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Coupling Importance Sampling and Multilevel Monte Carlo
using Sample Average Approximation

Ahmed Kebaier∗ & Jérôme Lelong†

July 4, 2017

Abstract

In this work, we propose a smart idea to couple importance sampling and Multilevel
Monte Carlo (MLMC). We advocate a per level approach with as many importance sam-
pling parameters as the number of levels, which enables us to compute the different levels
independently. The search for parameters is carried out using sample average approxi-
mation, which basically consists in applying deterministic optimisation techniques to a
Monte Carlo approximation rather than resorting to stochastic approximation. Our inno-
vative estimator leads to a robust and efficient procedure reducing both the discretization
error (the bias) and the variance for a given computational effort. In the setting of dis-
cretized diffusions, we prove that our estimator satisfies a strong law of large numbers
and a central limit theorem with optimal limiting variance, in the sense that this is the
variance achieved by the best importance sampling measure (among the class of changes
we consider), which is however non tractable. Finally, we illustrate the efficiency of our
method on several numerical challenges coming from quantitative finance and show that
it outperforms the standard MLMC estimator.

AMS 2000 Mathematics Subject Classification. 60F05, 62F12, 65C05, 60H35.
KeyWords and Phrases. Sample average approximation, Multilevel Monte Carlo, vari-
ance reduction, Uniform strong large law of numbers, Central limit theorem, Importance
Sampling.

1 Introduction

Expectation involving a stochastic process are often computed using a Monte Carlo method
combined with a discretization scheme. For instance, computing a hedging portfolio in finance
uses these tools. Generally, the asset price follows a diffusion process (Xt)0≤t≤T , which a
stochastic differential equation (SDE)

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x ∈ Rd (1.1)

where b : Rd → Rd, σ : Rd →Md×q andW is a Brownian motion with values in Rq defined on
some given probability space (Ω, (Ft)0≤t≤T ,P) with finite time horizon T > 0. The process X
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hardly ever has an explicit solution, which implies the use of a discretization scheme in order
to simulate it. Consider the continuous time Euler approximation Xn with time step δ = T/n
given by

dXn
t = b(Xn

ηn(t))dt+ σ(Xn
ηn(t))dWt, ηn(t) = bt/δcδ.

This work aims at combining importance sampling with different discretization methods: first,
we study the use of importance sampling for standard case of Euler Monte Carlo and then we
apply it to multilevel Monte Carlo. Many different changes of measure can be seen to design
importance sampling. When working with Lévy processes, it is common to use the Esscher
transform to introduce a new family of measures. For Brownian driven SDEs, the Esscher
transform actually corresponds to a Gaussian change of measure in the spirit of the Girsanov
theorem. Following the ideas of Arouna [1], we consider a parametric family of stochastic
processes (Xt(θ))0≤t≤T , with θ ∈ Rq, driven by a Brownian motion with linear drift

dXt(θ) = (b(Xt(θ)) + σ(Xt(θ))θ) dt+ σ(Xt(θ))dWt.

We also define the continuous time Euler approximation Xn(θ) of the process X(θ). From
Girsanov’s Theorem, the process (Bθ

t
∆
= Wt + θt)t≤T is a Brownian motion under the new

probability measure Pθ equivalent to P and such that

dPθ
dP |Ft

= exp

(
−θ ·Wt −

1

2
|θ|2t

)
∆
= E−(W, θ).

Therefore,

EP[ψ(XT )] = EPθ [ψ(XT (θ))] = EP
[
ψ(XT (θ))E−(W, θ)

]
. (1.2)

This equality still holds when replacing X (resp. X(θ)) by its Euler scheme Xn (resp. Xn(θ)).
The l.h.s. and r.h.s. expectations are both computed under the same probability measure. In
the following, we will always use the measure P and therefore we will not write it anymore.
The idea of importance sampling Monte Carlo is to use the r.h.s of (1.2) to build a Monte
Carlo estimator using Xn(θ) with θ given by

θ? = argmin
θ∈Rq

Var
(
ψ(XT (θ))E−(W, θ)

)
.

Importance sampling for Euler Monte Carlo is studied in Section 2: first, we investigate how
to approximate θ? in practice and second we prove a Monte Carlo estimator using this ap-
proximation of θ? satisfies both a strong law of large numbers and a central limit theorem
when both n and the number of samples go to infinity. This result extends the limit theorems
obtained in [23], in which the authors investigated the case of a fixed number of discretiza-
tion steps n. The error induced by using E[ψ(Xn

T (θ))] instead of E[ψ(XT (θ))] is called the
discretization error and is responsible for the bias of the Euler Monte Carlo estimator, while
the Monte Carlo approximation only impacts the variance. The two errors are balanced when
the number of samples N of the Monte Carlo method is chosen as N = n2, which to overall
complexity of n3. In order to reduce the bias for a given computational effort, Kebaier [24]
proposed to use the Statistical Romberg method, which combines discretization schemes on
two nested time grids. This method was generalized by Giles [13] who proposed to use a mul-
tilevel Monte Carlo algorithm following the line of Heinrich’s multilevel method for parametric
integration [19].
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Let m,L ∈ N with m ≥ 2 and L > 0, the idea of the multilevel method is to write the
expectation on the finest time grid as a telescopic sum involving all the other grids (referred
to as levels)

E[ψ(XmL

T )] = E[ψ(Xm0

T )] +
L∑
`=1

E[ψ(Xm`

T )− ψ(Xm`−1

T )] (1.3)

and then to approximate each expectation by a Monte Carlo method with a well chosen
number of samples to balance the errors between the different terms. We refer the reader to
the extensive literature linked to MLMC for more details, see e.g. [3, 9, 10, 11, 14, 16, 15,
18, 20, 27]. For a fixed computational budget, the use of multilevel techniques clearly reduces
the bias error, but in many situations the high variance also brings in a significant inaccuracy,
which naturally leads to trying to couple MLMC with variance reduction techniques.

In this work, we focus on coupling importance sampling with MLMC. In [5] and [17], the
authors chose to apply MLMC to the right hand side of (1.2) coming up with

E[ψ(XmL

T )] = E
[
ψ(Xm0

T (λ))E−(W,λ)
]

+

L∑
`=1

E
[
(ψ(Xm`

T (λ))− ψ(Xm`−1

T (λ)))E−(W,λ)
]
.

(1.4)

This approach mixes all the levels through the optimization of the parameter λ and breaks
the independence between the levels of the multilevel approach, which made it so popular and
easy to implement.

Instead of using (1.4), we would rather apply importance sampling to each expectation in
the telescopic sum of (1.3) to obtain for λ1, . . . , λL ∈ Rq

E[ψ(XmL

T )] = E
[
ψ(Xm0

T (λ0))E−(W,λ0)
]

+
L∑
`=1

E
[
(ψ(Xm`

T (λ`))− ψ(Xm`−1

T (λ`)))E−(W,λ`)
]
.

Our importance multilevel estimator is obtained by applying a Monte Carlo method to each
of the levels ` with N` samples

QL(λ0, . . . , λL) =
1

N0

N0∑
k=1

ψ(X̃m0

T,0,k(λ0))E−(W̃0,k, λ0)

+

L∑
`=1

1

N`

N∑̀
k=1

(
ψ(X̃m`

T,`,k(λ`))− ψ(X̃m`−1

T,`,k (λ`))
)
E−(W̃`,k, λ`) (1.5)

The samples used in the different levels are independent are within each level they are i.i.d.
For any ` ≥ 0, the variables X̃m`

T,`,k(λ`) (resp. X̃m`−1

T,`,k (λ`) when ` > 0) are the terminal values
of the Euler schemes of X(λ`) withm` (resp. m`−1)) time steps built using the same Brownian
path W̃`,k. The variance of the importance sampling MLMC estimator is given by

Var[QL] = N−1
0 σ0(λ0)2 +

L∑
`=1

N−1
`

(m− 1)T

m`
σ2
` (λ`)
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where

σ2
0(λ0)

∆
= Var[ψ(Xm0

T (λ0))E−(W,λ0)]

σ2
` (λ`)

∆
=

m`

(m− 1)T
Var

[(
ψ(Xm`

T (λ`))− ψ(Xm`−1

T (λ`))
)
E−(W,λ`)

]
.

By allowing for one importance sampling parameter λ` per level, our approach has many ad-
vantages over [5, 17]. First, the computations within the different levels remain independent.
Second, the variance of each level ` only depends on λ`, which reduces the global minimiza-
tion problem to several smaller minimization problems. Third, we actually minimize the real
variance of the estimator and not its asymptotic value and more importantly it can be imple-
mented without knowing ∇ψ, which however appears in the central limit theorem for MLMC.
The new idea of using one importance sampling parameter per level was later taken up in [6]
but coupled with stochastic approximation to build adaptive estimators.

Actually, minimizing λ 7−→ σ2
` (λ) can be achieved by using the randomly truncated Rob-

bins Monro algorithm proposed by Chen et al. [7, 8] and later investigated in the context of
importance sampling by Lapeyre and Lelong [25] and Lelong [26]. The numerical stability of
these stochastic algorithms strongly depends on the choice of the descent step — often referred
to as the gain sequence — which proves to be highly sensitive in practice. To overcome this
difficulty, Jourdain and Lelong [23] proposed to apply deterministic optimization techniques
to sample average estimators to search for the optimal parameter. Following their method-
ology, we define σ2

`,N ′`
as the sample average approximation of σ2

` with N ′` samples using the
standard empirical Monte Carlo estimator of the variance. We assume that the samples used
in σ2

`,N ′`
are independent of those used in QL. We refer to Section 3 for more details on the

samples used in the different approximations. Now, we sketch the algorithm corresponding to
our method.

1 for ` = 0 : L do
2 Sample the random function λ 7−→ σ`,N ′`(λ). // σ2

`,N ′`
is the sample average

approximation of σ2
`, see Section 3.1

3 Compute λ̂` = argminσ2
`,N ′`

(λ) using Newton–Raphson’s algorithm.

4 Independently of σ2
`,N ′`

, sample the level ` of (1.5) using λ̂`.
5 end
6 Sum all the levels to obtain

QL(λ̂0, . . . , λ̂L) =
1

N0

N0∑
k=1

ψ(X̃m0

T,0,k(λ̂0))E−(W̃0,k, λ̂0)

+

L∑
`=1

1

N`

N∑̀
k=1

(
ψ(X̃m`

T,`,k(λ̂`))− ψ(X̃m`−1

T,`,k (λ̂`))
)
E−(W̃`,k, λ̂`).

