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A NOTE ON THE DERIVATION OF RIGID-PLASTIC MODELS

JEAN-FRANÇOIS BABADJIAN AND GILLES A. FRANCFORT

Abstract. This note is devoted to a rigorous derivation of rigid-plasticity as the limit of elasto-
plasticity when the elasticity tends to infinity.

1. Introduction

Small strain elasto-plasticity is formally modeled as follows. Consider a homogeneous elasto-
plastic material occupying a volume Ω ⊂ Rn with Hooke’s law (elasticity tensor) C. Assume that
the body is subjected to a time-dependent loading process during a time interval [0, T ] with, say,
f(t) as body loads, g(t) as surface loads on a part ΓN of ∂Ω, and w(t) as displacement loads (hard
device) on the complementary part ΓD of ∂Ω. Denoting by Eu(t) the infinitesimal strain at t,
that is, the symmetric part of the spatial gradient of the displacement field u(t) at t, small strain
elasto-plasticity requires that Eu(t) decompose additively as

Eu(t) = e(t) + p(t) in Ω, with u(t) = w(t) on ΓD

where e(t) is the elastic strain and p(t) the plastic strain. The elastic strain is related to the stress
tensor σ(t) through the constitutive law of linearized elasticity σ(t) = Ce(t). In a quasi-static
setting, the equilibrium equations read as

div σ(t) + f(t) in Ω, σ(t)ν = g(t) on ΓN ,

where ν denotes the outer unit normal to ∂Ω. In plasticity, the stresses are constrained to remain
below a yield stress at which permanent strains appear. Specifically, the deviatoric stress σD(t)
must belong to a fixed compact and convex subset K of the deviatoric (trace free) matrices

σD(t) ∈ K.

If σD(t) lies inside the interior of K, the material behaves elastically (p(t) = 0). On the other
hand, if σD(t) reaches the boundary of K (called the yield surface), a plastic flow may develop, so
that, after unloading, there will remain a non-trivial permanent plastic strain p(t). Its evolution
is described by the so-called flow rule

ṗ(t) ∈ NK(σD(t))

where NK(σD(t)) is the normal cone to K at σD(t). By arguments of convex analysis, the flow
rule can be equivalently written as Hill’s principle of maximum plastic work

σD(t) : ṗ(t) = max
τD∈K

τD : ṗ(t) =: H(ṗ(t)),

where H is the support function of K, and H(ṗ(t)) identifies with the plastic dissipation.
In this self-contained note, we propose to show that rigid plasticity – that is the model where

one formally sets C = ∞ (and correspondingly ṗ(t) = Eu̇(t), div u̇(t) = 0) in the system above –
can be derived as an asymptotic limit of small strain elasto-plasticity as C actually gets larger and
larger. Rigid-plastic models are particularly useful in order to compute analytical solutions in a
plane-strain setting. Indeed, inside the plastic zone, the stress equations can be formally written
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as a non-linear hyperbolic system which is solved by the method of characteristics. The family
of characteristics are the so-called slip lines along which some combinations of the stress remain
constants, while the tangential velocities can jump. It thus seems appropriate to rigorously derive
rigid-plasticity in order to investigate the hyperbolic structure of the equations. However, this
later task falls outside the scope of the present work.

Notationwise, we denote by Mn×n
sym the set of symmetric n × n matrices. If A and B ∈ Mn×n

sym ,
we use the Euclidean scalar product A : B := tr(AB) and the associated Euclidean norm |A| :=√
A : A. The subset Mn×n

D of Mn×n
sym stands for trace free symmetric matrices. If A ∈ Mn×n

sym , it can
be orthogonally decomposed as

A = AD +
trA

n
I,

where AD ∈ M
n×n
D , and I is the identity matrix in Rn. The notation ⊙ stands for the symmetrized

tensor product between vectors in R
n, i.e., if a and b ∈ R

n, (a ⊙ b)ij = (aibj + ajbi)/2 for all
1 ≤ i, j ≤ n. Note in particular that 1√

2
|a||b| ≤ |a⊙ b| ≤ |a||b|.

The Lebesgue measure in Rn and the (n − 1)-dimensional Hausdorff measure are denoted by
Ln and Hn−1, respectively. Given a locally compact set E ⊂ Rn and a Euclidean space X , we
denote by M(E;X) (or simply M(E) if X = R) the space of bounded Radon measures on E with
values in X , endowed with the norm ‖µ‖M(E;X) := |µ|(E), where |µ| ∈ M(E) is the variation of
the measure µ. Moreover, if ν is a non-negative Radon measure over E, we denote by dµ/dν the
Radon-Nikodym derivative of µ with respect to ν.

