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ON EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR SEMILINEAR FRACTIONAL WAVE EQUATIONS

Let Ω be a C 2 -bounded domain of R d , d = 2, 3, and fix Q = (0, T ) × Ω with T ∈ (0, +∞].

In the present paper we consider a Dirichlet initial-boundary value problem associated to the semilinear fractional wave equation

to the Caputo fractional derivative of order α, A is an elliptic operator and the nonlinearity

We first provide a definition of local weak solutions of this problem by applying some properties of the associated linear equation

Then, we prove existence of local solutions of the semilinear fractional wave equation for some suitable values of b > 1. Moreover, we obtain an explicit dependence of the time of existence of solutions with respect to the initial data that allows longer time of existence for small initial data.

∂ xi a ij (x)∂ xj u + V (x)u(x), x ∈ Ω,
where a ij = a ji ∈ C 1 (Ω) and V ∈ L κ (Ω), for some κ > d, satisfy d i,j=1 a ij (x)ξ i ξ j c|ξ| 2 , x ∈ Ω, ξ = (ξ 1 , . . . , ξ d ) ∈ R d and V 0 a.e. in Ω.

We set T ∈ (0, +∞], Σ = (0, T ) × ∂Ω and Q = (0, T ) × Ω. We consider the following initialboundary value problem (IBVP in short) for the fractional semilinear wave equation

           ∂ α t u + Au = f b (u), (t, x) ∈ Q, u(t, x) = 0, (t, x) ∈ Σ, u(0, x) = u 0 (x), ∂ t u(0, x) = u 1 (x), x ∈ Ω, (1.1) 
where 1 < α < 2, ∂ α t denotes the Caputo fractional derivative with respect to t,

∂ α t u(t, x) := 1 Γ(2 -α) t 0 (t -s) 1-α ∂ 2 s u(s, x)ds, (t, x) ∈ Q, b > 1 and f b ∈ C 1 (R) satisfies f b (0) = 0 and |f b (u)| C |u| b-1 , u ∈ R.
The main purpose of this paper is to give a suitable definition of solutions of (1.1) and to study the well-posedeness of this problem.

1.2. Physical motivations and known results. Recall that equation (1.1) is associated to anomalous diffusion phenomenon. More precisely, for 1 < α < 2, the linear part of equation (1.1) is frequently used for super-diffusive model of anomalous diffusion such as diffusion in heterogeneous media. In particular, in the linear case (i.e., f b ≡ 0), some physical background is found in Sokolov, Klafter and Blumen [START_REF] Sokolov | Fractional kinetics[END_REF]. As for analytical results in the case of 1 < α < 2, we refer to Mainardi [START_REF] Mainardi | On the initial value problem for the fractional diffusion-wave equation[END_REF] as one early work, and also to §6.1 in Kilbas, Srivastava and Trujillo [START_REF] Kilbas | Theory and applications of fractional differential equations[END_REF], §10.10 in Podlubny [START_REF] Podlubny | Fractional differential equations[END_REF]. For 0 < α < 1, we define ∂ α t u by ∂ α t u(t, x) := 1 Γ(1-α) t 0 (t -s) -α ∂ s u(s, x)ds, and there are works in view of the theory of partial differential equations (e.g., Beckers and Yamamoto [START_REF] Beckers | Regularity and uniqueness of solution to linear diffusion equation with multiple time-fractional derivatives[END_REF], Luchko [START_REF] Luchko | Some uniqueness and existence results for the initial-boundary-value problems for the generalized timefractional diffusion equation[END_REF], Sakamoto and Yamamoto [START_REF] Sakamoto | Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems[END_REF]). Such researches are rapidly developing and here we do not intend to give any comprehensive lists of references.

In contrast to the wave equation, even linear fractional wave equations are not well studied. In fact, few authors treated the well-posedness of the linear IBVP associated to (1.1) and to our best knowledge even the definition of weak solutions does not allow source term with low regularity. For a general study of the linear fractional wave equation and the regularity of solutions we refer to [START_REF] Sakamoto | Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems[END_REF].

When we consider e.g., reaction effects in a super-diffusive model, we have to introduce a semilinear term.