Algorithm 1.1: Multilevel Importance Sampling (MLIS)

In Section 2, we investigate the standard Euler Monte Carlo method coupled with impor-
tance sampling. The importance sampling framework with MLMC is studied in Section 3. We
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prove that QL(λ̂0, . . . , λ̂L) satisfies a strong law of large numbers and a central limit theorem.
Our MLIS estimator achieves the smallest possible variance within the family of MLMC es-
timators approximating E[ψ(XT )] using the class of processes (X(λ))λ∈Rq . Note that this is
also the limiting variance obtained in [5] for the MLMC estimator built on (1.4) with the best
possible parameter λ ∈ Rq. The main difficulty in proving these results is the uniform control
of the triangular arrays involved in the adaptive multilevel estimator. To overcome this issue,
we prove in Section 4 new limit theorems for doubly indexed sequences of random variables
in a general setting (see Propositions 4.1 and 4.3). In section 5, we illustrate the efficiency of
MLIS on challenging problems coming from quantitative finance and show that it outperforms
the standard MLMC estimator.

2 Importance sampling with Euler Monte Carlo

2.1 Notation and general assumptions

• For a vector x ∈ Rq, |x| denotes the Euclidean norm of x.

• The superscript ∗ denotes the transpose operator.

• For a matrix A ∈ Md×q, |M | denotes the Frobenius norm of A defined by
√

Tr(A∗A),
which corresponds to the Euclidean norm on Rd×q.

• For q ∈ N∗, Iq denotes the identity matrix with size q × q.

• For α > 0, we define the set of functions

Hα =
{
ψ : Rd → R s.t. ∃c > 0, β ≥ 1, ∀x ∈ Rd, |ψ(x)| ≤ c(1 + |x|β)

and ∀x, y ∈ Rd, |ψ(x)− ψ(y)| ≤ c(1 + (|x|β ∧ |y|β))|x− y|α
}

(2.1)

• For a sequence of random variables (Xn)n, “Xn =⇒ X” means that (Xn)n converges in
distribution to X.

Here, we gather several standard assumptions required to ensure the convergence of the
Euler scheme.

(H-1) i. The functions b and σ are Lipschitz

∀x, y ∈ Rd, |b(x)− b(y)|+ |σ(x)− σ(y)| ≤ Cb,σ|x− y|, (Hb,σ)

for some real number Cb,σ > 0.
ii. ∀p ≥ 1, X,Xn ∈ Lp and there exists Kp(T ) > 0 s.t.

E

[
sup

0≤t≤T
|Xt −Xn

t |
p

]
≤ Kp(T )

np/2
.

iii. There exist γ ∈ [1/2, 1] and Cψ(T, γ) > 0 s.t.

nγ(Eψ(Xn
T )− Eψ(XT ))→ Cψ(T, γ). (Hγ)

(H-2) The function ψ satisfies

P(ψ(XT ) 6= 0) > 0 and ∀ θ ∈ Rq, E
[
ψ(XT )2e−θ·WT

]
<∞. (2.2)
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2.2 General framework

In this section, we investigate the case of a Euler Monte Carlo. We consider the importance
sampling representation of E[ψ(XT )] given by

E[ψ(XT (θ))E−(W, θ)].

The optimal value for θ is given by

θ? = argmin
θ∈Rq

with v(θ)
∆
= E[(ψ(XT (θ))E−(W, θ))2].

By using (1.2), we can rewrite v as

v(θ) = E[ψ(XT )2E+(W, θ)] with E+(W, θ)
∆
= e−WT ·θ+ |θ|2 .

From a practical point of view, the quantity v(θ) is not explicit so we use the Euler scheme
to discretize X(θ) and approximate θ? by

θn
∆
= argmin

θ∈Rq
vn(θ) with vn(θ)

∆
= E

[
ψ(Xn

T )2E(W, θ)
]
. (2.3)

Since the expectation is usually not tractable, we replace it by its sample average approxima-
tion and define

θn,N
∆
= argmin

θ∈Rq
vn,N (θ) with vn,N (θ)

∆
=

1

N

N∑
i=1

(
ψ(Xn

T,i)
2E(Wi, θ)

)
, (2.4)

where (Xn
T,i,WT,i)1≤i≤N are i.i.d. samples with the law of (Xn

T ,WT ). The existence and
uniqueness of θ?, θn and θn,N are ensured by the following lemma whose proof can easily be
adapted from [23, Lemma 1.1].

Lemma 2.1. Under Condition (H-2), the functions v, vn and vn,N are infinitely continuously
differentiable for all n,N and the derivatives are obtained by exchanging expectation and dif-
ferentiation. Moreover, the functions v and vn are strongly convex and so is vn,N for any N
such that vn,N is not identically zero.

2.3 Convergence of the optimal importance sampling parameter

Theorem 2.2. Suppose σ and b satisfy (Hb,σ). Let ψ satisfy Condition (H-2) and belong to
Hα for some α > 0. Then, θn → θ? a.s. when n→ +∞.

By Hölder’s inequality, for any function ψ ∈ Hα, (H-2) implies that supn E[ψ(Xn
T )2e−θ·WT ] <

+∞. Hence, the proof of the theorem ensues from [5, Theorem 2.2].

In the following, we let N depend on n so that N ∆
= Nn tends to infinity with n.

Proposition 2.3. Assume that Assumption (Hb,σ) holds and that ψ ∈ Hα for some α > 0.
Then, for all K > 0, a.s. when n→∞

sup
|θ|≤K

|vn,Nn(θ)− v(θ)| → 0; sup
|θ|≤K

|∇vn,Nn(θ)−∇v(θ)| → 0.
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Proof. The proof of the two results are very similar, we omit the second one and concentrate
on the uniform convergence for vn,Nn . To do so, we will apply Proposition 4.3. Now, we check
Assumptions (H-4), (H-5), (H-6). At first, note that under Assumption (Hb,σ), we have the
almost sure convergence of Xn

T towards XT . As ψ ∈ Hα, it follows from Property (H-1)-ii
that for all a > 1, supn∈N E

[∣∣∣ψ(Xn
T )2e−θ·WT+ 1

2
|θ|2T

∣∣∣a] < ∞. Note that for every fixed n, the

sequence
(
ψ(Xn

T,i)
2e−θ·WT,i+

1
2
|θ|2T

)
i
is i.i.d. Then, we deduce that for all m ∈ N∗

lim
n→∞

E [vn,m(θ)] = E
[
ψ(XT )2e−θ·WT+ 1

2
|θ|2T

]
.

This yields (H-4). Let K > 0. As ψ ∈ Hα we obtain using the Cauchy Schwarz inequality
and Property (H-1)-ii that

sup
n

sup
m
mVar

(
sup
|θ|≤K

vn,m(θ)

)
≤ sup

n
E1/2

[
ψ(Xn

T )8
]
E1/2

[
sup
|θ|≤K

e−4θ·WT+2|θ|2T

]
<∞.

Using the same arguments, we also get

sup
n

sup
m

Var

(
ψ(Xn

T,m)2 sup
|θ|≤K

e−θ·WT,m+ 1
2
|θ|2T

)
<∞.

This yields (H-5). Concerning the last assumption, if we fix δ > 0, θ ∈ Rd and set B(θ, δ) —
the open ball with center θ and radius δ — then we have by Cauchy Schwarz inequality

sup
n

E

[
ψ(Xn

T )2 sup
θ′∈B(θ,δ)

∣∣∣e−θ′·WT+ 1
2
|θ′|2T − e−θ·WT+ 1

2
|θ|2T

∣∣∣]2

≤

sup
n

E
[
ψ(Xn

T )4
]
E

[
sup

θ′∈B(θ,δ)

∣∣∣e−θ′·WT+ 1
2
|θ′|2T − e−θ·WT+ 1

2
|θ|2T

∣∣∣2] .
Using the elementary algebric inequality |ex − ey| ≤ |x− y| (ex + ey), we easily deduce that

the quantity E
[
supθ′∈B(θ,δ)

∣∣∣e−θ′·WT+ 1
2
|θ′|2T − e−θ·WT+ 1

2
|θ|2T

∣∣∣2] can be made arbitrarily small.

Finally, Assumption (H-6) is satisfied using Remark 4.4.

Theorem 2.4. Assume that Assumption (Hb,σ) holds and that ψ ∈ Hα for some α > 0.
Then, θn,Nn −→ θ? a.s. and

√
Nn(θn,Nn − θ?) =⇒ N(0,Γ) when n→∞ with

Γ = [∇2v(θ?)]−1Var
[
(Tθ? −WT )ψ(XT )2e−θ

?·WT+ 1
2
|θ?|2T

]
[∇2v(θ?)]−1.

Proof. We already know from Proposition 2.3 that a.s. vn,Nn converges locally uniformly to
v. Let ε > 0. By the strict convexity of v, δ ∆

= inf |θ−θ?|≥ε v(θ)− v(θ?) > 0.
The local uniform convergence of vn,Nn to v ensures that

∃nδ > 0,∀n ≥ nδ, ∀θ ∈ Rq s.t. |θ − θ?| ≤ ε, |vn,Nn(θ)− v(θ)| ≤ δ

3
. (2.5)
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For n ≥ nδ and θ such that |θ − θ?| ≥ ε, we can deduce from the convexity of vn,Nn that

vn,Nn(θ)− vn,Nn(θ?) ≥ |θ − θ
?|

ε

[
vn,Nn

(
θ? + ε

θ − θ?

|θ − θ?|

)
− vn,Nn(θ?)

]
≥ |θ − θ

?|
ε

[
v

(
θ? + ε

θ − θ?

|θ − θ?|

)
− v(θ?)− 2δ

3

]
≥ δ

3

where the last two inequalities come from (2.5). If we apply this inequality for θ = θn,Nn ,
we obtain a contradiction since vn,Nn(θn,Nn) − vn,Nn(θ?) ≤ 0. Hence, we deduce that for all
n ≥ nδ, |θn,Nn − θ?| < ε. Therefore, θn,Nn converges a.s. to θ?. If we combine this result
with the local uniform convergence of vn,Nn to the continuous function v, we deduce that
vn,Nn(θn,Nn) converges a.s. to v(θ?).

Moreover, we get by Equation (3.9) that for all K > 0

sup
|θ|≤K

∣∣∣∂θ(j)ψ(XT )2e−θ·WT+ 1
2
|θ|2T

∣∣∣
≤ eK

2T/2ψ(XT )2
(
K + (eKW

(j)
t + e−KW

(j)
t )
) q∏
i=1

(eKW
(i)
t + e−KW

(i)
t ).

The r.h.s is integrable by Condition (H-2). Hence, E
[
sup|θ|≤K

∣∣∣∇θψ(XT )2e−θ·WT+ 1
2
|θ|2T

∣∣∣] <
+∞. Similarly, one can prove that E

[
sup|θ|≤K

∣∣∣∇2
θψ(XT )2e−θ·WT+ 1

2
|θ|2T

∣∣∣] < +∞. Then, to
prove the central limit theorem governing the convergence of θn,Nn to θ?, we reproduce the
proof of [29, Theorem A2, pp. 74], which is mainly based on the a.s. local uniform convergence
of ∇vn,Nn and on its asymptotic normality ensuing from Theorem A.1.