We use standard notation for Lebesgue and Sobolev spaces. In particular, for 1 ≤ p ≤ ∞, the
Lp-norms of the various quantities are denoted by ‖ · ‖p. If U ⊂ R

n is an open set, the space
BD(U) of functions of bounded deformation in U is made of all functions u ∈ L1(U ;Rn) such that
Eu ∈ M(U ;Mn×n

sym ), where Eu := (Du+DuT )/2 and Du is the distributional derivative of u. We
refer to [14] for general properties of this space. Finally, H(div, U) stands for the Hilbert space of
all τ ∈ L2(U ;Mn×n

sym ) such that div τ ∈ L2(U ;Rn).

2. The elasto-plastic model

We now consider a homogeneous elasto-plastic material with Hooke’s law given by a fourth order
tensor C satisfying the usual symmetry properties

Cijkl = Cjikl = Cklij , for all 1 ≤ i, j, k, l ≤ n, (2.1)

and the growth and coercity assumptions

α|ξ|2 ≤ Cξ : ξ ≤ β|ξ|2, for all ξ ∈ M
n×n
sym , (2.2)

where α and β > 0.
It occupies the domain Ω, a bounded and connected open subset of Rn with at least Lipschitz

boundary (see Definition 2.1) and outer normal ν. Its boundary ∂Ω is split into the union of a
Dirichlet part ΓD which is non empty and open in the relative topology of ∂Ω, a Neumann part
ΓN := ∂Ω \ ΓD, and their common relative boundary denoted by ∂⌊∂Ω

ΓD.
Standard plasticity is characterized by the fact that the deviatoric stress is constrained to stay

in a fixed compact and convex subset K ⊂ M
n×n
D of deviatoric matrices. We further assume that

B(0, c∗) ⊂ K ⊂ B(0, c∗), (2.3)

where 0 < c∗ < c∗ < ∞, and denote by

K := {σ ∈ L2(Ω;Mn×n
sym ) : σD(x) ∈ K for a.e. x ∈ Ω}.
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The support function of K, defined for any p ∈ M
n×n
D by H(p) := supτ∈K τ : p, satisfies,

according to (2.3),
c∗|p| ≤ H(p) ≤ c∗|p|, for all p ∈ M

n×n
sym .

On the Dirichlet part ΓD of the boundary, the body is subjected to a hard device, i.e., a
boundary displacement which is the trace on ΓD of a function w ∈ AC([0, T ];H1(Ω;Rn)). In
addition, the body is subjected to two types of forces: bulk forces f ∈ AC([0, T ];Ln(Ω;Rn)),
and surface forces g ∈ AC([0, T ];L∞(ΓN ;Rn)), the latter acting on the Neumann part ΓN of the
boundary. It is classical to assume a uniform safe load condition (see [12]) which ensures the
existence of a plastically, as well as statically admissible state of stress π associated with the pair
(f, g). Specifically, there exists π ∈ AC([0, T ];L2(Ω;Mn×n

sym )) and some safety parameter c > 0 such
that







πD(t, x) +B(0, c) ⊂ K for a.e. x ∈ Ω and all t ∈ [0, T ]

div π(t) + f(t) = 0 in Ω, π(t)ν = g(t) on ΓN .

Given a boundary datum ŵ ∈ H1(Ω;Rn), we define the space of all kinematically admissible
triples as

A(ŵ) := {(u, e, p) ∈ BD(Ω)× L2(Ω;Mn×n
sym )×M(Ω ∪ ΓD;Mn×n

D ) :

Eu = e+ p in Ω, p = (ŵ − u)⊙ ν on ΓD},
where we still denote by u the trace of u on ∂Ω (see [2]). We also define the space of all statically
admissibles stresses as

Σ := {σ ∈ L2(Ω;Mn×n
sym ) : div σ ∈ Ln(Ω;Rn), σν ∈ L∞(ΓN ;Rn), σD ∈ L∞(Ω;Mn×n

D )},
where σν is the normal trace of σ ∈ H(div,Ω) which is well defined as an element ofH−1/2(ΓN ;Rn),

the dual space of H
1/2
00 (ΓN ;Rn).

Following [7, Section 6], we introduce the following class of domains for which a meaningful du-
ality pairing between stresses and strains can be defined. Note that the class contains in particular
C2-domains [10], as well as hypercubes where ΓD is one of its faces [7, Section 6].

Definition 2.1. We say that Ω is admissible if for any σ ∈ Σ, and any p ∈ M(Ω ∪ ΓD;Mn×n
D ),

with (u, e, p) ∈ A(ŵ) for some ŵ ∈ H1(Ω;Rn), u ∈ BD(Ω) and e ∈ L2(Ω;Mn×n
sym ), the distribution

defined for all ϕ ∈ C∞
c (Rn) by

〈[σD : p], ϕ〉 :=
ˆ

Ω

ϕσ : (Eŵ − e) dx−
ˆ

Ω

ϕdiv σ · (u− ŵ) dx

−
ˆ

Ω

σ : [(u− ŵ)⊙∇ϕ] dx+

ˆ

ΓN

ϕσν · (u− ŵ) dHn−1

extends to a bounded Radon measure in Rn with |[σD : p]| ≤ ‖σD‖∞|p|. In this case, its mass is
given by

