before the addition of the library, with no
optimizations. To introduce parallelization in a model, one
must specify tasks with duration. That makes this solution
relevant for platforms where wall-clock time consuming parts
can be clearly identified, and are present in sufficient number
to justify the parallelization.

VI. CONCLUSION

Research on the parallelization of SystemC simulations has
already produced different tools, and many of them allow
important performance and scalability improvements. How-
ever, in this paper we showed that the case of non-MPSoC
LT SystemC models with many hardware IPs raises a lot of
different challenges that are not addressed in previous work. LT
models are the only option for very fast simulation at an early
stage of the design flow: they provide very good sequential
performance by abstracting details that would slow down the
simulation, require lightweight modeling effort and do not
require information about detailed microarchitecture that are
not yet available at this stage.

We showed that LT models exhibit characteristics that
prevent most parallelization approaches from working. Ap-
proaches that run processes in parallel within delta cycles
cannot get a speed-up greater than the number of processes
runnable in this cycle, which hardly reaches 4 as a maximum
in our case. Also, many approaches consider that the SystemC
processes must not share variables, which is not true for
TLM/LT because of the communication through function calls.
As a consequence, most existing approaches are fundamentally
limited when it comes to LT models.

We believe that this paper provides a better understanding
of the problem, and by providing some measurements on an
industrial platform, we even quantified the issue. We hope that
these experiments will help new approaches to emerge and
to be experimented on representative benchmarks. In future
works sc_during can be tested on such industrial platforms
to evaluate the benefits and balance it with the amount of
refactoring. Temporal decoupling can also be exploited better
to reduce the synchronizations between components.

REFERENCES

[1] IEEE Standard for Standard SystemC Language Reference Manual,
Std., 2012.

[2] P. Ezudheen, P. Chandran, J. Chandra, B. Simon, and D. Ravi, “Par-
allelizing SystemC Kernel for Fast Hardware Simulation on SMP
Machines,” in Principles of Advanced and Distributed Simulation, PADS
ACM/IEEE/SCS 23rd Workshop on, 2009, pp. 80–87.

[3] C. Schumacher, R. Leupers, D. Petras, and A. Hoffmann, “parSC:
Synchronous Parallel SystemC Simulation on Multi-core Host Ar-
chitectures,” in Hardware/Software Codesign and System Synthesis,
IEEE/ACM/IFIP International Conference on, 2010, pp. 241–246.

[4] M. Nanjundappa, H. Patel, B. Jose, and S. Shukla, “SCGPSim: A
fast SystemC simulator on GPUs,” in Asia and South Pacific Design
Automation Conference (ASP-DAC), 2010, pp. 149–154.

[5] B. Chopard, P. Combes, and J. Zory, “A Conservative Approach to
SystemC Parallelization,” in Computational Science, ICCS, 2006, vol.
3994, pp. 653–660.

[6] E. Viaud, F. Pêcheux, and A. Greiner, “An Efficient TLM/T Modeling
and Simulation Environment Based on Conservative Parallel Discrete
Event Principles,” in Design, Automation and Test in Europe (DATE),
vol. 1, 2006, pp. 1–6.

[7] A. Vieira De Mello, I. Maia Pessoa, A. Greiner, and F. Pêcheux,
“Parallel Simulation of SystemC TLM 2.0 Compliant MPSoC on SMP
Workstations,” in Design, Automation and Test in Europe (DATE), 2010,
pp. 606–609.

[8] R. Dömer, W. Chen, and X. Han, “Parallel Discrete Event Simulation
of Transaction Level Models,” in Asia and South Pacific Design
Automation Conference (ASP-DAC), 2012, pp. 227–231.

[9] S. Jones, “Optimistic Parallelisation of SystemC,” Master’s thesis, 2011.
[10] J. H. Weinstock, C. Schumacher, R. Leupers, G. Ascheid, and L. Toso-

ratto, “Time-Decoupled Parallel SystemC Simulation,” in Design, Au-
tomation and Test in Europe (DATE), 2014, pp. 191:1–191:4.