2.4 A second stage Monte Carlo approach

In this section, we aim at building adaptive Monte Carlo estimators in the setting of discretized
diffusion processes following the spirit of [23]. Our setting differs mainly because we want to
let both the number of time steps and the number of samples go to infinity. Asymptotic
results rely on a uniform controls of the triangular arrays involved in the adaptive importance
sampling Monte Carlo estimator. The technical results from Section 4 will be tremendously
useful to provide such controls.

Using the estimators of θ? studied in the previous section, we define a Monte Carlo esti-
mator of E[ψ(XT )] based on Equation (1.2). We introduce the σ-algebra G generated by the
samples (Wi)i≥1 used to compute θn and θn,Nn .

Let (W̃i)i be i.i.d. samples according to the law of W but independent of G. Conditionally
on G, we introduce i.i.d. samples (X̃i(θn,Nn))i following the law of X(θn,Nn) such that for
each i, X̃i(θn,Nn) is the solution of the SDE driven by W̃i. We introduce (G̃k)k>0 the filtration
defined by G̃k = σ(W̃i, 1 ≤ i ≤ k) and G]k = G∨G̃k. For each i > 0, we also consider X̃n

i (θn,Nn)

defined as the Euler discretization of X̃i(θn,Nn). Based on these new sets of samples, we define

Mn,Nn =
1

Nn

Nn∑
i=1

g(θn,Nn , X̃
n
T,i(θn,Nn), W̃T,i),

where the function g : Rq × Rd × Rq → R is defined by

g(θ, x, y)
∆
= ψ(x)e−θ·y−

1
2
|θ|2T . (2.6)
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For the clearness of the coming proofs, it is convenient to introduce the following notation

Mn,Nn(θ) =
1

Nn

Nn∑
i=1

g(θ, X̃n
T,i(θ), W̃T,i).

Note that Mn,Nn = Mn,Nn(θn,Nn).

Theorem 2.5. Assume that Assumption (Hb,σ) holds and that ψ ∈ Hα for some α > 0.
Then, Mn,Nn −→ E[ψ(XT )] a.s. when n→ +∞.

Proof. Using the conditional independence of the samples (X̃n
i (θn,Nn), W̃i)i, we have

E[g(θn,Nn , X̃
n
T,i(θn,Nn), W̃T,i)|G] = E[ψ(Xn

T )]
∆
= en for all i > 0.

Let V ⊂ Rq be a compact neighbourhood of θ?. We define the sequence

Yi,n =
(
g(θn,Nn , X̃

n
T,i(θn,Nn), W̃T,i)− en

)
1{θn,Nn∈V}

and its empirical average Y m,n = 1
m

∑m
i=1 Yi,n for all m > 0. It is obvious that E[Yi,n] = 0

and using the conditional independence E[
∣∣Y m,n

∣∣2] = 1
mE[|Y1,n|2].

E[|Y1,n|2] ≤ E
[
E
[
|g(θn,Nn , X̃

n
T,i(θn,Nn), W̃T,i)− en|2

∣∣∣G] 1{θn,Nn∈V}
]

≤ E
[
vn(θn,Nn)1{θn,Nn∈V}

]
≤ sup

θ∈V
vn(θ).

We know that vn is convex and converges point-wise to v, which is also convex and continuous.
Hence, vn converges locally uniformly to v, which implies that for all compact sets K ⊂ Rq,
limn→+∞ supθ∈K vn(θ) = supθ∈K v(θ). Hence, supn supθ∈V vn(θ) < +∞. Applying Proposi-
tion 4.1 proves that Y Nn,n

a.s.−−−−−→
n→+∞

0. As θn,Nn converges a.s. to θ? ∈ K, this also implies that

limn→+∞Mn,Nn = E[ψ(XT )] a.s.

Theorem 2.6. Under the assumptions of Theorem 2.5 and if Condition (Hγ) holds, we have√
Nn(Mn,Nn − E[ψ(XT )]) =⇒ N (Cψ(T, α), σ2) when n→ +∞.

where σ2 = E
[
ψ(XT )2e−θ

?·WT+ 1
2
|θ?|2T

]
− E[ψ(XT )]2.

Remark 2.7. Assume the number of time steps used in the Euler scheme is fixed to n = 1
and consider the estimator M1,N (θ1,N ). Then, we know from [2, Theorem 3.4] that, when
N →∞,

M1,N (θ1,N ) −→ E[g(θ1, X
1
T (θ1),WT )] a.s.

√
N(M1,N (θ1,N )− E[g(θ1, X

1
T (θ1),WT )]) =⇒ N (0, σ2

1)

with σ2
1 = E

[
ψ(X1

T )2e−θ1·WT+ 1
2
|θ1|2T

]
− E[ψ(X1

T )]2.

9



Proof. We can write the left hand side of the convergence result by introducing Mn,Nn(θ?)√
Nn(Mn,Nn − E[ψ(XT )]) =

√
Nn(Mn,Nn(θn,Nn)−Mn(θ?)) +

√
Nn(Mn,Nn(θ?)− E[ψ(XT )])

The convergence of the last term on the r.h.s
√
Nn(Mn,Nn(θ?)−E[ψ(XT )]) is governed by the

central limit theorem for Euler Monte Carlo, which yields the announced limit (see [12]). It
remains to prove that

√
Nn(Mn,Nn(θn,Nn)−Mn,Nn(θ?)) converges to zero in probability.

Let ε > 0 and α < 1
2 ,

P
(√

Nn|Mn,Nn(θn,Nn)−Mn,Nn(θ?)| > ε
)

= P
(√

Nn|Mn,Nn(θn,Nn)−Mn,Nn(θ?)| > ε ; Nα
n |θn,Nn − θ?| > 1

)
+ P

(√
Nn|Mn,Nn(θn,Nn)−Mn,Nn(θ?)| > ε ; Nα

n |θn,Nn − θ?| ≤ 1
)

= P ( Nα
n |θn,Nn − θ?| > 1)

+ P
(√

Nn|Mn,Nn(θn,Nn)−Mn,Nn(θ?)|1{Nα
n |θn,Nn−θ?|≤1} > ε

)
.

By Theorem 2.4, P ( Nα
n |θn,Nn − θ?| > 1) tends to zero when n goes to infinity. Let K > 0 s.t.

for all n large enough {θ ∈ Rq : |θ − θ?| ≤ N−αn } ⊂ B(0,K). We can bound the second term
on the r.h.s. by using Markov’s inequality

P
(√

Nn|Mn,Nn(θn,Nn)−Mn,Nn(θ?)|1{Nα
n |θn,Nn−θ?|≤1} > ε

)
≤ Nn

ε2
E
[
|Mn,Nn(θn,Nn)−Mn,Nn(θ?)|21{θn,Nn∈B(0,K)}

]
≤ 1

ε2
E
[
|g(θn,Nn , X̃

n
T (θn,Nn), W̃T )− g(θ?, X̃n

T (θ?), W̃T )|21{θn,Nn∈B(0,K)}
]

≤ 1

ε2
E
[
|g(θn,Nn , X̃

n
T (θn,Nn), W̃T )− g(θn,Nn , X̃T (θn,Nn), W̃T )|21{θn,Nn∈B(0,K)}

]
+

1

ε2
E
[
|g(θn,Nn , X̃T (θn,Nn)W̃T )− g(θ?, X̃n

T (θ?), W̃T )|21{θn,Nn∈B(0,K)}
]
.

We treat each of the two terms separately.
I First term

From the independence between θn,Nn and W̃ , we can write

E
[
|g(θn,Nn , X̃

n
T (θn,Nn), W̃T )− g(θn,Nn , X̃T (θn,Nn), W̃T )|21{θn,Nn∈B(0,K)}

]
= E

[
|ψ(Xn

T )− ψ(XT )|2 exp(−θn,Nn · W̃T +
1

2
|θn,Nn |2T )1{θn,Nn∈B(0,K)}

]
≤ E

[
|ψ(Xn

T )− ψ(XT )|2(1+η)
] 1

1+η
e

1+2η
2η

K2T
, for some η > 0.

Relying on the uniform integrability ensured by property (H-1)-ii and since ψ ∈ Hα, we can
let n go to infinity inside the expectation to obtain that

lim
n→+∞

E
[
|g(θn,Nn , X̃

n
T (θn,Nn), W̃T )− g(θn,Nn , X̃T (θn,Nn), W̃T )|21{θn,Nn∈B(0,K)}

]
= 0.

I Second term
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Since the function g is continuous w.r.t its first two parameters and Xθ
T is continuous w.r.t

the parameter θ, limn→+∞ g(θn,Nn , X̃T (θn,Nn), W̃T )− g(θ?, X̃n
T (θ?), W̃T ) = 0 a.s. To conclude

the proof, we need to show that the family of r.v.(
|g(θn,Nn , X̃T (θn,Nn), W̃T )− g(θ?, X̃n

T (θ?), W̃T )|21{θn,Nn∈B(0,K)}
)
n

is uniformly integrable.
First, for any θ ∈ Rq and 2(1 + η) > a > 2

E
[
|g(θ, X̃T (θ), W̃T )|a

]
= E

[
|ψ(X̃T )|ae−(a−1)θ·W̃T+

(a−1)|θ|2T
2

]
≤ E

[
|ψ(X̃T )|2(1+η)

] 2(1+η)
a

eC|θ|
2

(2.7)

where C is a constant only depending on a and T . This yields that for some δ > 0 and some
constant C > 0 independent of θ, E

[
|g(θ, X̃T (θ), W̃T )|2+δ

]
< CeC|θ|

2 . Then, we get

sup
n

E
[
|g(θn,Nn , X̃T (θn,Nn), W̃T )|2+δ1{θn,Nn∈B(0,K)}

]
= sup

n
E
[
E
[
|g(θn,Nn , X̃T (θn,Nn), W̃T )|2+δ|θn,Nn

]
1{θn,Nn∈B(0,K)}

]
≤ sup

n
CE

[
eC|θn,Nn |

2
1{θn,Nn∈B(0,K)}

]
≤ CeCK .

We can similarly prove that

sup
n

E
[
|g(θ?, X̃n

T (θ?), W̃T )|2+δ
]
≤ sup

n
E
[
|ψ(Xn

T )|2(1+η)
] 2(1+η)

2+δ
eC|θ

?|2 .

This prove that the family of r.v.(
|g(θn,Nn , X̃T (θn,Nn), W̃T )− g(θ?, X̃n

T (θ?), W̃T )|21{θn,Nn∈B(0,K)}
)
n

is uniformly integrable, which ends the proof.