〈σD, p〉 := 〈[σD : p], 1〉 =
ˆ

Ω

σ : (Eŵ− e) dx−
ˆ

Ω

div σ · (u− ŵ) dx+

ˆ

ΓN

σν · (u− ŵ) dHn−1. (2.4)

For any e ∈ L2(Ω;Mn×n
sym ), the elastic energy is

Q(e) =
1

2

ˆ

Ω

Ce : e dx,

while, for any p ∈ M(Ω ∪ ΓD;Mn×n
D ), the dissipation energy is the convex functional of measure

(see [9, 6])

H(p) :=

ˆ

Ω∪ΓD

H

(

dp

d|p|

)

d|p|.
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If p : [0, T ] → M(Ω ∪ ΓD;Mn×n
D ), we define the total dissipation between times a and b by

VH(p; [a, b]) := sup

{

N
∑

i=1

H(p(ti)− pε(ti−1)) : N ∈ N, a = t0 < t1 < · · · < tN = b

}

.

If additionally p ∈ AC([0, T ];M(Ω ∪ ΓD;Mn×n
D )), then [4, Theorem 7.1] shows that

VH(p; [a, b]) =

ˆ b

a

H(ṗ(s)) ds.

We finally impose the following initial condition on the evolution: (u0, e0, p0) ∈ A(w(0)) with
σ0 := Ce0 such that

div σ0 + f(0) = 0 in Ω, σ0ν = g(0) on ΓN , (σ0)D ∈ K.

The following existence result has been established in [4, 7].

Theorem 2.2. Under the previous assumptions, there exist a quasi-static evolution, i.e. a mapping
t 7→ (u(t), e(t), p(t)) with the following properties

u ∈ AC([0, T ];BD(Ω)), σ, e ∈ AC([0, T ];L2(Ω;Mn×n
sym )), p ∈ AC([0, T ];M(Ω ∪ ΓD;Mn×n

D )),

(u(0), e(0), p(0)) = (u0, e0, p0),

and for all t ∈ [0, T ],










Eu(t) = e(t) + p(t) in Ω,

p(t) = (w(t) − u(t))⊙ ν on ΓD,

σ(t) = Ce(t) in Ω,











div σ(t) + f(t) = 0 in Ω,

σ(t)ν = g(t) on ΓN ,

σD(t) ∈ K,

and for a.e. t ∈ [0, T ],

H(ṗ(t)) = [σD(t) : ṗ(t)] in M(Ω ∪ ΓD;Mn×n
D ). (2.5)

Remark 2.3. Equation (2.5) is a measure-theoretic formulation of the usual flow rule of perfect
plasticity. Using the definition (2.4) of duality, it can be equivalently written as an energy balance

Q(e(t)) +

ˆ t

0

H(ṗ(s)) ds = Q(e0) +

ˆ t

0

ˆ

Ω

σ(s) : Eẇ(s) dx ds

+

ˆ t

0

ˆ

Ω

f(s) · (u̇(s)− ẇ(s)) dx ds+

ˆ t

0

ˆ

ΓN

g(s) · (u̇(s)− ẇ(s)) dHn−1 ds,

or equivalently, according to the safe-load condition,

Q(e(t)) +

ˆ t

0

H(ṗ(s)) ds−
ˆ t

0

〈πD(s), ṗ(s)〉 ds+
ˆ

Ω

π(t) : (Ew(t) − e(t)) dx

= Q(e0) +

ˆ

Ω

π(0) : (Ew(0) − e0) dx+

ˆ t

0

ˆ

Ω

σ(s) : Eẇ(s) dx ds

+

ˆ t

0

ˆ

Ω

π̇(s) : (Ew(s) − e(s)) dx ds. (2.6)
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3. The rigid-plastic model

In order to derive the rigid-plastic model from elasto-plasticity, we assume that

C
ε = ε−1

C, where C satisfies (2.1) and (2.2), (3.1)

and ε → 0+. In addition, we suppose that the boundary data are compatible with rigid plasticity,
that is

divw(t) = 0 in Ω, (3.2)

and, for simplicity, that the initial data satisfy

e0 = σ0 = 0. (3.3)

Theorem 3.1. Let uε, eε, pε and σε be the solutions given by Theorem 2.2. There exist a
subsequence (not relabeled), and functions u ∈ AC([0, T ];BD(Ω)) and σ ∈ L2(0, T ;L2(Ω;Mn×n

sym ))
such that

uε(t) ⇀ u(t) weakly* in BD(Ω), for all t ∈ [0, T ],

σε ⇀ σ weakly in L2(0, T ;L2(Ω;Mn×n
sym )).

Denoting by v := u̇ ∈ L∞
w∗(0, T ;BD(Ω)), then for a.e. t ∈ [0, T ], we have











− div σ(t) = f(t) in Ω,

σ(t)ν = g(t) on ΓN ,

σ(t) ∈ K,











div v(t) = 0 in Ω,

(ẇ(t)− v(t)) · ν = 0 on ΓD,

H(Ev(t)) = [σD(t) : Ev(t)] in Ω ∪ ΓD.

