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Probability that the maximum of the reflected Brownian motion over a finite interval [0, t] is achieved by its last zero before t
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We calculate the probability pc that the maximum of a reflected Brownian motion U is achieved on a complete excursion, i.e. pc := P U (t) = U * (t) where U (t) (respectively U * (t)) is the maximum of the process U over the time interval [0, t] (resp. 0, g(t) where g(t) is the last zero of U before t).

Introduction

1.1 Motivation. The local score of a biological sequence is its "best" segment with respect to some scoring scheme (see e.g. [START_REF] Waterman | Introduction to Computational Biology: Maps, Sequences and Genomes[END_REF] for more details) and the knowledge of its distribution is important (see e.g. [START_REF] Karlin | Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes[END_REF], [START_REF] Mercier | Exact distribution for the local score of one i.i.d. random sequence[END_REF]). Let us briefly recall the mathematical setting while biological interpretations can be found in [START_REF] Chabriac | Elements related to the largest complete excursion of a reflected Brownian motion stopped at a fixed time. Application to local score[END_REF]. Let S n := 1 + • • • + n be the random walk generated by the sequence of the independent and identically distributed random variables ( i , i ∈ N) that are centered with unit variance. The local score is the process: U n := S n -min 0 i n S i , where n 0. The path of (U n , n ∈ N) is a succession of 0 and excursions above 0. In [START_REF] Chabriac | Elements related to the largest complete excursion of a reflected Brownian motion stopped at a fixed time. Application to local score[END_REF], the authors only took into consideration complete excursions up to a fixed time n and so considered the maximum U * n of the heights of all the complete excursions up to time n instead of the maximum U n of the path until time n. They also introduced the random time θ * of the length of the segment that realizes U * n . Since it is easy to simulate (S k , 0 k n), for any n not too large, we get an approximation of the law of (U * n , θ * n ) for a given n. Simulations have shown that for an important proportion of sequences, U n is realized during the last incomplete excursion. As expected, the number of excursions naturally increases when the length of the sequence growths, however the proportion of sequences that achieve their maximum on a complete excursion remains strikingly constant. The main goal of this study is to explain these observations and to calculate this probability when n is large, see Proposition 1.2 below.

Link with the Brownian motion.

According to the functional convergence theorem of Donsker, the random walk (S k , 0 k n) (resp. (U k , 0 k n)) normalized by the factor 1/ √ n converges in distribution, as n → ∞, to the Brownian motion (resp. the reflected Brownian motion). We prove (see Theorem 1.1 for a precise formulation) that the probability that the maximum of a reflected Brownian motion over a finite interval [0, t] is achieved on a complete excursion is around 30% and is thus independent of t. This result permits to answer to the two questions asked in the discrete setting, when n is large.

Let U be the reflected Brownian motion started at 0, i.e. In that case, the maximum of U over [0, t] is the maximum of all the complete excursions of U which hold before t. We introduce the probability p c that the maximum of U over [0, t] is achieved on a complete excursion:

p c = P U (t) = U * (t) = P (U * (t) > U * * (t)) . (1.2) 
Let ψ be the logarithmic derivative of the Gamma function:

ψ(x) := Γ (x)/Γ(x).

(1.

3)

The main result of our study is Theorem 1.1. The probability p c equals ψ (1/4) -ψ (1/2) + 1 + π/2 ≈ 0.3069. be the probability that the maximum of U k , 0 k n is achieved on a complete excursion, namely

p (n) c := P max 0 k n U k = max 0 k gn U k
where g n := max{k n, U k = 0}.

(1.4)

Proposition 1.2. p (n) c converges to p c as n → ∞. The convergence of p (n) c
can be obtained from Theorem 3.3 in [START_REF] Chabriac | Elements related to the largest complete excursion of a reflected Brownian motion stopped at a fixed time. Application to local score[END_REF] and the fact that the event N defined by (4.23) in [START_REF] Chabriac | Elements related to the largest complete excursion of a reflected Brownian motion stopped at a fixed time. Application to local score[END_REF] is actually included in max 0 k n U k = max 0 k gn U k .

Main steps of the proof.