3 Multilevel Importance sampling Monte Carlo

In the recent years, many works showed that MLMC supersedes Monte Carlo when combined
with discretization schemes. Then, it has become natural to investigate how this new approach
could be coupled with existing variance reduction techniques and in particular with importance
sampling. In this section, we study the mathematical properties of our importance sampling
MLMC estimator QL(λ̂0, . . . , λ̂L). First, we start by proving the existence and uniqueness of
λ̂0, . . . , λ̂L in Section 3.2 and then we prove a strong law of large numbers and a central limit
theorem for QL(λ̂0, . . . , λ̂L) in Section 3.3.
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3.1 General framework

Our multilevel importance sampling estimator writes

QL(λ0, . . . , λL) =
1

N0

N0∑
k=1

ψ(X̃m0

T,0,k(λ0))E−(W̃0,k, λ0)

+
L∑
`=1

1

N`

N∑̀
k=1

(
ψ(X̃m`

T,`,k(λ`))− ψ(X̃m`−1

T,`,k (λ`))
)
E−(W̃`,k, λ`). (3.1)

For any fixed ` ∈ {1, · · · , L}, the random variables (W̃`,k)1≤k≤N` are independent and are
distributed according to the Brownian law. We assume that for `, `′ ∈ {1, · · · , L}, with ` 6= `′,
the blocks (W̃`,k)1≤k≤N` and (W̃`′,k)1≤k≤N`′ are independent. For any fixed ` ∈ {1, · · · , L} and
k ∈ {1, . . . , N`}, the variables X̃m`

T,`,k(λ`) (resp. X̃
m`−1

T,`,k (λ`)) are the terminal values of the Euler
schemes of X(λ`) with m` (resp. m`−1)) time steps built using the same Brownian path W̃`,k.
The key of the multilevel approach is to use the same Brownian path to compute X̃m`

T,`,k(λ`)

and X̃m`−1

T,`,k (λ`). The blocks of random variables used in two different levels are independent.
From these assumptions, one can compute the variance of the multilevel estimator given by

Var[QL] = N−1
0 σ0(λ0)2 +

L∑
`=1

N−1
`

(m− 1)T

m`
σ2
` (λ`)

where

σ2
0(λ0)

∆
= Var[ψ(Xm0

T (λ0))E−(W,λ0)]

σ2
` (λ`)

∆
=

m`

(m− 1)T
Var

[{
ψ(Xm`

T (λ`))− ψ(Xm`−1

T (λ`))
}
E−(W,λ`)

]
.

By applying (1.2), the variances of each level ` ≥ 0 can be written σ2
` (λ`) = v`(λ`)− Ξ2

` with

v0(λ0)
∆
= E

[
ψ(Xm0

T )2E+(W,λ0)
]
, Ξ0

∆
= E

[
ψ(Xm0

T )
]

(3.2)

v`(λ`)
∆
=

m`

(m− 1)T
E
[∣∣∣ψ(Xm`

T )− ψ(Xm`−1

T )
∣∣∣2 E+(W,λ`)

]
, (3.3)

Ξ`
∆
=

√
m`

(m− 1)T
E
[
ψ(Xm`

T )− ψ(Xm`−1

T )
]

(3.4)

and E+(W,λ)
∆
= e−λ·WT+ 1

2
|λ|2T . Hence, the global variance is given by

Var[QL] = N−1
0 (v0(λ0)− Ξ2

0) +

L∑
`=1

N−1
`

(m− 1)T

m`

(
v`(λ`)− Ξ2

`

)
.
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To actually minimize the functions λ 7−→ v2
` (λ), we consider the sample average approximation

of v` with N ′` samples

v0,N ′0
(λ0)

∆
=

1

N ′0

N ′0∑
k=1

ψ(Xm0

T,0,k)
2E+(W0,k, λ0),

v`,N ′`(λ`)
∆
=

1

N ′`

N ′∑̀
k=1

m`

(m− 1)T

∣∣∣ψ(Xm`

T,`,k)− ψ(Xm`−1

T,`,k )
∣∣∣2 E+(W`,k, λ`).

3.2 Convergence of the importance sampling parameters

From Lemma 2.1, we deduce that v`,N ′` has a unique minimum

λ̂` = arg min
λ∈Rq

v`,N ′`(λ).

Theorem 3.1. Assume b and σ are C1 with bounded derivatives, ψ ∈ Hα for some α ≥ 1,
ψ is C1 and ∇ψ has polynomial growth. Then, the sequence of random functions (v`,N ′` : λ ∈
Rq → v`,N ′`(λ))` converges a.s. locally uniformly to the strongly convex function v : Rq → R
defined by

v(λ)
∆
= E

[
(∇ψ(XT ) · UT )2 E+(W,λ)

]
(3.5)

with

dUt = ∇b(Xt)Utdt+

q∑
j=1

∇σj(Xt)UtdW
j
t −

1√
2

q∑
ij,=1

∇σj(Xt)σi(Xt)dW̌
i,j
t (3.6)

where W̌ is a Brownian motion independent of W with values in Rq×q.
Moreover, λ̂` converges a.s. to λ? ∆

= arg minλ v(λ), when `→ +∞.

Proof. Let us define the doubly indexed sequence

Yk,`(λ) =
m`

(m− 1)T

∣∣∣ψ(Xm`

T,k)− ψ(Xm`−1

T,k )
∣∣∣2 E+(Wk, λ).

For any fixed `, the sequence (Yk,`(λ))k is i.i.d. so that for any k, E[Yk,`(λ)] = y`(λ) with

y`(λ) =E
[

m`

(m− 1)T

∣∣∣ψ(Xm`

T )− ψ(Xm`−1

T )
∣∣∣2 E+(W,λ)

]
.

We deduce from Proposition A.4 that the sequence (y`)` converges pointwise to the contin-
uous function E

[
(∇ψ(XT ) · UT )2 E+(W,λ)

]
, thus satisfying Assumption (H-4)-i. The i.i.d.

property of the sequence (Yk,`(λ))k also implies that

E

 sup
|λ|≤K

1

N

(
N∑
k=1

Yk,`(λ)

)2
 ≤ E

[
1

N

N∑
k=1

sup
|λ|≤K

Yk,`(λ)2

]
≤ 1

N
E

[
sup
|λ|≤K

Y1,`(λ)2

]
. (3.7)
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E

[
sup
|λ|≤K

Y1,`(λ)2

]2

≤ E

[(
m`

(m− 1)T

∣∣∣ψ(Xm`

T )− ψ(Xm`−1

T )
∣∣∣2)4

]
E

[
sup
|λ|≤K

E+(W,λ)4

]
. (3.8)

Using the following upper bound

sup
|λ|≤K

e−λ·WT+ 1
2
|λ|2T ≤ e

1
2
K2T

q∏
l=1

(eKW
(l)
T + e−KW

(l)
T ), (3.9)

E
[
sup|λ|≤K E+(W,λ)4

]
< +∞. Let us have a closer look at the first term in (3.8). From

Condition (2.1), we can write

E

[(
m`
∣∣∣ψ(Xm`

T )− ψ(Xm`−1

T )
∣∣∣2)4

]
≤ CE

[
m4`

∣∣∣Xm`

T −Xm`−1

T

∣∣∣8α(1 +
∣∣∣Xm`

T

∣∣∣8β +
∣∣∣Xm`−1

T

∣∣∣8β)] .
By using the strong rate of convergence of the Euler scheme, we notice that for any p > 1,

E
[
m4`p

∣∣∣Xm`

T −Xm`−1

T

∣∣∣8αp] ≤ m4`pC
(
m−4αp` +m−4αp(`−1)

)
≤ Cm4αp−4`p(α−1).

Hence, since α ≥ 1, by using the Cauchy Schwartz inequality we easily check that

sup
`

E

[(
m`

(m− 1)T

∣∣∣ψ(Xm`

T )− ψ(Xm`−1

T )
∣∣∣2)4

]
< +∞.

By combining all these results into (3.8), we obtain that sup` E
[
sup|λ|≤K Y

2
1,`(λ)

]
< +∞.

Then, we deduce along with (3.7) that the sequence (Yk,`)k,` satisfies Assumption (H-5) of
Proposition 4.3.

Let δ > 0 and λ ∈ Rd.

E

[
sup
|µ−λ|≤δ

|Y1,`(λ)− Y1,`(µ)|

]2

≤

E

[(
m`

(m− 1)T

∣∣∣ψ(Xm`

T )− ψ(Xm`−1

T )
∣∣∣2)2

]
E

[
sup
|µ−λ|≤δ

∣∣E+(W,λ)− E+(W,µ)
∣∣2] .

We have just proved that the first expectation on the r.h.s is bounded uniformly in `. Since
the exponential weights are a.s. continuous with respect to λ, it is clear that
limδ→0 sup|µ−λ|≤δ |E+(W,λ)− E+(W,µ)|2 = 0 a.s. Moreover, we can apply Lebesgue’s theo-
rem with the upper–bound given by (3.9) to deduce that

lim
δ→0

sup
`

E

[
sup
|µ−λ|≤δ

|Y1,`(λ)− Yk,`(µ)|

]
= 0.

Thus, Assumption (H-6) of Proposition 4.3 is satisfied. Finally, we can apply Proposition 4.3
to prove that the sequence 1

N ′`

∑N ′`
k=1 Yk,` converges a.s locally uniformly to 0. The convergence

of λ̂` to λ? can be deduced by closely mimicking the proof of Theorem 2.4.
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3.3 Strong law of large numbers and central limit theorem

Let us introduce a sequence (a`)`∈N of positive real numbers such that limL→∞
∑L

`=1 a` =∞.
We assume that the sample size N` has the following form

Nρ
`,L =

ρ(L)

m`a`

L∑
k=1

ak, ` ∈ {0, · · · , L} (3.10)

for some increasing function ρ : N→ R.
We choose this form for N` because it is a generic form allowing us a straightforward

use of the Toeplitz Lemma, which is a key tool to prove the central limit theorem. Since
limL→∞

∑L
`=1 a` =∞, for any sequence (x`)`≥1 converging to some limit x ∈ R,

lim
L→+∞

∑L
`=1 a`x`∑L
`=1 a`

= x.

We define the σ-algebra G generated by the samples (W`,k)`,k≥1 used to compute λ̂L. In
the above framework, the variables (W̃`,k)`,k are independent of G. We also introduce the
filtration (G̃`)`>0 generated by (W̃`,k, k ≥ 1)` and the filtration (G]`)`>0 defined as G]` = G ∨ G̃`.

Theorem 3.2. Assume that supL sup`
L2a`

ρ(L)
∑L
k=1 ak

< +∞. Then, under the assumptions of

Theorem 3.1, QL(λ̂0, . . . , λ̂L) −→ E[ψ(XT )] a.s. when L→ +∞.