(3.4)

The remaining of this paper is devoted to the proof of Theorem 3.1.

Remark 3.2. Although Eu(t) is a measure a priori defined in Ω, we tacitly extend it by (w(t)−
u(t))⊙ ν on ΓD so that Eu(t) ∈ M(Ω ∪ ΓD;Mn×n

D ).

Remark 3.3. In contrast with the framework of classical elasto-plasticity, that of rigid plasticity
only involves the velocity field, and not the displacement field itself. As expressed above, time
is merely a parameter, although the associated measurability properties of the various fields are
obtained through the limit process ε ց 0 and would be difficult to obtain directly from the limit
formulation.

3.1. A priori estimates. In this section all constants are independent of ε. We start with an
estimate of the stress. Since σε

D(t) ∈ K in Ω, and K is bounded by (2.3), we first deduce that

sup
t∈[0,T ]

‖σε
D(t)‖∞ ≤ C. (3.5)

The following result allows us to bound the hydrostatic stress.

Lemma 3.4. There exists a bounded sequence (cε)ε>0 in L2(0, T ) such that for each ε > 0,
ˆ T

0

∥

∥

∥

∥

trσε(t)

n
+ cε(t)

∥

∥

∥

∥

2

2

dt ≤ C.

Proof. Since the mapping t 7→ σε(t) belongs to L2(0, T ;H(div,Ω)), there is a sequence (σε
k)k∈N of

H(div,Ω)-valued simple functions such that σε
k → σε strongly in L2(0, T ;H(div,Ω)) as k → +∞.

For all k ∈ N and all t ∈ [0, T ], we have

∇
(

trσε
k(t)

n

)

= div σε
k(t)− div(σε

k)D(t) in Ω

which leads to
ˆ T

0

∥

∥

∥

∥

∇
(

trσε
k(t)

n

)∥

∥

∥

∥

2

H−1(Ω;Rn)

dt ≤
ˆ T

0

‖ div σε
k(t)‖2H−1(Ω;Rn) dt+

ˆ T

0

‖(σε
k)D(t)‖22 dt.
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Since div σε
k → div σε in L2(0, T ;L2(Ω;Rn)) and − div σε = f ∈ L2(0, T ;L2(Ω;Rn)), we deduce

that the first integral in the right-hand-side of the previous inequality is uniformly bounded with re-
spect to ε and k. The second integral is bounded as well since (σε

k)D → σε
D in L2(0, T ;L2(Ω;Mn×n

D )),
and (σε

D)ε>0 is uniformy bounded in that space in view of (3.5). Consequently, there exists a con-
stant C > 0 (independent of k and ε) such that

ˆ T

0

∥

∥

∥

∥

∇
(

trσε
k(t)

n

)
∥

∥

∥

∥

2

H−1(Ω;Rn)

dt ≤ C.

Next, according to [8, Corollary 2.1] (see also [13, Lemma 9] in the case of smooth boundaries),
for each ε > 0, k ∈ N and t ∈ [0, T ], there exists some cεk(t) ∈ R such that

∥

∥

∥

∥

trσε
k(t)

n
+ cεk(t)

∥

∥

∥

∥

2

≤ CΩ

∥

∥

∥

∥

∇
(

tr σε
k(t)

n

)∥

∥

∥

∥

H−1(Ω;Rn)

,

for some constant CΩ > 0 only depending on Ω. Note that, since the mapping t 7→ tr σε
k(t) is

a simple L2(Ω))-valued function, t 7→ cεk(t) is a simple real-valued measurable function as well.
Additionally,

ˆ T

0

∥

∥

∥

∥

trσε
k(t)

n
+ cεk(t)

∥

∥

∥

∥

2

2

dt ≤ C, (3.6)

where C > 0 is again independent of k and ε. Setting σ̂ε
k := σε

k + cεk I yields

ˆ T

0

‖σ̂ε
k(t)‖2H(div,Ω) dt ≤ C,

and thus,
ˆ T

0

‖σ̂ε
k(t)ν‖2H−1/2(ΓN ;Rn) dt ≤ C.

Using that σε
kν → σεν = g in L2(0, T ;H−1/2(ΓN ;Rn)) and that g ∈ L2(0, T ;L2(ΓN ;Rn)), we

obtain

ˆ T

0

|cεk(t)|2 dt‖ν‖2H−1/2(ΓN ;Rn)

≤
ˆ T

0

‖σ̂ε
k(t)ν‖2H−1/2(ΓN ;Rn) dt+

ˆ T

0

‖σε
k(t)ν‖2H−1/2(ΓN ;Rn) dt ≤ C, (3.7)

for some constant C > 0, independent of k and ε. Therefore, the sequence (cεk)k∈N is bounded in
L2(0, T ) and a subsequence converges weakly in that space to some cε ∈ L2(0, T ). Passing to the
lower limit in (3.6) implies that