We now consider the Brownian motion setting. The density function of U (t) is known (see either Subsection 2.11 in [START_REF] Billingsley | Convergence of probability measures[END_REF] or Lemma 3.2 in [START_REF] Roynette | Penalisations of Brownian motion with its maximum and minimum processes as weak forms of Skorokhod embedding[END_REF]) and the one of U * (t) has been calculated in [START_REF] Chabriac | Elements related to the largest complete excursion of a reflected Brownian motion stopped at a fixed time. Application to local score[END_REF]. Obviously, the knowledge of the distributions of U (t) and U * (t) is not sufficient to determine p c . The trajectory of (U (s), 0 s t) naturally splits in two parts before and after the random time g(t) which is not a stopping time. Although U (s), 0 s g(t) and U (s), g(t) s t are not independent, the scaling with g(t) leads to independence. Indeed,

1 g(t) U (sg(t)), 0 s 1 , 1 t -g(t) |B(g(t) + s(t -g(t))| , 0 s 1 , g (t) 
(1.5) are independent. Moreover each part of the above triplet has a known distribution. The process g(t) -1/2 B(g(t)s), 0 s 1 is distributed as the Brownian bridge b(s), 0 s 1 , (see e.g. [START_REF] Bertoin | Lévy processes[END_REF]) and the second component in (1.5) is the Brownian meander denoted m. The scaling property of the Brownian motion implies that g(t) is distributed as tg(1) while the distribution of g( 1) is the arcsine one (see again [START_REF] Bertoin | Lévy processes[END_REF]):

P(g(1) ∈ dx) = 1 π x(1 -x) 1 [0,1] (x) dx. (1.6)
Consequently,

(U * (t), U * * (t)) (d) = tg(1)b * , t(1 -g(1)) max 0 u 1 m(u) (1.7)
where b * := sup

0 s 1 |b(s)|.
Its distribution function is given by the Kolmogorov-Smirnov formula (see e.g. [START_REF] Pitman | On the distribution of ranked heights of excursions of a Brownian bridge[END_REF]):

P(b * > x) = 2 k 1 (-1) k-1 e -2k 2 x 2 , x > 0.
(1.8)

Formula (1.7) permits to determine the law of U * (t), U * * (t) , once we know the distribution of max

0 u 1 m(u).
But by [START_REF] Ph | Un processus qui ressemble au pont brownien[END_REF], for any bounded Borel function f ,

E[f (m(u), 0 u 1)] = π 2 E 1 R(1) f (R(u), 0 u 1) , (1.9) 
where (R(u), 0 u 1) stands for a 3-dimensional Bessel started at 0. Due to the scaling property (1.7), we deduce that p c does not depend on t and 

p c = π 2 E F b * g(1) 1 -g(1) (1.10) where F (x) := E 1 R(1) 1 {max0 u 1 R(u)<x} .
F (x) = 2 π k∈Z e -2k 2 x 2 -e -(2k+1) 2 x 2 /2 = 4 x k 0 exp - (2k + 1) 2 π 2 2x 2 .
(2.1)

Proof. First, by [4, formula 1.1.8, p317],

P max

0 u 1 R(u) < y, R(1) ∈ dz R(0) = x = z x √ 2π × S × 1 {y>x,z<y} dz (2.2) 
ECP 0 (2012), paper 0.

where

S = k∈Z exp - (z -x + 2ky) 2 2 -exp - (z + x + 2ky) 2 2 .
A Taylor expansion of x → exp -(z±x+2ky) 2 2 at x = 0 leads to

P max 0 u 1 R(u) < y, R(1) ∈ dz R(0) = 0 = 2z √ 2π k∈Z (z + 2ky) exp - (z + 2ky) 2 2 1 {z<y} dz.
As a consequence,

F (y) = 2 √ 2π k∈Z y 0 (z + 2ky) exp - (z + 2ky) 2 2 dz = 2 √ 2π k∈Z exp -2k 2 y 2 -exp - (2k + 1) 2 y 2 2 .
The second equality in (2.1) is a direct consequence of the Poisson summation formula (see, e.g. [7, Chap. XIX p.630]:

1 √ 2πt k∈Z exp - 1 2t x 0 + 2k(β 0 -α 0 ) 2 -exp - 1 2t 2β 0 -x 0 + 2k(β 0 -α 0 ) 2 = 1 β 0 -α 0 k 1 cos kπx 0 β 0 -α 0 -cos kπ(2β 0 -x 0 ) β 0 -α 0 exp - k 2 π 2 t 2(β 0 -α 0 ) 2 applied with t = 1, x 0 = 0, β 0 = x/2 and α 0 = -x/2.
Proposition 2.2. For any x > 0,

P b * g(1) 1 -g(1) > x = 2 π ∞ 0 A(u)e -2x 2 u du √ u , (2.3) 
where

A(u) := k 1 (-1) k-1 k k 2 + u .
(2.4)

Proof. We introduce a cut-off 0 < ε < 1 and we define:

ϕ ε (x) := P g(1) < 1 -ε, b * g(1) 1 -g(1)
> x .