To the best knowledge of the authors, there are no publications on fractional semilinear wave equations by the Strichartz estimate which is a common technique for semilinear wave and Schrödinger equations. In fact, for the wave equation (α = 2), the well-posedness of problem (1.1) has been studied by various authors. In the case Ω = R k with k 3 and A = -∆, the global well-posedness has been proved both in the subcritical case 1 < b < 1 + 4 k-2 by Ginibre and Velo [START_REF] Ginibre | The global Cauchy problem for nonlinear Klein-Gordon equation[END_REF], and in the critical case b = 1+ 4 k-2 by Grillarkis [START_REF] Grillakis | Regularity and asymptotic behavior of the wave equation with a critical non-linearity[END_REF] and, Shatah and Struwe [START_REF] Shatah | Regularity results for nonlinear wave equations[END_REF][START_REF] Shatah | Well-Posedness in the energy space for semilinear wave equation with critical growth[END_REF]. For Ω = R 2 , Nakamura and Ozawa [START_REF] Nakamura | Global solutions in the critical Sobolev space for the wave e quations with nonlinearity of exponential growth[END_REF][START_REF] Nakamura | The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order[END_REF] proved global well-posedness with exponentially growing nonlinearity. Without being exhaustive, for other results related to regularity of solutions or existence of solutions for more general semilinear hyperbolic equations we refer to [START_REF] Grillakis | Regularity and asymptotic behavior of the wave equation with a critical non-linearity[END_REF][START_REF] Ginibre | Regularity of solutions of critical and subcritical nonlinear wave equations[END_REF][START_REF] Kapitanski | Weak and yet weaker solutions of semi-linear wave equations[END_REF][START_REF] Kian | Cauchy problem for semilinear wave equation with time-dependent metrics[END_REF][START_REF] Lindelbag | On existence and scattering with minimal regularity for the semilinear wave equation[END_REF]. In the case of Ω a smooth bounded domain of R 3 , [START_REF] Burq | Global existence for energy critical waves in 3-D domains[END_REF] proved the global well-posedness in the critical case b = 5. In addition, following the strategy set by [START_REF] Burq | Global existence for energy critical waves in 3-D domains[END_REF], [START_REF] Ibrahim | Strichartz type estimates and the well-posedness of an energy critical 2D wave equation in a bounded domain[END_REF] treated the case of Ω a smooth bounded domain of R 2 with exponentially growing nonlinearity. 1.3. Main results. In order to give a suitable definition of solutions of (1.1) we first need to consider the IBVP associated to the linear fractional wave equation

           ∂ α t u + Au = f (t, x), (t, x) ∈ Q, u(t, x) = 0, (t, x) ∈ Σ, u(0, x) = u 0 (x), ∂ t u(0, x) = u 1 (x), x ∈ Ω.
(1.

2)

The present paper contains three main results. Our two first main results are related to properties of solutions of (1.2), while our last result concerns the nonlinear problem (1.1).

Let us first remark that in contrast to usual derivatives, there is no exact integration by parts formula for fractional derivatives. Therefore, it is difficult to introduce the definition of weak solutions of (1.2) in the sense of distributions. To overcome this gap we give the following definition of weak solutions of (1.2). Let 1 (0,T ) (t) be the characteristic function of (0, T ).

Definition 1.1. Let u 0 ∈ L 2 (Ω), u 1 ∈ H -1 (Ω) and f ∈ L 1 (0, T ; L 2 (Ω)). We say that problem (1.2) admits a weak solution if there exists v ∈ L ∞ loc (R + ; L 2 (Ω)) such that: 1) v |Q = u and inf{ε > 0 : e -εt v ∈ L 1 (R + ; L 2 (Ω))} = 0, 2) for all p > 0 the Laplace transform V (p) = +∞ 0 e -pt v(t, .)dt with respect to t of v solves    (A + p α )V (p) = F (p) + p α-1 u 0 + p α-2 u 1 , in Ω, V (p) = 0, on ∂Ω, where F (p) = L[f (t, .)1 (0,T ) (t)](p) = T 0 e -pt f (t, .)dt.
Remark 1. Recall (e.g. formula (2.140) page 80 of [START_REF] Podlubny | Fractional differential equations[END_REF]) that for h ∈ C 2 (R + ) satisfying inf{ε > 0 :