For the choice a` = 1 for all `, the condition on ρ reduces to supL
L
ρ(L) < +∞.

Proof. As E[ψ(XL
T )] converges to E[ψ(XT )] as L goes to infinity, it is enough to show that

QL(λ̂0, . . . , λ̂L)− E[ψ(XL
T )] tends to 0.

QL(λ̂0, . . . , λ̂L)− E[ψ(XL
T )] =

1

Nρ
0,L

Nρ
0,L∑
k=1

ψ(X̃m0

T,0,k(λ̂0))E−(W̃0,k, λ̂0)− E[ψ(Xm0

T,0)]

+

L∑
`=1

1

Nρ
`,L

(Nρ
`,L∑

k=1

(
ψ(X̃m`

T,`,k(λ̂`))− ψ(X̃m`−1

T,`,k (λ̂`))
)
E−(W̃`,k, λ̂`)

− E
[
ψ(X̃m`

T,`)− ψ(X̃m`−1

T,` )
])

. (3.11)

From Theorem 2.5 and Remark 2.7, we know that

1

Nρ
0,L

Nρ
0,L∑
k=1

ψ(X̃m0

T,0,k(λ̂0))E−(W̃0,k, λ̂0)− E[ψ(Xm0

T,0)]
a.s.−−−−−→

L→+∞
0.

Then, it suffices to prove that the remaining terms in (3.11) tend to 0 with L. Let V be a
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compact neighbourhood of λ?.

L∑
`=1

1

Nρ
`,L

(Nρ
`,L∑

k=1

(
ψ(X̃m`

T,`,k(λ̂`))− ψ(X̃m`−1

T,`,k (λ̂`))
)
E−(W̃`,k, λ̂`)− E

[
ψ(X̃m`

T,`)− ψ(X̃m`−1

T,` )
])

=

L∑
`=1

1

Nρ
`,L

(Nρ
`,L∑

k=1

(
ψ(X̃m`

T,`,k(λ̂`))− ψ(X̃m`−1

T,`,k (λ̂`))
)
E−(W̃`,k, λ̂`)− E

[
ψ(X̃m`

T,`)− ψ(X̃m`−1

T,` )
])

1{λ̂`∈V}

+

L∑
`=1

1

Nρ
`,L

(Nρ
`,L∑

k=1

(
ψ(X̃m`

T,`,k(λ̂`))− ψ(X̃m`−1

T,`,k (λ̂`))
)
E−(W̃`,k, λ̂`)− E

[
ψ(X̃m`

T,` − ψ(X̃m`−1

T,` )
])

1{λ̂` /∈V}

For ` large enough (although random), 1{λ̂` /∈V} = 0. Hence, the second term in the above
equation tends to 0 a.s. when L goes to infinity. It remains to prove that the first term also
converges to zero. To do so, we apply Proposition 4.1 to the sequence

Y`,q =q
1

Nρ
`,q

(Nρ
`,q∑

k=1

(
ψ(X̃m`

T,`,k(λ̂`))− ψ(X̃m`−1

T,`,k (λ̂`))
)
E−(W̃`,k, λ̂`)

− E
[(
ψ(X̃m`

T,`)− ψ(X̃m`−1

T,` )
)])

1{λ̂`∈V}

and set Y L,q = 1
L

∑L
`=1 Y`,q. Note that E[Y`,q] = 0 for all ` and q. Since the samples used in

the different levels are independent and the λ̂`’s are independent of the filtration G̃, we can
write

E
[∣∣Y L,q

∣∣2] =
1

L2
E

E
∣∣∣∣∣

L∑
`=1

Y`,q

∣∣∣∣∣
2 ∣∣∣G

 =
1

L2

L∑
`=1

E
[
|Y`,q|2

]
. (3.12)

Using the same kind of arguments, we obtain

E
[
|Y`,q|2

]
≤ q2 1

Nρ
`,q

E
[(
ψ(X̃m`

T,`)− ψ(X̃m`−1

T,` )
)2
E+(W̃`, λ̂`)1{λ̂`∈V}

]
≤ q2a`
ρ(q)

∑q
k=1 ak

{
m`E

[(
ψ(X̃m`

T,`)− ψ(X̃m`−1

T,` )
)2
E+(W̃`, λ̂`)1{λ̂`∈V}

]}
.

From Proposition A.4, the term into braces converges when ` goes to infinity. Hence, using
the assumptions on the function ρ, we get

sup
q

sup
`

E
[
|Y`,q|2

]
< +∞. (3.13)

By combining Equations (3.12) and (3.13), we get that supL supq LE
[∣∣Y L,q

∣∣2] < +∞. Hence,

Proposition 4.1 yields that Y L,L vanishes when L goes to infinity and this ends the proof.
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Theorem 3.3. Suppose that the assumptions of Theorem 3.1 hold and that Condition (Hγ) is
satisfied. If Nρ

`,L is given by (3.10) with ρ(L) = m2γL(m−1)T and the sequence (a`)` satisfies

lim
L→∞

1(∑L
`=1 a`

)p/2 L∑
`=1

a
p/2
` = 0, for p > 2, (3.14)

then mγL(QL(λ̂0, . . . , λ̂L)− E[ψ(XT )]) =⇒ N (Cψ(T, γ), v(λ?)) when L→∞.

The convergence rate does not depend on the number of samples N ′` provided that they
tend to infinity with `.

Proof. By assumption (Hγ), we have that limL→+∞m
γL(E[ψ(XmL

T ) − ψ(XT )] = Cψ(T, γ).
The convergence of the level 0 is governed by Theorem 2.6 (see Remark 2.7) which yields that,
when L→∞, 1√

Nρ
0,L

Nρ
0,L∑
k=1

ψ(X̃m0

T,0,k(λ̂0))E−(W̃0,k, λ̂0)− E[ψ(Xm0

T )]

 =⇒ N (0, σ2
0(λ̂0)).

Then, we deduce from the choice of the function ρ that

mγL

 1

Nρ
0,L

Nρ
0,L∑
k=1

ψ(X̃m0

T,0,k(λ̂0))E−(W̃0,k, λ̂0)− E[ψ(Xm0

T )]

 P−−−−−→
L→+∞

0.

Since all the blocks are independent, it is sufficient to prove that

mγL

 L∑
`=1

1

Nρ
`,L

Nρ
`,L∑

k=1

(
ψ(X̃m`

T,`,k(λ̂`))− ψ(X̃m`−1

T,`,k (λ̂`))
)
E−(W̃`,k, λ̂`)− E[ψ(Xn

T )]

 =⇒ N (0, v(λ?)).

To do so, we introduce the (G]l )l≥1-martingale array (Y n
l )l≥1 defined by

Y n
l

∆
=

l∑
`=1

mγL

Nρ
`,L

Nρ
`,L∑
i=1

[(
ψ(X̃m`

T,`,i(λ̂`))− ψ(X̃m`−1

T,`,i (λ̂`))
)
E−(W̃`,i, λ̂`)− E

[
ψ(X̃m`

T )− ψ(X̃m`−1

T )
]]
,

so E[Y n
l ] = 0 for all l, n. According to Theorem A.1, we need to study the asymptotic behaviors

of the two quantities

〈Y n〉L =
L∑
`=1

E
[
|Y n
` − Y n

`−1|2
∣∣∣G]`−1

]
and

L∑
`=1

E
[
|Y n
` − Y n

`−1|p
∣∣G]`−1

]
, for p > 2 as n→∞.

Note that λ̂` is G]`−1–measurable and for any λ ∈ Rq the variables (X̃m`

T,`,i(λ), X̃m`−1

T,`,i (λ))1≤i≤Nl

are independent of G]`−1, then using (3.10) with ρ(L) = m2γL(m − 1)T , we rewrite the first
quantity as follows

〈Y n〉L =
1∑L
`=1 a`

L∑
`=1

a`

[
v`(λ̂`)− Ξ2

`

]
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with v` defined by (3.3) and Ξ` defined by (3.4). Let V be a compact neighbourhood of λ?.
We can write

〈Y n〉L =
1∑L
`=1 a`

L∑
`=1

a`

[
v`(λ̂`)− Ξ2

`

]
1{λ̂`∈V} +

1∑L
`=1 a`

L∑
`=1

a`

[
v`(λ̂`)− Ξ2

`

]
1{λ̂` /∈V}.

(3.15)

From Proposition A.4, we know that Ξ` −→ E[∇ψ(XT ).UT ] = 0, where the last equality is
a straightforward consequence of [24, Proposition 2.1]. From Proposition A.4, we know that
the sequence of fucntions v` converges pointwise to v defined by (3.5). Moreover, we can easily
prove that this convergence is locally uniform. Hence, by the convergence of λ̂` to λ? (see
Theorem 3.1), we deduce that v`(λ̂`)1{λ̂`∈V} converges to v(λ?) when `→ +∞. Moreover, for
` large enough (although random), 1{λ̂` /∈V} = 0.

Thus, we deduce from the Toeplitz lemma that 〈Y n〉L −→ v(λ?) a.s. Using Burkholder’s
inequality and Jensen’s inequalty together with the assumptions on ψ and Property (H-1)-ii,
we obtain that for any p > 2, there exists Cp > 0 such that

L∑
`=1

E
[
|Y n
` − Y n

`−1|p
∣∣G]`−1

]
≤ Cp(∑L

`=1 a`

)p/2 L∑
`=1

a
p/2
` −−−−→

L→∞
0

where the convergence to zero is ensured by (3.14). Consequently, we can apply Theorem A.1
to achieve the proof.

Remark 3.4. As usual, one can rescale mγL(QL(λ̂0, . . . , λ̂L) − E[ψ(XT )]) by an estimator
of v(λ?) to obtain a central limit theorem with variance 1. Thanks to Theorem 3.1, we know
that v`,N`(λ̂`) is a convergent estimator of v(λ?) and we can easily deduce from the proof of
Theorem 3.3 that under its assumptions

m2γL

 1

Nρ
0,L

 1

Nρ
0,L

Nρ
0,L∑
k=1

(ψ(X̃m0

T )E+(W̃0,k, λ0))2 −

 1

Nρ
0,L

Nρ
0,L∑
k=1

ψ(X̃m0

T )E+(W̃0,k, λ0)

2


+
L∑
`=1

N−1
`

(m− 1)T

m`

(
ṽ`,N`(λ`)− Ξ̃2

`,N`

) −−−−−→L→+∞
v(λ?).

Note the quantities ṽ`,N` and Ξ̃N` are defined as in Equations (3.3) and (3.4) and but using
the tilde sample paths (X̃`,k) and (W̃`,k). The term into braces, which can be computed online
during the multilevel Monte Carlo procedure, can be used to build confidence intervals. Any
convergent estimator of v(λ?) could of course be used, but this one has the advantage to cor-
respond to the true variance of the multilevel Monte Carlo estimator for any finite number of
levels L and not only asymptotically.