[11] P. Combes, E. Caron, F. Desprez, B. Chopard, and J. Zory, “Relaxing
Synchronization in a Parallel SystemC Kernel,” in Proceedings of the
IEEE International Symposium on Parallel and Distributed Processing
with Applications (ISPA), 2008.

[12] M. Moy, “Parallel Programming with SystemC for Loosely Timed
Models: A Non-Intrusive Approach,” in Design, Automation and Test
in Europe (DATE), 2013.

[13] OSCI TLM-2.0 Language Reference Manual, Std., 2009.
[14] M. Trams, “Conservative Distributed Discrete Event Simulation with

SystemC using Explicit Lookahead,” Digital Force White Paper, 2004.
[15] N. Bombieri, S. Vinco, V. Bertacco, and D. Chatterjee, “SystemC

Simulation on GP-GPUs: CUDA vs OpenCL,” in Proceedings of the
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), 2012.

[16] R. Sinha, A. Prakash, and H. Patel, “Parallel Simulation of Mixed-
Abstraction SystemC Models on GPUs and Multicore CPUs,” in Asia
and South Pacific Design Automation Conference (ASP-DAC), 2012,
pp. 455–460.

[17] N. Ventroux, J. Peeters, T. Sassolas, and J. Hoe, “Highly-Parallel
Special-Purpose Multicore Architecture for SystemC/TLM Simula-
tions,” in Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS), International Conference on, 2014, pp. 250–257.

[18] Y. Bouzouzou, “Accélération des Simulations de Systèmes sur Puce au
Niveau Transactionnel,” Master’s thesis, 2007.

[19] W. Chen and R. Dömer, “Optimized Out-of-order Parallel Discrete
Event Simulation Using Predictions,” in Design, Automation and Test
in Europe (DATE), 2013, pp. 3–8.

[20] S. Reder, C. Roth, H. Bucher, O. Sander, and J. Becker, “Adaptive
Algorithm and Tool Flow for Accelerating SystemC on Many-Core
Architectures,” Microprocessors and Microsystems, pp. –, 2015.

[21] I. Maia Pessoa, A. Vieira De Mello, F. Pêcheux, and A. Greiner,
“Parallel TLM Simulation of MPSoC on SMP Workstations: Influence
of Communication Locality,” in International Conference on Microelec-
tronics (ICM), 2010, pp. 359–362.

[22] J. Peeters, N. Ventroux, T. Sassolas, and L. Lacassagne, “A SystemC
TLM Framework for Distributed Simulation of Complex Systems with
Unpredictable Communication,” in Design and Architectures for Signal
and Image Processing (DASIP), Conference on, 2011, pp. 1–8.

[23] G. Funchal and M. Moy, “jTLM: an Experimentation Framework for
the Simulation of Transaction-Level Models of Systems-on-Chip,” in
Design, Automation and Test in Europe (DATE), 2011.

[24] R. Khaligh and M. Radetzki, “Modeling Constructs and Kernel for Par-
allel Simulation of Accuracy Adaptive TLMs,” in Design, Automation
and Test in Europe (DATE), 2010, pp. 1183–1188.

[25] ——, “A Dynamic Load Balancing Method for Parallel Simulation of
Accuracy Adaptive TLMs,” in Specification Design Languages (FDL),
Forum on, 2010, pp. 1–6.

[26] R. Dömer, W. Chen, X. Han, and A. Gerstlauer, “Multi-Core Parallel
Simulation of System-Level Description Languages,” in Asia and South
Pacific Design Automation Conference (ASP-DAC), 2011.

[27] L. Ainey, A. Efrati, and S. Weiss, “Parallel Cycle-Accurate SystemC
Kernel,” in Electrical Electronics Engineers in Israel (IEEEI), IEEE
28th Convention of, 2014, pp. 1–5.


	Introduction
	Background
	SystemC Scheduling
	Temporal Decoupling
	Problematics

	Related Work
	Parallelization Inside Delta Cycles
	Dependency Analysis
	Distributed Time/Relaxing Synchronizations
	Tasks with Duration
	Other Works

	Measures
	Overview
	Number of Runnable Processes
	Wall-Clock Duration

	Discussion
	Parallelization Inside Delta Cycles
	Usability on Existing Platforms

	Conclusion
	References