e -εt h (k) ∈ L 1 (R + ), k = 0, 1, 2} = ε 0 we have L[∂ α h](p) = p α H(p) -p α-1 h(0) -p α-2 h (0), p > ε 0 , where H(p) = L[h](p) = +∞ 0
e -pt h(t)dt. Therefore, for sufficiently smooth data u 0 , u 1 , f (e.g. [START_REF] Sakamoto | Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems[END_REF]) one can check that problem (1.2) admits a unique strong solution which is also a weak solution of (1.2).

Consider the operator A acting on L 2 (Ω) with domain

D(A) = {g ∈ H 1 0 (Ω) : Ag ∈ L 2 (Ω)} defined by Au = Au, u ∈ D(A).
Recall that in view of the Sobolev embedding theorem (e.g. [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]Theorem 1.4.4.1]) the multiplication operator u → V u is bounded from H 1 (Ω) to L 2 (Ω). Thus, we have D(A) = H 2 (Ω) ∩ H 1 0 (Ω). Moreover, by V ≥ 0 in Ω, the operator A is a strictly positive selfadjoint operator with a compact resolvent. Therefore, the spectrum of A consists of a non-decreasing sequence of strictly positive eigenvalues (λ n ) n 1 . Let us also introduce an orthonormal basis in the Hilbert space L 2 (Ω) of eigenfunctions (ϕ n ) n 1 of A associated to the non-decreasing sequence of eigenvalues (λ n ) n 1 .

From now on, by ., . , we denote the scalar product of L 2 (Ω). For all s 0, we denote by A s the operator defined by

A s h = +∞ n=1 h, ϕ n λ s n ϕ n , h ∈ D(A s ) = h ∈ L 2 (Ω) : +∞ n=1 | h, ϕ n | 2 λ 2s n < ∞
and consider on D(A s ) the norm

h D(A s ) = +∞ n=1 | h, ϕ n | 2 λ 2s n 1 2
, h ∈ D(A s ).

By duality, we can also set D(A -s ) = D(A s ) by identifying L 2 (Ω) = L 2 (Ω) which is a Hilbert space with the norm

h D(A -s ) = ∞ n=1 h, ϕ n -2s λ -2s n 1 2
.

Here ., . -2s denotes the duality bracket between D(A -s ) and D(A s ). Since D(A 1/2 ) = H 1 0 (Ω), we identify H -1 (Ω) with D(A -1/2 ).

Using eigenfunction expansions we show our first main result where we state existence and uniqueness of weak solutions of (1.2).

Theorem 1.2. Let u 0 ∈ L 2 (Ω), u 1 ∈ H -1 (Ω) = D(A -1 2 ), f ∈ L 1 (0, T ; L 2 (Ω)). Then, problem (1.2) 
admits a unique weak solution u ∈ C([0, T ]; L 2 (Ω)) satisfying

u C([0,T ];L 2 (Ω)) C( u 0 L 2 (Ω) + u 1 H -1 (Ω) + f L 1 (0,T ;L 2 (Ω)) ). (1.3)
Moreover, assuming that there exists 0 < r < 1 4 such that u 0 ∈ H 2r (Ω), we have u ∈ W 1,1 (0, T ; L 2 (Ω)) and

u W 1,1 (0,T ;L 2 (Ω)) C( u 0 H 2r (Ω) + u 1 H -1 (Ω) + f L 1 (0,T ;L 2 (Ω)) ).
(1.4)