ˆ T

0

∥

∥

∥

∥

trσε(t)

n
+ cε(t)

∥

∥

∥

∥

2

2

dt ≤ C,

while (3.7) shows that (cε)ε>0 is bounded in L2(0, T ). �

As a consequence of the previous result and of (3.5), we deduce that

ˆ T

0

‖σε(t)‖22 dt ≤ C. (3.8)
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Next, according to the energy balance (2.6), [4, Lemma 3.2], assumptions (3.2)–(3.3), and
Cauchy-Schwarz inequality, we infer that

1

2

ˆ

Ω

C
εeε(t) : eε(t) dx ≤

ˆ

Ω

π(t) : (eε(t)− Ew(t)) dx +

ˆ

Ω

π(0) : Ew(0) dx

+

ˆ t

0

ˆ

Ω

σε
D(s) : Eẇ(s) dx ds+

ˆ t

0

ˆ

Ω

π̇(s) : (Ew(s) − eε(s)) dx ds

≤ C

(

sup
t∈[0,T ]

‖π(t)‖2 +
ˆ T

0

‖π̇(s)‖2 ds
)(

sup
t∈[0,T ]

‖eε(t)‖2 + sup
t∈[0,T ]

‖Ew(t)‖2
)

+ sup
t∈[0,T ]

‖σε
D(t)‖∞

ˆ T

0

‖Eẇ(s)‖2 ds,

which implies, according to the assumption (3.1) on Cε together with Young’s inequality, that

sup
t∈[0,T ]

‖eε(t)‖2 ≤ C
√
ε. (3.9)

Using again the energy balance (2.6), Cauchy-Schwarz inequality and (3.9), we find that

ˆ t

0

H(ṗε(s)) ds −
ˆ t

0

〈πD(s), ṗε(s)〉 ds ≤
ˆ

Ω

π(t) : (eε(t)− Ew(t)) dx +

ˆ

Ω

π(0) : Ew(0) dx

+

ˆ t

0

ˆ

Ω

σε
D(s) : Eẇ(s) dx ds +

ˆ t

0

ˆ

Ω

π̇(s) : (Ew(s) − eε(s)) dx ds ≤ C.

Applying [4, Lemma 3.2] again yields
ˆ T

0

‖ṗε(s)‖M(Ω∪ΓD ;Mn×n
D ) ds ≤ C, (3.10)

and thus
sup

t∈[0,T ]

‖pε(t)‖M(Ω∪ΓD ;Mn×n
D ) ≤ C. (3.11)

For the displacement, Poincaré-Korn’s inequality (see [14, Chap. 2, Rmk. 2.5(ii)]) yields

‖uε(t)‖BD(Ω) ≤ c

(
ˆ

ΓD

|uε(t)| dHn−1 + ‖Euε(t)‖M(Ω;Mn×n
sym )

)

≤ c

(
ˆ

ΓD

|w(t)| dHn−1 +

ˆ

ΓD

|uε(t)− w(t)| dHn−1 + ‖Euε(t)‖M(Ω;Mn×n
sym )

)

≤ c
(

‖w(t)‖L1(ΓD;Rn) + ‖pε(t)‖M(Ω∪ΓD ;Mn×n
D ) + ‖eε(t)‖2

)

≤ C, (3.12)

where we have used (3.9) and (3.11) in the last inequality.

3.2. Convergences. According to the stress estimate (3.8), there exist a subsequence (not rela-
beled) and σ ∈ L2(0, T ;L2(Ω;Mn×n

sym )) such that

σε ⇀ σ weakly in L2(0, T ;L2(Ω;Mn×n
sym )). (3.13)

Consequently, since for all t ∈ [0, T ], we have − div σε(t) = f(t) in Ω and σε(t)ν = g(t) on ΓN , we
infer that for a.e. t ∈ [0, T ],

− div σ(t) = f(t) in Ω, σ(t)ν = g(t) on ΓN .

In addition, since σε
D(t) ∈ K for all t ∈ [0, T ], then

σD(t) ∈ K for a.e. t ∈ [0, T ].
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We then apply Helly’s selection principle (see [11, Theorem 3.2]) which ensures, thanks to (3.10),
the existence of a further subsequence (independent of time and still not relabeled) such that

pε(t) ⇀ p(t) weakly* in M(Ω ∪ ΓD;Mn×n
D ), for all t ∈ [0, T ], (3.14)

for some p ∈ BV ([0, T ];M(Ω ∪ ΓD;Mn×n
D )).