4 Strong law of large numbers for doubly indexed sequences

In this section, we prove two corner stone results used in the convergence of the multilevel ap-
proach. We tackle the convergence of empirical averages of doubly indexed random sequences
when both indices tend to infinity together.
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Proposition 4.1. Let (Xn,m)n,m be a doubly indexed sequence of vector valued random vari-
ables such that for all n, E[Xn,m] = xm with limm→+∞ xm = x . We define Xn,m =
1
n

∑n
i=1Xi,m. Assume that the two following assumptions are satisfied

(H-3) i. supn supm nVar
(
Xn,m

)
< +∞.

ii. supn supm Var (Xn,m) < +∞.

Then, for all increasing functions ρ : N→ N, Xn,ρ(n) −→ x a.s. and in L2 when n→∞.

From this proposition, one can easily deduce the following corollary by extracting a bespoke
subsequence

Corollary 4.2. Assume that (Xn,m)n,m be a doubly indexed sequence of vector valued ran-
dom variables satisfying the assumptions of Proposition 4.1. Then, for any strictly increasing
function ξ : N→ N, Xξ(n),n −→ x a.s. and in L2 when n→∞.

Proof of Proposition 4.1. The proof of this result closely mimics the one of [28, Theorem
IV.1.1]. We introduce the sequence (Yi,m)i,m defined by Yi,m = Xi,m − xm, which satisfies
E[Yi,m] = 0. As limm→∞ xm = x, it is sufficient to prove that Y n,ρ(n) −→ 0 a.s.

Condition (H-3)-i implies the L2 convergence to 0. We introduce the sequence (Zn,m)n
defined by Zn,m = sup{

∣∣Ȳk,m∣∣ : n2 ≤ k < (n + 1)2}. Let k be such that n2 ≤ k < (n + 1)2,
then

∣∣Ȳk,m∣∣ ≤ n−2

n2
∣∣Ȳn2,m

∣∣+
k∑

i=n2+1

|Yi,m|

 ,

Zn,m ≤
∣∣Ȳn2,m

∣∣+
1

n2

(n+1)2∑
i=n2+1

|Yi,m| .

Then,

E[Z2
n,m] ≤ E[Ȳ 2

n2,m] +

(n+1)2∑
i=n2+1

(
E[|Yi,m|2]

n4
+ 2

E[
∣∣Ȳn2,m

∣∣ |Yi,m|]
n2

)
+ 2

(n+1)2∑
i,j=n2+1;i 6=j

E[|Yj,m| |Yi,m|]
n4

.

Let κ > 0 denote the maximum of the upper bounds involved in Assumption (H-3). Using
the Cauchy Schwartz inequality, we get

E[Z2
n,m] ≤ κ

n2
+
κ((n+ 1)2 − n2)

n4
+ 2

κ2((n+ 1)2 − n2)

n3
+ 2

κ2((n+ 1)2 − n2)2

n4

≤ κ

n2
+
κ(2n+ 1)

n4
+ 2

κ2(2n+ 1)

n3
+ 2

κ2(2n+ 1)2

n4
.

Hence, for any function ρ : N→ N, E[Z2
n,ρ(n)] ≤ Cn

−2 where C > 0 is a constant independent
of ρ. Therefore, we have P(Zn,ρ(n) ≥ n−1/4) ≤ Cn−3/2. This inequality implies using the Borel
Cantelli Lemma that, for n large enough Zn,ρ(n) ≤ n−1/4 a.s. which yields the a.s. convergence
to 0.

Proposition 4.3. Let (Fn,m)n,m be a doubly indexed sequence of random variables with values
in the set of continuous functions, ie. for all n,m, Fn,m : Ω −→ C0(Rd). Moreover, we assume
that there exists a sequence of deterministic functions (fm)m s.t. for all n E[Fn,m] = fm for all
m. We define Fn,m = 1

n

∑n
i=1 Fi,m. Assume that the two following assumptions are satisfied
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(H-4) One of the following criteria holds

i. The sequence (fm)m converges pointwise to some continuous function f .

ii. The sequence (fm)m converges locally uniformly to some function f .

(H-5) For any compact set W ⊂ Rd,

i. supn supm nVar
(
supx∈W

∣∣Fn,m(x)
∣∣) < +∞.

ii. supn supm Var (supx∈W |Fn,m(x)|) < +∞.

(H-6) For all y ∈ Rd, limδ→0 supn supm E
[
sup|x−y|≤δ |Fn,m(x)− Fn,m(y)|

]
= 0.

Then, for all functions ρ : N → N, the sequence of random functions Fn,ρ(n) converges a.s.
locally uniformly to the locally continuous function f .

Remark 4.4. • When for every fixed m, the sequence (Fn,m)n is independent and identi-
cally distributed, Assumption (H-6) is ensured by

∀ y ∈ Rd, lim
δ→0

lim sup
m

E

[
sup
|x−y|≤δ

|F1,m(x)− F1,m(y)|

]
= 0

and Assumption (H-5)-ii implies (H-5)-i.

• As in Corollary 4.2, for any strictly increasing function ξ : N→ N, the sequence F ξ(n),n

converges a.s. locally uniformly to the locally continuous function f .

Proof. We can apply Proposition 4.1, to deduce that a.s. Fn,ρ(n) converges pointwise to the
function f . If we do not already know that f is continuous, then thanks to (H-5)-ii, we
can apply Lebesgue’s theorem to deduce that the functions fm are continuous. The uniform
convergence of the sequence fm to f (see (H-4)-ii) proves that the function f is continuous.

Let W be a compact set of Rd, we can cover W with a finite number K of open balls Wk

with centers (xk)k and radiuses (rk)k, i.e. Wk = B(xk, rk) and W = ∪Kk=1Wk. We want to
prove that

sup
x∈W

∣∣Fn,ρ(n)(x)− f(x)
∣∣ a.s.−−−−−→
n→+∞

0.

We write

sup
x∈W

∣∣Fn,ρ(n)(x)− f(x)
∣∣ =

K∑
k=1

sup
x∈Wk

∣∣Fn,ρ(n)(x)− f(x)
∣∣ . (4.1)

We split each term

sup
x∈Wk

∣∣Fn,ρ(n)(x)− f(x)
∣∣ = sup

x∈Wk

∣∣Fn,ρ(n)(x)− Fn,ρ(n)(xk)
∣∣+ sup

x∈Wk

|f(x)− f(xk)|

+
∣∣Fn,ρ(n)(xk)− f(xk)

∣∣ (4.2)

Let ε > 0. The idea is to choose the radiuses rk small enough to ensure that each term is
controlled by a function of ε. Now, we make the idea precise. For all k = 1, . . . ,K, the
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last term term can be made smaller that ε/K for n larger that some Nk using the pointwise
convergence. For all n ≥ maxk≤K Nk, and all 1 ≤ k ≤ K,

∣∣Fn,ρ(n)(xk)− f(xk)
∣∣ ≤ ε/K. The

function f being continuous, it is uniformly continuous on every Wk. If we choose the Wk

such that their radiuses are small enough (we may need to increase K), we can ensure that
for all 1 ≤ k ≤ K supx∈Wk

|f(x)− f(xk)| ≤ ε/K. The first term on the r.h.s of (4.2) deserves
more attention

sup
x∈Wk

∣∣Fn,ρ(n)(x)− Fn,ρ(n)(xk)
∣∣ ≤ 1

n

n∑
i=1

sup
x∈Wk

∣∣Fi,ρ(n)(x)− Fi,ρ(n)(xk)
∣∣ . (4.3)

Now, for every 1 ≤ k ≤ K, we want to apply Proposition 4.1 to the sequence of ran-
dom variables

(
supx∈Wk

|Fn,m(x)− Fn,m(xk)|
)
n,m

. Assumption (H-3) is clearly satisfied using
Minkowski’s inequality.

Let us define the sequence (Yn,m)n,m by

Yn,m = sup
x∈Wk

|Fn,m(x)− Fn,m(xk)| − E

[
sup
x∈Wk

|Fn,m(x)− Fn,m(xk)|

]
,

satisfying E[Yn,m] = 0 and the assumptions of Proposition 4.1. Hence, it yields that

lim
n→+∞

1

n

n∑
i=1

sup
x∈Wk

∣∣Fi,ρ(n)(x)− Fi,ρ(n)(xk)
∣∣− E

[
sup
x∈Wk

∣∣Fn,ρ(n)(x)− Fn,ρ(n)(xk)
∣∣] = 0. (4.4)

From (H-6), we know that if the Wk are chosen small enough,

sup
n

E

[
sup
x∈Wk

∣∣Fn,ρ(n)(x)− Fn,ρ(n)(xk)
∣∣] ≤ ε/K. (4.5)

Then, combining (4.3), (4.4) and (4.5) yields that supx∈Wk

∣∣Fn,ρ(n)(x)− Fn,ρ(n)(xk)
∣∣ ≤ ε/K.

We plus this inequality into (4.2) and deduce from (4.1), that for n large enough,

sup
x∈W

∣∣F̄n,ρ(n)(x)− f(x)
∣∣ ≤ 3ε.

5 Numerical experiments

5.1 Practical implementation

Our approach cleverly mixes the famous multilevel Monte Carlo technique with importance
sampling to reduce the variance. A classical approach would have been to consider the mul-
tilevel approximation of E

[
ψ(XT (θ))e−θ·WT− 1

2
|θ|2T

]
while choosing the value of θ which min-

imizes the variance of the central limit theorem for multilevel Monte Carlo (see [4]). This
asymptotic variances involves both ∇ψ and the process U given in (3.6). Hence, a classical
approach to importance sampling for multilevel Monte Carlo would require extra knowledge
than the function ψ and the underlying process X, thus precluding any kind of automation.

We have chosen a completely different approach allowing for one importance sampling
parameter per level, which enables us to treat each level independently of the others. In each
level, we use a sample average approximation as in [23] to compute the optimal importance
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sampling parameter defined as the one minimizing the variance of the current level. From
Theorem 3.3, we know that this approach is optimal in the sense that our multilevel estimator
QL(λ̂0, . . . , λ̂L) satisfies a central limit theorem with a limiting variance given by inf v where v
defined by (3.5) is the variance of the standard multilevel Monte Carlo estimator. We managed
to provide an algorithm reaching the optimal limiting variance without computing ∇ψ nor
the process U , hence our approach can be made fully automatic.

Computation of λ̂`. The parameters λ̂` are defined as the solutions of strongly convex
minimization problems. The minimization step is performed by the Newton–Raphson algo-
rithm to ∇v`,N ′` . The samples required to compute ∇v`,N ′` and ∇2v`,N ′` are generated once
and for all before starting the Newton–Raphson procedure such that the same samples are
used through all the iterations of the gradient descent. This feature is specific to the optimi-
sation step and may make the algorithm highly memory demanding as soon as the numbers
N ′` become large. As the parameter λ is not involved in the function ψ, all the quantities
ψ(Xm`

T,`,k)−ψ(Xm`−1

T,`,k ) for k = 1, . . . , N` can be precomputed before starting the minimization
algorithm, which enables us to save a lot of computational time.