(2.5)

Using the independence between g(1) and b * , (1.6) and (1.8), we deduce:

ϕ ε (x) = 1 π 1-ε 0 1 y(1 -y) P b * > x 1 -y y dy = 2 π k 1 I k (ε) where I k (ε) := (-1) k-1 1-ε 0 1 y(1 -y) exp - 2k 2 x 2 (1 -y) y dy.
The inversion of the sum and the integral is available since (1 -y)/y ε > 0 where ε := ε/(1 -ε). Making the change of variables (1 -y)/y = u/k 2 leads to:

I k (ε) = (-1) k-1 k ∞ ε k 2 1 √ u(1 + u/k 2 ) exp -2x 2 u du.
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The identity

1 1 + u/k 2 = 1 - u k 2 (1 + u/k 2 )
allows to invert the sum and the integral.

Finally we get:

ϕ ε (x) = 2 π ∞ ε   ε k 2 u (-1) k-1 k 1 1 + u/k 2   exp -2x 2 u du √ u = 2 π ∞ ε S n(ε ,u) (u) exp -2x 2 u √ u du with n(ε , u) = u/ε , S n (u) := n k=1
(-1) k-1 φ(1/k, u) and φ(y, u) := y/(1 + uy 2 ).

Note that ∂φ ∂y 1, then, considering n = 2m and n = 2m + 1 and using the mean value inequality we obtain:

|S 2m (u)| = m k =1 φ 1 2k -1 , u -φ 1 2k , u m k =1 1 2k -1 - 1 2k ∞ k =1 1 2k (2k -1)
< ∞.

( 

p c = 8 ∞ 0 uA(u 2 ) sinh(2πu)
du.

Proof. We deduce easily from (2.4) that

A(u) = k 1 φ 1 2k -1 , u -φ 1 2k , u ,
where φ(y, u) := y/(1 + uy 2 ). Then inequality (2.6) implies that sup u 0 A(u) < ∞. By Lemma 2.1, Proposition 2.2, the definition (2.4) of A and the Fubini theorem, we get

p c = π 2 32 π k 0 ∞ 0 √ uA(u) ∞ 0 exp - (2k + 1) 2 π 2 2x 2 -2x 2 u dx du.
But making s = 2x 2 u and letting z = 2(2k + 1)π √ u, we get:

∞ 0 exp - (2k + 1) 2 π 2 2x 2 -2x 2 u dx = 1 √ 2u z 2 1/2 K 1/2 (z)
where (cf [13, Formula (15) p183])

K ν (x) = 1 2 x 2 ν ∞ 0 exp -s - x 2 4s ds.
Recall that K ν = K -ν [13, Formula (8) p79] and K -1/2 (x) = π 2x e -x [13, Formula (13) p80] . It follows that

p c = 8 k 0 ∞ 0 A(u)e -2(2k+1)π √ u du = 4 ∞ 0 A(u) sinh (2π √ u) du = 8 ∞ 0 vA(v 2 ) sinh (2πv)
dv.
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We now focus on the function A. Our method is based on the crucial fact that A can be expressed with the function ψ defined by (1.3).

Lemma 2.4.

1. We have:

A(u) = 1 4 ψ i √ u 2 + ψ - i √ u 2 -ψ 1 + i √ u 2 -ψ 1 -i √ u 2
, u 0.

(2.7)

2. There exists a, b > 0 such that

|ψ(z)| a + b |z| 2 , ∀ z ∈ C, |Im z| 1.
(2.8)

Consequently, p c = I 2 -I 1 , where

I k := 2 ∞ 0 vF k (v) sinh(2πv) dv, k = 1, 2 (2.9) 
and

F 1 (v) := ψ 1+iv 2 + ψ 1-iv 2 , F 2 (v) := ψ iv 2 + ψ -iv 2 .
Proof. Formula (2.7) and inequality (2.8) are a direct consequence of identity (3), p 15 in [START_REF] Erdélyi | Higher transcendental functions[END_REF], i.e.