Next according to (3.9), we have that

eε → 0 strongly in L∞(0, T ;L2(Ω;Mn×n
sym )). (3.15)

Finally, as a consequence of the displacement estimate (3.12), for each t ∈ [0, T ], there exists
a further subsequence (uεj (t))j∈N (now possibly depending on t) such that uεj (t) ⇀ u(t) weakly*
in BD(Ω), for some u(t) ∈ BD(Ω). Note that by (3.14)–(3.15), for a.e. t ∈ [0, T ], one has
Eu(t) = p(t) in Ω and, by [4, Lemma 2.1], p(t) = (w(t) − u(t)) ⊙ ν on ΓD which shows that u(t)
is uniquely determined, and thus that the full sequence

uε(t) ⇀ u(t) weakly* in BD(Ω), for all t ∈ [0, T ]. (3.16)

In particular, since Eu(t) = p(t) ∈ M(Ω ∪ ΓD;Mn×n
D ), we also deduce that

div u(t) = 0 in Ω, (w(t) − u(t)) · ν = 0 on ΓD. (3.17)

3.3. Flow rule. According to the energy balance (2.6) and the fact that the plastic strain pε ∈
AC([0, T ];M(Ω;Mn×n

D )), we can integrate by parts in time, so that for all t ∈ [0, T ],

VH(pε; [0, t]) +

ˆ

Ω

π(t) : (Ew(t) − eε(t)) dx − 〈πD(t), pε(t)〉

≤
ˆ

Ω

π(0) : Ew(0) dx − 〈πD(0), p0〉+
ˆ t

0

ˆ

Ω

σε
D(s) : Eẇ(s) dx ds

+

ˆ t

0

ˆ

Ω

π̇(s) : (Ew(s) − eε(s)) dx ds −
ˆ t

0

〈π̇D(s), pε(s)〉 ds.

Since by (3.14)–(3.16) pε(t) ⇀ Eu(t) weakly* in M(Ω∪ ΓD;Mn×n
D ) for a.e. t ∈ [0, T ], Reshetnyak

lower semicontinuity theorem, (3.13), (3.15), (3.16) and the definition (2.4) of duality ensures that

VH(Eu; [0, t]) +

ˆ

Ω

π(t) : Ew(t) dx − 〈πD(t), Eu(t)〉

≤
ˆ

Ω

π(0) : Ew(0) dx − 〈πD(0), Eu0〉+
ˆ t

0

ˆ

Ω

σD(s) : Eẇ(s) dx ds

+

ˆ t

0

ˆ

Ω

π̇(s) : Ew(s) dx ds −
ˆ t

0

〈π̇D(s), Eu(s)〉 ds. (3.18)

We now show the converse inequality. Since σD ∈ L1(0, T ;L2(Ω;Mn×n
D )), while u − w ∈

L1(0, T ;L
n

n−1 (Ω;Rn)), and u − w ∈ L1(0, T ;L1(ΓN ;Rn)), [5, Lemma 7.5] implies the existence
of a subdivision 0 = t0 < t1 < · · · < tk = t of the time interval [0, t] such that

k
∑

i=1

χ[ti−1,ti[(σD(ti), u(ti)− w(ti), u(ti)− w(ti)) → (σD, u− w, u − w)

and
k
∑

i=1

χ[ti−1,ti[(σD(ti−1), u(ti−1)− w(ti−1), u(ti−1)− w(ti−1)) → (σD, u− w, u− w)
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strongly in L1(0, T ;L2(Ω;Mn×n
D ))×L1(0, T ;L

n
n−1 (Ω;Rn))×L1(0, T ;L1(ΓN ;Rn)), as max1≤i≤k(ti−

ti−1) → 0. According to Proposition 3.9 in [7] and to the fact that Ω is admissible, we infer that
for each 1 ≤ i ≤ k,

H(Eu(ti)− Eu(ti−1)) ≥ 〈σD(ti), Eu(ti)− Eu(ti−1)〉

=

ˆ

Ω

σD(ti) : (Ew(ti)− Ew(ti−1)) dx +

ˆ

Ω

f(ti) · (u(ti)− u(ti−1)− w(ti) + w(ti−1)) dx

+

ˆ

ΓN

g(ti) · (u(ti)− u(ti−1)− w(ti) + w(ti−1)) dHn−1.

Summing up for i = 1, . . . , k, and performing discrete integration by parts yields

VH(Eu, [0, t]) ≥
k
∑

i=1

ˆ ti

ti−1

ˆ

Ω

σD(ti) : Eẇ(s) dx ds

−
k−1
∑

i=1

ˆ ti+1

ti

ˆ

Ω

ḟ(s) · (u(ti)− w(ti)) dx ds−
k−1
∑

i=1

ˆ ti+1

ti

ˆ

ΓN

ġ(s) · (u(ti)− w(ti)) dHn−1 ds

+

ˆ

Ω

f(t) · (u(t)− w(t)) dx +

ˆ

ΓN

g(t) · (u(t)− w(t)) dHn−1

−
ˆ

Ω

f(t1) · (u0 − w(0)) dx −
ˆ

ΓN

g(t1) · (u0 − w(0)) dHn−1.