Recall that for γ, r, s 0, 1 p, q, p, q ∞, Strichartz estimates for solutions u of (1.2) denotes estimates of the form

u C([0,T ];H 2r (Ω)) + u L p (0,T ;L q (Ω)) C( u 0 H 2γ (Ω) + u 1 H 2s (Ω) + f L p (0,T ;L q (Ω)) ).
It is well known that these estimates, introduced by [START_REF] Strichartz | A priori estimates for the wave equation and some applications[END_REF] and extended to the endpoints by [START_REF] Keel | Endpoint Strichartz estimates[END_REF] for both wave and Schrödinger equations, are important tools in the study of well-posedness of nonlinear equations (e.g. [START_REF] Burq | Global existence for energy critical waves in 3-D domains[END_REF][START_REF] Grillakis | Regularity and asymptotic behavior of the wave equation with a critical non-linearity[END_REF][START_REF] Ginibre | Regularity of solutions of critical and subcritical nonlinear wave equations[END_REF][START_REF] Ibrahim | Strichartz type estimates and the well-posedness of an energy critical 2D wave equation in a bounded domain[END_REF][START_REF] Kian | Cauchy problem for semilinear wave equation with time-dependent metrics[END_REF]). In the present paper we prove these estimates for solutions of (1.2). For this purpose, we consider 1 p, q ∞ and 0 < γ < 1 satisfying:

1) q = ∞, for d 4 < γ < 1, 2) 2 < q < ∞, for γ = d 4 , 3) q = 2d d-4γ , for 0 < γ < d 4 .
(1.5)

1) p < 1 1-α(1-γ) , for γ > 1 -1 α , 2) p = ∞, for γ 1 -1 α .
(1.6)

Then, our second main result can be stated as follows.

Theorem 1.3. (Strichartz estimates) Assume that 1 p, q ∞ and 0 < γ < 1 fulfill (1.5), (1.6) and set

s = max 0, γ - 1 α , r = min 1 - 1 α , γ . Let u 0 ∈ D(A γ ), u 1 ∈ D(A s ), f ∈ L 1 (0, T ; L 2 (Ω)).
Then, the unique weak solution u of problem (1.2)

is lying in L p (0, T ; L q (Ω)) ∩ C([0, T ]; H 2r (Ω)) and fulfills estimate u C([0,T ];H 2r (Ω)) + u L p (0,T ;L q (Ω)) C( u 0 H 2γ (Ω) + u 1 H 2s (Ω) + f L 1 (0,T ;L 2 (Ω)) ). (1.7)
Here the constant C takes the form

C = C 0 (1 + T ) δ , (1.8) 
where

δ =    max (α(1 -γ) -1, 1 -α(γ -s), 1 -α(r -s), α(1 -r) -1) , for p = ∞, max 1 p , 1 -α(γ -s) + 1 p , 1 -α(r -s), α(1 -r) -1, α(1 -γ) -1 + 1 p , for p < ∞ (1.9)
and C 0 depends only on Ω, γ, d, α, p.

In the last section we apply estimates (1.7) to prove our last result which is related to the existence and uniqueness of local solutions of (1.1). For this purpose, we first need to define local solutions of (1.1). In section 2 (see also [START_REF] Sakamoto | Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems[END_REF]), using the eigenfunction expansions we introduce the operators

S 1 (t)h = ∞ k=1 E α,1 (-λ k t α ) h, ϕ k ϕ n , h ∈ L 2 (Ω), S 2 (t)h = ∞ k=1 tE α,2 (-λ k t α ) h, ϕ k ϕ n , h ∈ L 2 (Ω), S 3 (t)h = ∞ k=1 t α-1 E α,α (-λ k t α ) h, ϕ k ϕ k , h ∈ L 2 (Ω),
where for all α > 0, β ∈ R, E α,β denotes the Mittag-Leffler function given by

E α,β (z) = ∞ k=0 z k Γ(αk + β) .
It is well known (e.g. [START_REF] Beckers | Regularity and uniqueness of solution to linear diffusion equation with multiple time-fractional derivatives[END_REF][START_REF] Podlubny | Fractional differential equations[END_REF][START_REF] Luchko | Some uniqueness and existence results for the initial-boundary-value problems for the generalized timefractional diffusion equation[END_REF][START_REF] Sakamoto | Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems[END_REF]) that for all t > 0 we have

S j (t) ∈ B(L 2 (Ω)), j = 1, 2, 3. Moreover, in view of Theorem 1.2, for u 0 , u 1 ∈ L 2 (Ω) and f ∈ L 1 (0, T ; L 2 (Ω)), the unique weak solution of (1.2)
is given by

u(t) = S 1 (t)u 0 + S 2 (t)u 1 + t 0 S 3 (t -s)f (s)ds. (1.10)
For all T > 0, we introduce the space