ψ(z) = -γ - 1 z + n 1 z n(z + n) = -γ - 1 z + n 1 1 n 2 z - n 1 z 2 n 2 (z + n) (2.10) with γ := lim m→∞ m k=1 1 k -ln m .
Due to the form of the functions F 1 and F 2 , the integrals I 1 and I 2 can be viewed as integrals over a straight line in the plane. More precisely, we have:

Lemma 2.5. I 1 and I 2 can be written as:

I 1 = -8i ∆ 1/2 z -1/2 sin (4πz) ψ(z)dz, I 2 = -8i ∆0 zψ(z + 1) sin (4πz) dz (2.11) 
where, for any a ∈ R, ∆ a is the line with parametrization by z = a + it, t ∈ R.

Proof. 1) We note that sin(2πiv

) = i sinh(2πv). Thus 2 ∞ 0 v sinh(2πv) ψ 1 + iv 2 dv = 8 i ∞ 0 1+iv 2 -1 2 sin 4πi 1+iv 2 ψ 1 + iv 2 d 1 + iv 2 = -8i ∆ 1/2 z -1/2 sin (4πz) ψ (z) dz
where ∆ a is the half-line: z = a + it, t 0. Similarly,

2 ∞ 0 v sinh(2πv) ψ 1 -iv 2 dv = -8i ∆ 1/2 z -1/2 sin (4πz) ψ (z) dz
where ∆ a := {z = a + it, t 0} and a ∈ R. This implies the value of I 1 given by (2.11).

2) Formula (2.10) tells us that ψ(z) := ψ(z) + 1 z has no singularity at z = 0. Thus we study

2 ∞ 0 v sinh (2πv) ψ iv 2 dv = 8 i ∞ 0 iv/2 sin 4π iv 2 ψ iv 2 d iv 2 = -8i ∆ 0 z sin (4πz) ψ (z) dz and similarly 2 ∞ 0 v sinh (2πv) ψ - iv 2 dv = 2 ∞ 0 iv sin (2πiv) ψ iv 2 dv = -8i ∆ 0 z sin (4πz) ψ (z) dz.
The identity (formula (8) p 16 in [START_REF] Erdélyi | Higher transcendental functions[END_REF]) :

ψ(z) = ψ(z) + 1 z = ψ(z + 1) (2.12) implies ψ iv 2 + ψ - iv 2 = ψ iv 2 + ψ - iv 2 
and finally (2.11).

We show in the following lemma that I 1 and I 2 are integrals over the vertical line.

Lemma 2.6. Let 0 < ε < 1/4, then

I 1 = -8i ∆ 1/2+ε z -1/2 sin (4πz) ψ(z)dz, I 2 = -8i ∆ 1/2+ε zψ(z + 1) sin (4πz) dz + ψ (1/4) -2ψ (1/2) . (2.13) 
Proof. We only deal with I 2 , the proof related to I 1 is similar and easier. The quantity sin(4πz) cancels at z = k/4 for every k ∈ Z, the zeros are simple. From (2.10), we deduce that h(z) := zψ(z + 1)/ sin (4πz) is meromorphic in {z ∈ C; -1/4 < Rez < 3/4} with poles at 1/4 and 1/2. We introduce the contour defined in Figure 2. 

C n B n A n D n 0 -n n 1/2+ε 1/
I 2 = -8i ∆ 1/2+ε h(z)dz -2iπ - 1 4π (1 + ψ (1/4) /4) + 1 4π (1 + ψ (1/2) /2) = -8i ∆ 1/2+ε h(z)dz + ψ (1/4) -2ψ (1/2) .
Bringing together Lemmas 2.4, 2.6 leads to

p c = -8i ∆ 1/2+ε 1 sin (4πz) zψ(z + 1) -(z - 1 2 )ψ(z) dz + ψ (1/4) -2ψ (1/2) .
Setting z = 1/2 + u and using identity (2.12) with u + 1/2 instead of z gives: 2) Formula (2.17) is a direct consequence of formula 11 p16 in [START_REF] Erdélyi | Higher transcendental functions[END_REF]: ψ 1 2 + z -ψ 1 2 -z = π tan(πz).

p c = -8i ∆ε h + (u)du + ψ (1/4) -2ψ (1/2) , (2.15 
It is easy to deduce from (2.16) and (2.17) that: .