Passing to the limit as max1≤i≤k(ti− ti−1) → 0, and invoking the dominated convergence theorem
yields

VH(Eu, [0, t]) ≥
ˆ t

0

ˆ

Ω

σD(s) : Eẇ(s) dx ds

−
ˆ t

0

ˆ

Ω

ḟ(s) · (u(s)− w(s)) dx ds −
ˆ t

0

ˆ

ΓN

ġ(s) · (u(s)− w(s)) dHn−1 ds

+

ˆ

Ω

f(t) · (u(t)− w(t)) dx +

ˆ

ΓN

g(t) · (u(t)− w(t)) dHn−1

−
ˆ

Ω

f(0) · (u0 − w(0)) dx −
ˆ

ΓN

g(0) · (u0 − w(0)) dHn−1,

and using the definition (2.4) of duality

VH(Eu; [0, t]) +

ˆ

Ω

π(t) : Ew(t) dx − 〈πD(t), Eu(t)〉

≥
ˆ

Ω

π(0) : Ew(0) dx − 〈πD(0), Eu0〉+
ˆ t

0

ˆ

Ω

σD(s) : Eẇ(s) dx ds

+

ˆ t

0

ˆ

Ω

π̇(s) : Ew(s) dx ds −
ˆ t

0

〈π̇D(s), Eu(s)〉 ds.

Thus, combining with (3.18) leads to the equality in the previous inequality, or still, integrating
by parts with respect to time

VH(Eu; [0, t]) = 〈πD(t), Eu(t)〉 − 〈πD(0), Eu0〉

+

ˆ t

0

ˆ

Ω

(σD(s)− πD(s)) : Eẇ(s) dx ds−
ˆ t

0

〈π̇D(s), Eu(s)〉 ds. (3.19)
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According to [4, Lemma 3.2], for all 0 ≤ t1 ≤ t2 ≤ T ,

c‖Eu(t2)− Eu(t1)‖M(Ω∪ΓD;Mn×n
D ) ≤ H(Eu(t2)− Eu(t1))− 〈πD(t2), Eu(t2)− Eu(t1)〉

≤ VH(Eu, [t1, t2])− 〈πD(t2), Eu(t2)− Eu(t1)〉.

In view of (3.19), we get that

c‖Eu(t2)− Eu(t1)‖M(Ω∪ΓD ;Mn×n
D ) ≤ 〈πD(t2)− πD(t1), Eu(t1)〉

+

ˆ t2

t1

ˆ

Ω

(σD(s)− πD(s)) : Eẇ(s) dx ds−
ˆ t2

t1

〈π̇D(s), Eu(s)〉 ds.

Since Eu = p and p ∈ BV ([0, T ];M(Ω ∪ ΓD;Mn×n
D )), we get that Eu ∈ L∞

w∗(0, T ;M(Ω ∪
ΓD;Mn×n

D )), and thus

c‖Eu(t2)− Eu(t1)‖M(Ω∪ΓD ;Mn×n
D ) ≤

ˆ t2

t1

{

‖Eu(t1)‖M(Ω∪ΓD ;Mn×n
D )‖π̇D(s)‖∞

+ (‖πD(s)‖2 + ‖σD(s)‖2)‖Eẇ(s)‖2 + ‖π̇D(s)‖∞‖Eu(s)‖M(Ω∪ΓD;Mn×n
D )

}

ds.

The integrand being sommable, it ensures that the strain Eu ∈ AC([0, T ];M(Ω ∪ ΓD;Mn×n
D )),

and by the Poincaré-Korn inequality that u ∈ AC([0, T ];BD(Ω)). Thus, integrating by part with
respect to time and space in the energy equality (3.19),

ˆ t

0

H(Eu̇(s)) ds = VH(Eu, [0, t]) =

ˆ t

0

ˆ

Ω

σD(s) : Eẇ(s) dx ds

+

ˆ t

0

ˆ

Ω

f(s) · (u̇(s)− ẇ(s)) dx ds+

ˆ t

0

ˆ

ΓN

g(s) · (u̇(s)− ẇ(s)) dHn−1 ds,

and deriving this equality with respect to time yields, thanks to (2.4), for a.e. t ∈ [0, T ],

H(Eu̇(t)) = 〈σD(t), Eu̇(t)〉.

Since, by [7, Proposition 3.9], H(Eu̇(t)) ≥ [σD(t) : Eu̇(t)] in M(Ω ∪ ΓD), we finally deduce that
H(Eu̇(t)) = [σD(t) : Eu̇(t)] in M(Ω ∪ ΓD).

Denoting by v = u̇ the velocity, we proved that v ∈ L∞
w∗(0, T ;BD(Ω)), and recalling (3.17), we

have for a.e. t ∈ [0, T ],

div v(t) = 0 in Ω, (ẇ(t)− v(t)) · ν = 0 on ΓD,

and

H(Ev(t)) = [σD(t) : Ev(t)] in Ω ∪ ΓD.

4. Uniqueness and regularity issues for the stress with a Von Mises yield

criterion

We now specialize to the case where K := {τD ∈ M
n×n
D : |τD| ≤ 1}. In such a setting, it

is known (see [3]) when elasto-plasticity is considered the stress field is unique and belongs to
H1

loc(Ω;M
n×n
sym ). These properties fail in the case of rigid-plasticity as demonstrated below.