X T = C([0, T ]; L 2 (Ω)) ∩ L b (0, T ; L 2b (Ω))
with the norm

v X T = v C([0,T ];L 2 (Ω)) + v L b (0,T ;L 2b (Ω)) .
Recall that, by applying the Hölder inequality, one can check that for all u, v ∈ X T we have

f b (u), f b (v) ∈ L 1 (0, T ; L 2 (Ω)) with f b (u) L 1 (0,T ;L 2 (Ω)) C b u b L b (0,T ;L 2b (Ω)) C b u b X T (1.11)
and

f b (u) -f b (v) L 1 (0,T ;L 2 (Ω)) C b u -v X T ( u b-1 X T + v b-1 X T ), (1.12) 
where the constant C b > 0 depends only on b, f b . Therefore, in view of Theorem 1.2, the map H b defined by

H b u(t) = t 0 S 3 (t -s)f b (u(s))ds, u ∈ X T is locally Lipschitz from X T to C([0, T ]; L 2 (Ω)).
Definition 1.4. Let u 0 , u 1 ∈ L 2 (Ω) and T > 0. We say that (1.1) admits a weak solution on (0,

T ) if the map G b : X T → C([0, T ]; L 2 (Ω)) defined by G b u(t) = S 1 (t)u 0 + S 2 (t)v 2 + t 0 S 3 (t -s)f b (u(s))ds admits a fixed point u ∈ X T . Such a fixed point u ∈ X T is called a weak solution to (1.1) on (0, T ).
We say that problem (1.1) admits a local weak solution if there exists T > 0, depending on u 0 , u 1 , such that problem (1.1) admits a weak solution on (0, T ).

Now we can state our result of existence and uniqueness of local solutions for (1.1). We recall that δ > 0 is given in (1.9).

Theorem 1.5. Let b > 1 satisfy

dα dα + 4(1 -α) < b < dα + 4 dα + 4(1 -α) (1.13)
and let

γ = d(b -1) 4b , q = 2b, s = max(0, γ - 1 α ), r = min(1 - 1 α , γ), 1 < 1 2 -α . (1.14)
Then, we can choose p ∈ b,

1 1-α(1-γ) such that for u 0 ∈ D(A γ ), u 1 ∈ D(A s ), T 0 > 0, problem (1.1)
admits a local weak solution u lying in L p (0, T ; L q (Ω)) ∩ C([0, T ]; H 2r (Ω)) ∩ W 1, (0, T ; L 2 (Ω)) for some T T 0 that takes the form

T = min C( u 0 H 2γ (Ω) + u 1 H 2s (Ω) ) - p(b-1) p-b , T 0 , (1.15) 
where we set

C = C0 (1 + T 0 ) δ b-1 , (1.16) 
and C0 depends only on f b , Ω, α, b, p and d. Moreover, this local weak solution u is a unique local weak solution of (1.1) lying in L p (0, T ; L q (Ω)) and satisfies

u C([0,T ];H 2r (Ω)) + u L p (0,T ;L q (Ω)) + u W 1, (0,T ;L 2 (Ω)) C( u 0 H 2γ (Ω) + u 1 H 2s (Ω) ).
(1.17)

Here the constant C > 0 depends on d, Ω, f b , b, T 0 , p, α.

A direct consequence of Theorem 1.5 is the following.

Corollary 1.6. Assume that conditions (1.13) and (1.14

) are fulfilled. Let u 0 ∈ D(A γ ), u 1 ∈ D(A s ) satisfy C0 ( u 0 H 2γ (Ω) + u 1 H 2s (Ω) ) - p(b-1) p(1+δ)-b > 1 for some b < p < 1 1-α(1-γ)
, where the constant C0 is introduced in (1.16). Then, for any T > 0 satisfying

T < C0 ( u 0 H 2γ (Ω) + u 1 H 2s (Ω) ) - p(b-1) p(1+δ)-b , (1.18) 
problem (1.1) admits a unique weak solution u on (0, T ) lying in L p (0, T ;

L q (Ω)) ∩ C([0, T ]; H 2r (Ω)) ∩ W 1, (0, T ; L 2 (Ω)).
This last result means that for smaller initial data we obtain longer time of existence of weak solutions.