The efficiency of the Newton–Raphson algorithm very much depends on the convexity of
the v`,N ′` functions. As already pointed out in [23], the smallest eigenvalue of the Hessian

matrix ∇2v`,N ′` is basically T
N ′`

∑N ′`
k=1

m`

(m−1)T

∣∣∣ψ(Xm`

T,`,k)− ψ(Xm`−1

T,`,k )
∣∣∣2 E+(W`,k, λ), which can

become extremely small and then conflicts with the will to have the strongest possible con-
vexity in order to speed up Newton–Raphson’s algorithm. This difficulty is circumvented by
noticing the equality ∇v`,N ′`(λ̂`) = 0 can be written as

λ̂`T −
1
N ′`

∑N ′`
k=1

m`

(m−1)TWk,`,T

∣∣∣ψ(Xm`

T,`,k)− ψ(Xm`−1

T,`,k )
∣∣∣2 e−λ̂`·WT,`,k

1
N ′`

∑N ′`
k=1

m`

(m−1)T

∣∣∣ψ(Xm`
T,`,k)− ψ(Xm`−1

T,`,k )
∣∣∣2 e−λ̂`·WT,`,k

= 0.

Hence, λ̂` can be interpreted as the root of ∇u`,N ′` with

u`,N ′`(λ) =
|λ|2 T

2
+ log

 1

N ′`

N ′∑̀
k=1

m`

(m− 1)T

∣∣∣ψ(Xm`

T,`,k)− ψ(Xm`−1

T,`,k )
∣∣∣2 e−λ·WT,`,k

 .

The Hessian matrix of u`,N ′` is given by

∇2u`,N ′`(λ) =TIq +

1
N ′`

∑N ′`
k=1

m`

(m−1)TWk,`,T (Wk,`,T )∗
∣∣∣ψ(Xm`

T,`,k)− ψ(Xm`−1

T,`,k )
∣∣∣2 e−λ·WT,`,k

1
N ′`

∑N ′`
k=1

m`

(m−1)T

∣∣∣ψ(Xm`
T,`,k)− ψ(Xm`−1

T,`,k )
∣∣∣2 e−λ·WT,`,k

−

(
1
N ′`

∑N ′`
k=1

m`

(m−1)TWk,`,T

∣∣∣ψ(Xm`

T,`,k)− ψ(Xm`−1

T,`,k )
∣∣∣2 e−λ·WT,`,k

)
1
N ′`

∑N ′`
k=1

m`

(m−1)T

∣∣∣ψ(Xm`
T,`,k)− ψ(Xm`−1

T,`,k )
∣∣∣2 e−λ·WT,`,k(

1
N ′`

∑N ′`
k=1

m`

(m−1)TWk,`,T

∣∣∣ψ(Xm`

T,`,k)− ψ(Xm`−1

T,`,k )
∣∣∣2 e−λ·WT,`,k

)∗
1
N ′`

∑N ′`
k=1

m`

(m−1)T

∣∣∣ψ(Xm`
T,`,k)− ψ(Xm`−1

T,`,k )
∣∣∣2 e−λ·WT,`,k

. (5.1)
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From the Cauchy Schwartz inequality, it is clear that ∇2u`,N ′`(λ) is lower bounded by TIq,
where the inequality is to be understood in the sense of the order on symmetric matrices.

Description of the algorithm. Our algorithm splits in two steps: the minimization step
to compute the optimal importance sampling measure and the MLMC step to actually provide
an estimator of E[ψ(XT )]. The samples used in the two steps are independent. For the sake
of clearness, we provide the pseudocode of our global method in in Algorithm 5.1.

1 Generate Xm0

T,0,1, . . . , X
m0

T,0,N ′0
i.i.d. samples following the law of Xm0

T independently of
the other blocks.

2 Solve ∇u0,N ′0
(λ̂0) = 0 by using the Newton–Raphson algorithm.

3 for ` = 1 : L do
4 Generate (Xm`

T,`,1, X
m`−1

T,`,1 ), . . . , (Xm`

T,`,N ′`
, Xm`−1

T,`,N ′`
) i.i.d. samples following the law of

(Xm`

T , Xm`−1

T ) independently of the other blocks.
5 Solve ∇u`,N ′`(λ̂`) = 0 by using the Newton–Raphson algorithm.
6 end
7 Conditionally on λ̂0, generate X̃m0

T,0,1(λ̂0), . . . , X̃m0

T,0,N0
(λ̂0) i.i.d. samples with the law of

Xm0

T (λ̂0) independently of the other blocks. The tilde and non tilde quantities are
conditionally independent.

8 for ` = 1 : L do
9 Conditionally on λ̂`, generate (X̃m`

T,`,1(λ̂`), X̃
m`−1

T,`,1 (λ̂`)), . . . , (X̃
m`

T,`,N`
(λ̂`), X̃

m`−1

T,`,N`
(λ̂`))

i.i.d. samples with the law of (Xm`

T (λ̂`), X
m`−1

T (λ̂`)) independently of the other
blocks. The tilde and non tilde quantities are conditionally independent.

10 end
11 Compute the multilevel importance sampling estimator

QL(λ̂0, . . . , λ̂L) =
1

N0

N0∑
k=1

ψ(X̃m0

T,0,k(λ̂0))E−(W̃0,k, λ̂0)

+
L∑
`=1

1

N`

N∑̀
k=1

(
ψ(X̃m`

T,`,k(λ̂`))− ψ(X̃m`−1

T,`,k (λ̂`))
)
E−(W̃`,k, λ̂`).

Algorithm 5.1: Multilevel Importance Sampling (MLIS)

Complexity analysis. In this paragraph, we focus on the impact of the number of levels L
on the overall computational time of our algorithm. The computational cost of the standard
multilevel estimator is proportional to

CML =
L∑
`=0

N`m
` = m2L+1L2.
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The global cost of our algorithm writes as the sum of the cost of the computation of the (λ̂`)`
and of the standard multilevel estimator

CMLIS =

L∑
`=0

N ′`(m
` + 3K`) +

L∑
`=0

N`m
`

where K` is the number of iterations of Newton–Raphson’s algorithm to approximate λ̂` and
the factor 3 corresponds to the fact that building ∇u`,N ′` and ∇2u`,N ′` basically boils down
to three Monte Carlo summations. In practice, K` ≤ 5 as the problem is strongly convex.
Because the same random variables are used at each iteration of the optimisation step, they
must be stored, which makes the memory footprint of our algorithm proportional to N ′`.

So, if we choose N ′` = N`m
`

m`+15
, the total cost of our MLIS algorithm should be roughly twice

the cost of the standard multilevel estimator. This choice of N ′` reduces the number of samples
used to approximate the variance of the first levels compared to using directly N`. However,
when L increases, N ′` can become extremely large for small values of ` which leads to an even
larger memory footprint (see Section 5.1). Not to break the scalability of the algorithm, the
values of N ′` have to be kept reasonable depending on the amount of memory available on
the computer. For an instance, enforcing N ′` ≤ 500000 is reasonable on a computer with 8Gb
of RAM. Anyway, it is crystal clear that a fairly good approximation of the variance v` is
enough and running for an ultimately accurate estimator would lead to a tremendous waste of
computational time. Monitoring the convergence of v`,N ′` would really help choosing sensible
values for N ′`.

5.2 Comparison with existing algorithms

In Theorem 3.3, we obtain the same limiting variance as in [5], in which the authors apply
MLMC to importance sampling (see (1.4)) and not vice–versa as we do. The way importance
sampling and MLMC are coupled does not actually matter in terms of convergence rate but it
does matter in practice. First, our approach preserves the independence of the different levels
by solving one optimization problem per level instead of a global one. Hence, the contributions
of the different levels are computed independently of each other as in the standard MLMC
setting. Second, we use sample average approximation combined with Newton–Raphson’s
algorithm to compute the best importance parameters, whereas in [5, 6], the authors rely on
stochastic approximation, which is known to demand proper tuning to effectively converge in
practice. Our approach inherits from the good convergence properties of Newton’s algorithm
when applied to strongly convex problems with a tractable Hessian matrix. As already noted
in [23], this approach is more stable and robust.

5.3 Experimental settings

We compare four methods in terms of their root mean squared error (RMSE): the crude
Monte Carlo method (MC), the adaptive Monte Carlo method proposed in [23] (MC+IS), the
Multilevel Monte Carlo method (ML) and our Importance Sampling Multilevel Monte Carlo
estimator (ML+IS). We recall that the RMSE is defined by RMSE =

√
Bias2 + Variance. In

the computation of the bias, the true value is replaced by its multilevel Monte Carlo estimator
with L = 9 levels, which yields a very accurate approximation. Not to mention, the CPU
times showed on the graphs take into account both the time to the search for the optimal
parameter and the time for the second stage Monte Carlo, be it multilevel or not.
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5.4 Multidimensional Dupire’s framework

We consider a d−dimensional local volatility model, in which the dynamics, under the risk
neutral measure, of each asset Si is supposed to be given by

dSit = Sit(r dt+ σ(t, Sit)dW
i
t ), S0 = (S1

0 , . . . , S
d
0)

whereW = (W 1, . . . ,W d), each componentW i being a standard Brownian motion with values
in R. For the numerical experiments, the covariance structure of W will be assumed to be
given by 〈W i,W j〉t = ρt1{i 6=j} + t1{i=j}. We suppose that ρ ∈ (− 1

d−1 , 1), which ensures that
the matrix C = (ρ1{i 6=j}+1{i=j})1≤i,j≤d is positive definite. Let L denote the lower triangular
matrix involved in the Cholesky decomposition C = LL∗. To simulate W on the time-grid
0 < t1 < t2 < . . . < tN , we need d×N independent standard normal variables and set

Wt1

Wt2
...

WtN−1

WtN

 =



√
t1L 0 0 . . . 0√
t1L

√
t2 − t1L 0 . . . 0

...
. . . . . . . . .

...
...

. . . . . . √tN−1 − tN−2L 0√
t1L

√
t2 − t1L . . .

√
tN−1 − tN−2L

√
tN − tN−1L

G,

where G is a normal random vector in Rd×N . The maturity time and the interest rate are
respectively denoted by T > 0 and r > 0. The local volatility function σ we have chosen is of
the form

σ(t, x) = 0.6(1.2− e−0.1te−0.001(xert−s)2)e−0.05
√
t, (5.2)

with s > 0. We know that there exists a duality between the variables (t, x) and (T,K) in
Dupire’s framework. Hence for formula (5.2) to make sense, one should choose s equal to the
spot price of the underlying asset so that the bottom of the smile is located at the forward
money. We refer to Figure 1 to have an overview of the smile.