Example 4.1. Let us consider a two-dimensional body occupying the square Ω = (0, 1)2 in its
reference configuration (the generalization to the n-dimensional case is obvious). We also assume
that the boundary conditions are of pure Dirichlet type with a rigid body motion ẇ(x) = Ax + b
(where A ∈ Mn×n is such that AT = −AT , and b ∈ Rn) as boundary datum.
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Then, defining v(x) = Ax+b for all x ∈ Ω ensures that Ev = 0 in Ω. In particular, all equations
on v are satisfied. Now define the stress as

σ(x) =

(

f(x2) c
c g(x1)

)

where c ∈ R, f , g ∈ L∞(0, 1) so that div σ = 0 in Ω. In particular

σD(x) =

(

f(x2)−g(x1)
2 c

c g(x1)−f(x2)
2

)

and |σD(x)|2 ≤ 2c2+|f(x2)|2+|g(x1)|2 for a.e. x ∈ Ω. Assuming that
√

2c2 + ‖f‖2∞ + ‖g‖2∞ < 1/2,

we deduce that the one parameter family σλ := λσ still satisfies div σλ = 0 and |σλ
D| < 1 in Ω

provided that |λ| ≤ 2.

In general, a certain amount of uniqueness holds true as shown below. It uses a notion of precise
representative for the stress field first introduced in [1] (see also [4]).

Proposition 4.2. Let (σ1, v1), (σ2, v2) ∈ L2(Ω;Mn×n
sym ) × BD(Ω) be two solutions of the rigid-

plastic model (3.4) at a given time t = t0. Then,

• There exist two |Ev1|-measurable functions σ̂1
D and σ̂2

D ∈ L∞
|Ev1|(Ω ∪ ΓD;Mn×n

D ) such that

σ̂1
D = σ1 and σ̂2

D = σ2
D Ln-a.e. in Ω ∪ ΓD, and

σ̂1
D = σ̂2

D |Ev1|-a.e. in Ω ∪ ΓD;

• There exist two |Ev2|-measurable functions σ̃1
D and σ̃2

D ∈ L∞
|Ev2|(Ω ∪ ΓD;Mn×n

D ) such that

σ̃1
D = σ1 and σ̃2

D = σ2
D Ln-a.e. in Ω ∪ ΓD, and

σ̃1
D = σ̃2

D |Ev2|-a.e. in Ω ∪ ΓD.

Proof. Since (σ1, v1), (σ2, v2) are two solutions of the rigid-plastic model (3.4), the following in-
equalities in M(Ω ∪ ΓD) hold true

[σ1
D : Ev1] = |Ev1| ≥ [σ2

D : Ev1], [σ2
D : Ev2] = |Ev2| ≥ [σ1

D : Ev2].

As a consequence,

[(σ1
D − σ2

D) : Ev1] ≥ 0, [(σ2
D − σ1

D) : Ev2] ≥ 0,

and thus,

[(σ1
D − σ2

D) : (Ev1 − Ev2)] ≥ 0.

In addition, by definition (2.4) of the duality pairing, the total mass of the measure on the left-hand
side of the previous inequality is given by

〈σ1
D − σ2

D, Ev1 − Ev2〉 = 0.

It thus follows that

[(σ1
D − σ2

D) : Ev1] = 0, [(σ2
D − σ1

D) : Ev2] = 0,

or still that

[σ1
D : Ev1] = |Ev1| = [σ2

D : Ev1], [σ2
D : Ev2] = |Ev2| = [σ1

D : Ev2]. (4.1)

Arguing as in [4], since Ln and Esv1 are mutually singular Borel measures, it is possible to find
two disjoint Borel sets A and B ⊂ Ω∪ΓD such that A∪B = Ω∪ΓD, and Ln(B) = |Esv1|(A) = 0.
Then, defining (for i = 1, 2)

σ̂i
D :=











σi
D Ln-a.e. in A,

dEv1

d|Ev1| |Esv1|-a.e. in B,
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it follows that σ̂1
D and σ̂2

D ∈ L∞
|Ev1|(Ω ∪ ΓD;Mn×n

D ), and

σ̂1
D :

dEv1

d|Ev1| |Ev1| = [σ1
D : Ev1] = |Ev1| = [σ2

D : Ev1] = σ̂2
D :

dEv1

d|Ev1| |Ev1|.

By definition, we have that σ̂1
D = σ̂2

D |Esv1|-a.e. in Ω ∪ ΓD. In addition, taking the absolutely
continuous part in (4.1) yields (see [4, 7]),

σ1
D : Eav1 = [σ1

D : Ev1]a = |Eav1| = [σ2
D : Ev1]a = σ2

D : Eav1.

Thus σ1
D = σ2

D Ln-a.e. in {|Eav1| > 0} and finally σ̂1
D = σ̂2

D |Ev1|-a.e. in Ω∪ΓD as requested. �
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