Let us remark that, this paper seems to be the first where the Definition 1.1 of weak solutions of (1.2) is considered. The main contribution of Definition 1.1 comes from the fact that it allows wellposedness of (1.2) with weak conditions. Indeed, in contrast to other definitions of weak solutions for (1.2) (e.g. [21, Definition 2.1] used by [START_REF] Sakamoto | Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems[END_REF] to prove existence of weak solutions of (1.2) with f ∈ L 2 (Q),

u 0 ∈ L 2 (Ω), u 1 = 0 in [21, Corollary 2.5, 2.6]
), applying Definition 1.1 we can show well-posedness of (1.2) with f ∈ L 1 (0, T ; L 2 (Ω)), u 0 ∈ L 2 (Ω) and u 1 ∈ H -1 (Ω). The choice of Definition 1.1 is inspired both by the analysis of [START_REF] Podlubny | Fractional differential equations[END_REF] and the connection between elliptic equations and fractional diffusion equations used by [START_REF] Li | Uniqueness in inverse boundary value problems for fractional diffusion equations[END_REF]. Note also that Definition 1.1 plays an important role in the Definition 1.4 of weak solutions of (1.1).

Let us observe that in contrast to the wave equation the solution of (1.2) are not described by a semigroup. Therefore, we can not apply many arguments that allow to improve the Strichartz estimates

(1.7) such as the T T * method of [START_REF] Keel | Endpoint Strichartz estimates[END_REF]. Nevertheless, we prove local existence of solution of (1.1) with estimates (1.7). Note also that estimates (1.7) are derived from suitable estimates of Mittag-Leffler functions.

To our best knowledge this paper is the first treating well-posedness for semilinear fractional wave equations. Contrary to semilinear wave equations, it seems difficult to give a suitable definition of the energy for (1.1). This is mainly due to that fact that, once again, there is no exact integration by parts formula for fractional derivatives as well as properties of composition and conjugation of the fractional Caputo derivative ∂ α t (e.g. [START_REF] Podlubny | Fractional differential equations[END_REF]Section 2]). For this reason, it seems complicate to derive global well-posedness from local well-posedness. However, using the explicit dependence with respect to T of the constant in (1.7) we can establish an explicit dependence of the time of existence T of (1.1) with respect to the initial conditions u 0 , u 1 . From this result, we prove long time of existence for small initial data (see Corollary 1.6).

1.4. Outline. The paper is composed of four sections. In Section 2, we treat the well-posedness of the linear problem (1.2) and we show Theorem 1.2. Then, in Section 3 we prove the Strichartz estimates associated to these solutions and given by Theorem 1.3. Finally, in Section 4 we prove the local existence of solutions stated in Theorem 1.5 and Corollary 1.6.

The linear equation

The goal of this section is to prove Theorem 1.2. For this purpose, for k 1 we introduce

u k ∈ C(R + ) defined by u k (t) = E α,1 (-t α λ k )u 0,k + tE α,2 (-t α λ k )u 1,k + t 0 (t -s) α-1 E α,α (-(t -s) α λ k )f k (s)ds, t > 0, (2.1) 
where

u 0,k = u 0 , ϕ k , u 1,k = u 1 , ϕ k -1 , f k (s) = f (s), ϕ k 1 (0,T ) (s). We will show that k 1 u k (t)ϕ k (x)
converge to a weak solution of (1.2) and this weak solution is unique. Let us first recall the following estimates of the behavior of the Mittag-Leffler function.

Lemma 2.1. (Theorem 1.6, [START_REF] Podlubny | Fractional differential equations[END_REF]) If 0 < α < 2, β ∈ R, πα/2 < µ < min(π, πα), then

|E α,β (z)| C 1 + |z| , z ∈ C, µ |argz| π,
where the constant C > 0 depends only on α, β, µ.