Figure 1: Local volatility function

Basket option We consider options with payoffs of the form (
∑d

i=1 ω
iSiT − K)+ where

(ω1, . . . , ωd) is a vector of algebraic weights. The strike value K can be taken negative to
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deal with Put like options. With no surprise, we can see on Figure 2 that multilevel esti-
mators always outperform their classical Monte Carlo counterpart. The comparison for very
little accurate estimators may be meaningless as it is pretty difficult to reliably measure short
execution times and the empirical variance of the estimator is in this case even less accurate
than the estimator itself. Note that the points on the extreme right hand side are obtained for
multilevel estimators with L = 2, respectively for Monte Carlo estimators with 256 samples.
For RMSE between 0.1 and 0.005, our MLIS estimator is 10 times faster than the standard
ML estimator. When a very high accuracy is required, namely when RMSE is smaller than
0.001, the MLIS estimator remains between 3 and 4 times faster than the standard multi-
level estimator, which is already a great achievement since for this level of accuracy, the ML
estimator may need several dozens of minutes to yield its result.
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Figure 2:
√
MSE vs. CPU time for a basket option in the local volatility model with I = 5,

r = 0.05, T = 1, S0 = 100, K = 100, m = 4.

5.5 Multidimensional Heston model

The multidimensional Heston model can be easily written by specifying on the one hand that
each asset follows a 1-D Heston model and on the other hand the correlation structure between
the involved Brownian motions. The asset price process S = (S1, . . . , Sd) and the volatility
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process σ = (σ1, . . . , σd) solve

dSit = rSitdt+
√
σitS

i
tdB

i
t

dσit = κi(ai − σit)dt+ νit

√
σit(γ

idBi
t +
√

1− (γi)2dB̃i
t)

where all the components of B = (B1, . . . , Bd) and B̃ = (B̃1, . . . , B̃d) are real valued Brownian
motions. The vectors κ = (κ1, . . . , κd) and a = (a1, . . . , ad) denote respectively the reversion
rate and the mean level of each volatility process, while the vector ν is the volatility of the
volatility process. The vector γ̄ = (γ1, . . . , γd) embodies the correlations between an asset and
its volatility process, with γi ∈] − 1, 1[ for all 1 ≤ i ≤ d. The vector valued processes B and
B̃ are independent and satisfy

d〈B〉t = ΓS dt and d〈B̃〉t = Id dt

where we assume for our experiments that the covariance matrix ΓS has the structure

ΓS =


1 ρ . . . ρ

ρ 1
. . .

...
...

. . . . . . ρ
ρ . . . ρ 1

 (5.3)

with ρ ∈
]
−1
I−1 , 1

[
, such that the matrix ΓS is positive definite. The processes B and B̃ are

Wiener processes with covariance matrices given by ΓS and Id respectively.
For the sake of simplicity, we decided not to add any extra correlation between the com-

ponents of B̃, hence the choice d〈B̃〉 = Id dt and we assume in the following that for all the
γi’s are equal for 1 ≤ i ≤ d, γi = γ. The correlations between the volatilities are entirely
specified by the correlations between the assets. Even though we do not aim at discussing
the correlation structure of the multidimensional Heston model, we believe it is important to
make precise the underlying correlation structure in the multidimensional model so that the
experiments are easily reproducible.

The model can be equivalently written

dSit = rSitdt+
√
σitS

i
tdB

i
t

dσit = κi(ai − σit)dt+ νit

√
σitdW

i
t

where the processes W and B are Wiener processes satisfying

d〈B〉t = ΓS dt; d〈B,W 〉t = γΓS dt; d〈W 〉t = (γ2ΓS + (1− γ2)Id) dt.

The process (B,W ) with values in R2d is a Wiener process with covariance matrix

Γ =

(
ΓS γΓS
γΓS γ2ΓS + (1− γ2)Id

)
.

Hence, the pair of processes (B,W ) can be easily simulated by applying the Cholesky factor-
ization of Γ to a standard Brownian motion with values in R2d.
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Basket Option We consider a basket option as in the local volatility model. Figure 3 looks
very much the same as in the case of the local volatility model (see Figure 2). The MLIS
estimator always outperforms all the ML estimator by a factor of 3 to 4. Note that for small
RMSE, the computational time can go beyond several hours, hence cutting it down by two or
three times represents a real improvement.
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Figure 3:
√
MSE vs. CPU time for a best of option in the multidimensional Heston model

with I = 10, r = 0.03, T = 1, S0 = 100, K = 100, ν = 0.01, κ = 2, a = 0.04, γ = −0.2,
ρ = 0.3 and m = 4.

Best of option We consider options with payoffs of the form (max1≤i≤d S
i
T − K)+. The

payoff of this option does obviously not satisfy the assumptions of Theorem 3.2 as the payoff
of the “best of” options is not Hölder with α ≥ 1. Nonetheless, the multilevel approach beats
the standard Monte Carlo technology by far (see Figure 4). Moreover, coupling importance
sampling with the multilevel approach improves the accuracy. For a fixed RMSE, we can
expect MLIS to be 3 faster that ML. This example shows the robustness of the method, which
performs well whereas the theoretical assumptions are not satisfied.

6 Conclusion

We have presented a new estimator making the most of the recent works on multilevel Monte
Carlo and on adaptive importance sampling. As expected, this new estimator outperforms the
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Figure 4:
√
MSE vs. CPU time for a best of option in the multidimensional Heston model

with I = 5, r = 0.03, T = 1, S0 = 100, K = 140, ν = 0.25, κ = 2, a = 0.04, γ = 0.2, ρ = 0.5
and m = 4.

standard multilevel Monte Carlo estimator by a great deal. For a fixed accuracy measured in
terms the mean squared error, the MLIS estimator is between 3 and 10 times faster that the
standard multilevel Monte Carlo estimator. This efficiency of our MLIS approach could still
be improved by monitoring the number of samples N ′` to be used to approximate the variance
v`,N ′` in each level. Actually, we believe that there is no need to compute a too accurate
approximation of this variance as a slight decrease in the accuracy of λ̂` would not lead to a
serious deterioration of the accuracy of the MLIS estimator but it could help to save a lot of
computational time.
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A Auxiliary lemmas

A.1 Central limit theorems for martingale arrays

Theorem A.1 (Central limit theorem for triangular array). Suppose that (Ω,F,P) is a prob-
ability space and that for each n, we have a filtration Fn = (Fnk )k≥0, a sequence kn −→
∞ as n −→ ∞ and a real vector martingale Y n = (Y n

k )k≥0 adapted to Fn. We make the
following two assumptions.

(H-7) i. There exists a deterministic symmetric positive semi-definite matrix Γ , such that

〈Y n〉kn =

kn∑
k=1

E
[
|Y n
k − Y n

k−1|2|Fnk−1

] P−→
n→∞

Γ.

ii. There exists a real number a > 1, such that

kn∑
k=1

E
[
|Y n
k − Y n

k−1|2a|Fnk−1

] P−→
n→∞

0.

Then
Y n
kn
L−→ N (0, Γ ) as n→∞.

A.2 Asymptotic behavior of the process
(
Xm` −Xm`−1

)
`≥0

In the following we recall some results around the stable convergence. Let Zn be a sequence
of random variables with values in a Polish space E, all defined on the same probability space
(Ω,F ,P). Let (Ω̃, F̃ , P̃) be an extension of (Ω,F ,P), and let Z be an E-valued random variable
on the extension. We say that (Zn) converges in law to Z stably and write Zn =⇒stably Z, if

E(Uh(Zn))→ Ẽ(Uh(Z))

for all h : E → R bounded continuous and all bounded random variable U on (Ω,F) .
According to Section 2 of Jacod [21] and Lemma 2.1 of Jacod and Protter [22], we have the
following result

Lemma A.2. Let Vn and V be defined on (Ω,F) with values in another metric space.

If Vn
P→ V, Zn =⇒stably Z then (Vn, Zn) =⇒stably (V,X).

The following result proved by Ben Alaya and Kebaier [4, Theorem 3] is an improvement
of Theorem 3.2 of Jacod and Protter [22], for the setting of Multilevel Euler scheme. More
precisely, if (Xm`

t )t≥0 denotes the Euler scheme with time step m`, with m, ` ∈ N\{0, 1}, then
we have the following weak convergence in the Skorohod topology.

Theorem A.3. Assume that b and σ are C1 with linear growth then the following result holds.

For all m ∈ N \ {0, 1},

√
m`

(m− 1)T
(Xm` −Xm`−1

) =⇒stably U, as `→∞,

with (Ut)0≤t≤T the d-dimensional diffusion process solution to (3.6)

30



Proposition A.4. Let ψ : Rd → R be a C1 function such that ψ ∈ Hα, for some α ≥ 1 and
∇ψ has at most polynomial growth. For any real valued random variable Y defined on (Ω,F)
such that E[|Y |1+η], for some η > 0, we have, for any δ > 0

E

[(
m`

(m− 1)T

)δ/2 (
ψ(Xm`

T )− ψ(Xm`−1

T )
)δ
Y

]
−−−−→
`→+∞

E
[
(∇ψ(XT ) · UT )δ Y

]
.

Proof. The Taylor expansion applied to the real valued function ψ yields

ψ(Xm`

T )− ψ(Xm`−1

T ) =∇ψ(XT ) · (Xm`

T −Xm`−1

T )

+ (Xm`

T −XT ) · ε(Xm`

T −XT )− (Xm`−1

T −XT ) · ε(Xm`−1

T −XT )

with ε : Rd → Rd satisfying lim|x|→0 ε(x) = 0. From Property ((H-1)-ii), we easily get√
m`

(m− 1)T

(
(Xm`

T −XT ) · ε(Xm`

T −XT )− (Xm`−1

T −XT ) · ε(Xm`−1

T −XT )
)

P−−−→
`→∞

0.

So, we conclude from Lemma A.2 and Theorem A.3 that√
m`

(m− 1)T

(
ψ(Xm`

T )− ψ(Xm`−1

T )
)

=⇒stably ∇ψ(XT ).UT , as `→∞.

Let η > κ > 0. From the assumptions on ψ together with Property (H-1)-ii, we get

sup
`≥0

E

∣∣∣∣∣
(

m`

(m− 1)T

)δ/2 (
ψ(Xm`

T )− ψ(Xm`−1

T )
)δ
Y

∣∣∣∣∣
1+κ
 <∞,

which yields the uniform integrability of the family
((

m`

(m−1)T

)δ/2 (
ψ(Xm`

T )− ψ(Xm`−1

T )
)δ
Y

)
`

.

The conclusion easily follows.
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