We make the change of variable u = tanh(πx):

α(0+) = i 2π 1 0 1 -u 2 1 + u 2 du = i 2π -1 + 2 1 0 du 1 + u 2 = i 2π -1 + π 2 .
Theorem 1.1 follows from (2.18) and the above result.

1. 3

 3 Back to discrete sequences. We now go back to the setting of random walks introduced in paragraph 1.1. Let p (n) c

(1. 11 ) 1 Lemma 2 . 1 .

 11121 According to(1.10) we have first to determine the function F (see Lemma 2.1 below), second the distribution function of b * g(1) 1 -g[START_REF] Bertoin | Lévy processes[END_REF] (see Proposition 2.2) and third to calculate the expectation. The details are given in Section 2.2 Proof of Theorem 1.For any x > 0,

Proof. 1 )

 1 We begin proving(2.16). The function h + is meromorphic in {z ∈ C; -1/4 < Rez < 1/4} with unique pole z = 0. Then the residue theorem yields∆ε h + (z)dz = ∆-ε h + (z)dz + 2iπRes h + , 0 = -

2 ∆εhcosh 2

 22 + (z)dz = π 2 ∆ε tan(πz) sin(4πz) dz + i 2 (1 + ψ(1/2)/2) . Maximum of the reflected Brownian motion before its last zero Relation (2.15) implies directly that p c equals ψ (1/4) -ψ (1/2) + 2 -2πiα(ε), where α(ε) := ∆ε tan(πz) sin(4πz) dz. Since the real number p c does not depend on ε, letting ε → 0 leads to: p c = ψ (1/4) -ψ (1/2) + 2 -2πiα(0+), (πx) cosh(2πx)

  U (t) = |B(t)| where (B(t), t ≥ 0) is the standard one-dimensional Brownian motion started at 0. In Chabriac et al.[START_REF] Chabriac | Elements related to the largest complete excursion of a reflected Brownian motion stopped at a fixed time. Application to local score[END_REF], the authors have considered two maxima: U (t) and U * (t), the first (resp. second) one being the maximum of U up to time t (resp. the last zero before t), namely U (t) := max (t), θ * (t) has been calculated where θ * (t) is the length of time segment that realizes U * (t), i.e. the first hitting time of level U * (t) by the process U (s), 0 s g(t) . Here we only deal with U * (t) and U (t).

		0 s t	U (s)
	and U * (t) = U g(t) , where g(t) := sup{s t, U (s) = 0}. In [5], the density function of
	the pair U It is clear that U (t) = U * (t) if and only if U * * (t) U (t), where
	U * * (t) := max	U (s).
	g(t) s t	

* 

  Maximum of the reflected Brownian motion before its last zero Now, we let n goes to infinity. Inequality (2.8) implies Indeed, it follows from the parametrization of A n B n of the type z = in + t, inequality |in + t| n + 1 is valid for 0 t ε + 1/2, and We proceed analogously on C n D n . As a consequence, letting n → ∞ in (2.14), we get

				lim n→∞ AnBn	h(z)dz = lim n→∞ CnDn	h(z)dz = 0.
		sin(4π(in + t))	2 = sinh(4πn) 2 cos(4πt) 2 + cosh(4πn) 2 sin(4πt) 2
					min sinh(4πn) 2 , cosh(4πn) 2 .
							1/4	2	3/4
	Then the residue theorem gives			
		h(z)dz -		h(z)dz +	h(z)dz -	h(z)dz = 2iπ {Res (h, 1/4) + Res (h, 1/2)} .
	CnBn	DnAn	DnCn		BnAn
									(2.14)
	The residual at 1/4 is given by			
	Res (h, 1/4) = lim z→1/4	h(z)(z -1/4) =	1 4	ψ (5/4) lim z→1/4	z -1/4 sin (4πz) -sin (4π1/4)	= -	1 16π	ψ (5/4)
								1 4π	1 +	1 4	ψ (1/4) . Similarly, Res (h, 1/2) =
	1 4π	(1 + ψ (1/2) /2).					

Using (2.12) with z = 1/4, we get Res (h, 1/4) = -
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