Applying Lemma 2.1, one can check that, for all t > 0 and all m, n ∈ N * , we have

n k=m u k (t)ϕ k L 2 (Ω) C n k=m u 0,k ϕ k L 2 (Ω) + Ct 1-α 2 n k=m (λ k t α ) 1 2 1 + λ k t α λ -1 2 k u 1,k ϕ k L 2 (Ω) + Ct α-1 T 0 n k=m f k (s)ϕ k L 2 (Ω)
ds.

Thus, for all T 1 > 0 we obtain

sup t∈(0,T1) n k=m u k (t)ϕ k L 2 (Ω) C n k=m u 0,k ϕ k L 2 (Ω) + C(T 1 ) 1-α 2 n k=m λ -1 2 k u 1,k ϕ k L 2 (Ω) + C(T 1 ) α-1 T 0 n k=m f k (s)ϕ k L 2 (Ω)
ds and it follows that

lim m,n→∞ sup t∈(0,T1) n k=m u k (t)ϕ k L 2 (Ω) = 0.
Therefore, for any T 1 > 0 the serie

k 1 u k (t)ϕ k converge uniformly in t ∈ (0, T 1 ) to v ∈ C(R + , L 2 (Ω)).
In addition, for all N ∈ N * and t > 0, we have

N k=1 u k (t)ϕ k L 2 (Ω) C u 0 L 2 (Ω) + t 1-α 2 u 1 D(A - 1 
2 )

+ Ct α-1 f L 1 (0,T ;L 2 (Ω)) . (2.2) 
Here and henceforth N * denotes the set of all the natural number > 0. Therefore, we deduce

inf{ε > 0 : e -εt v ∈ L 1 (R + ; L 2 (Ω))} = 0
and (2.2) implies that, for all N ∈ N * , t > 0 and p > 0, we obtain

N k=1 e -pt u k (t)ϕ k L 2 (Ω) C e -pt u 0 L 2 (Ω) + e -pt t 1-α 2 u 1 D(A -1 2 ) + Ce -pt t α-1 f L 1 (0,T ;L 2 (Ω)) .
Then, an application of Lebesgue's dominated convergence for functions taking values in L 2 (Ω) yields

V (p, .) = L[v(t, .)](p) = ∞ k=1 L[u k ](p)ϕ k = ∞ k=1 U k (p, .) with U k (p, .) = L[u k ](p)ϕ k .
Moreover, the properties of the Lalpace transform of the Mittag-Leffler function (e.g. formula (1.80) pp 21 of [START_REF] Podlubny | Fractional differential equations[END_REF]) imply

U k (p) = p α-1 u 0,k + p α-2 u 1,k + F k (p) p α + λ k ϕ k = (A + p α ) -1 ( p α-1 u 0 + F (p), ϕ k + p α-2 u 1 , ϕ k -1 )ϕ k with F k (p) = L[f k ](p) = F (p), ϕ k . Thus U k (p, .) solves      (A + p α )U k (p) = p α-1 u 0 + F (p), ϕ k + p α-2 u 1 , ϕ k -1 ϕ k , in Ω, U k (p) = 0, on ∂Ω.
Combining this with the fact that u 0 , u 1 , F (p, .) ∈ H -1 (Ω) = D(A -1 2 ), we deduce that

k 1 U k (p, .) converge in H 1 0 (Ω) to V (p, .) and k 1 (A + p α )U k (p) converge in H -1 (Ω) to F (p) + p α-1 u 0 + p α-2 u 1 .
Therefore, V (p, .) solves

   (A + p α )V (p) = F (p) + p α-1 u 0 + p α-2 u 1 , in Ω, V (p) = 0, on ∂Ω.
(2.3) Thus, u = v |Q is a weak solution of (1.2). This proves the existence of weak solutions lying in C([0, T ]; L 2 (Ω)) and by the same way we obtain estimate (1.3). It remains to show that this solution is unique and, when u 0 ∈ H 2r (Ω), that it is lying in W 1,1 (0, T ; L 2 (Ω)) and that it fulfills (1.4).

We first prove the uniqueness of solutions. Let v 1 , v 2 be two weak solutions of (1.2). Then, for j = 1, 2, there exist w j ∈ L ∞ loc (R + ; L 2 (Ω)) such that:

w j |Q = u j , inf{ε > 0 : e -εt w j ∈ L 1 (R + ; L 2 (Ω))} = 0
and, for all p > 0, the Laplace transform W j (p) with respect to t of w j solves (2.3). Let p > 0 and set

W (p) = W 1 (p) -W 2 (p) ∈ L 2 (Ω) and note that W (p) solves    (A + p α )W (p) = 0, in Ω, W (p) = 0, on ∂Ω.
The uniqueness of the solution of this elliptic problem implies that W (p) = 0. Therefore, for all p > 0 we have W 1 (p) = W 2 (p) which implies that w 1 = w 2 and by the same way

v 1 = w 1|Q = w 2|Q = v 2 .
This proves the uniqueness.

From now on we assume that u 0 ∈ H 2r (Ω), for r ∈ (0, 1/4), and we will show that u ∈ W 1,1 (0, T ; L 2 (Ω)) and that it fulfills (1.4). For this purpose, we establish the following lemmata.

Here we recall that u k , f k , u 0,k , u 1,k appear in (2.1).

Lemma 2.2. For λ > 0, α > 0 and positive integer m ∈ N * , we have

d m dt m E α,1 (-λt α ) = -λt α-m E α,α-m+1 (-λt α ), t > 0 and d dt (tE α,2 (-λt α )) = E α,1 (-λt α ), t > 0.
Proof. The power series defining E α,1 (-λt α ) and tE α,2 (-λt α ) for t > 0 admit the termwise differentiation any times, and the termwise differentiation yields the conclusions.

Lemma 2.3. For all k 1 and 1 < 1 2-α , we have u k ∈ W 1, (0, T ) and

∂ t u k (t) = -λ k t α-1 E α,α (-t α λ k )u 0,k + E α,1 (-t α λ k )u 1,k + t 0 (t -s) α-2 E α,α-1 (-(t -s) α λ k )f k (s)ds, (2.4) 
for a.e. t ∈ (0, T ).

Proof. First we consider the case f k = 0. Then, we have

u k (t) = E α,1 (-t α λ k )u 0,k + tE α,2 (-t α λ k )u 1,k , t > 0.
In view of Lemma 2.2, we see that u k ∈ C 1 ([0, T ]) and (2.4) is fulfilled.

Second we consider the the case u 0,k = u 1,k = 0. Introduce, for all ε > 0 the function

u ε k (t) = t-ε 0 (t -s) α-1 E α,α (-(t -s) α λ k )f k (s)ds, 0 < t < T.
In view of Lemma 2.2, we have u ε k ∈ W 1, (0, T ) and

∂ t u ε k (t) = ε α-1 E α,α (-λ k ε α )f k (t -ε) + t-ε 0 (t -s) α-2 E α,α-1 (-(t -s) α λ k )f k (s)ds, a.a. t ∈ (0, T ).
On the other hand, one can easily check that (u ε k ) ε>0 converge to u k as ε → 0 in D (0, T ) and

(∂ t u ε k ) ε>0 converge to t → t 0 (t -s) α-2 E α,α-1 (-(t -s) α λ k )f k (s)ds
as ε → 0 in D (0, T ), where D (0, T ) is the space of distributions in (0, T ). Therefore, in the sense of D (0, T ) we have

∂ t u k (t) = t 0 (t -s) α-2 E α,α-1 (-(t -s) α λ k )f k (s)ds, 0 < t < T,
which implies (2.4). In addition, applying (2.1), we obtain

|∂ t u k (t)| C t 0 (t -s) α-2 |f k (s)| ds.
Then, according to the Young inequality, we deduce that ∂ t u k ∈ L l (0, T ). Therefore, we have u k , ∂ t u k ∈ L l (0, T ), which means that u k ∈ W 1, (0, T ). Combining these two cases, we complete the proof of Lemma 2.3.

Let us remark that, using the fact that 0 < 2r < 1 2 and D(A

1 2 ) = H 1 0 (Ω), one can check by interpolation that u 0 ∈ H 2r (Ω) = H 2r 0 (Ω) = D(A r
) (e.g. [14, Chapter 1, Theorems 11.1 and 11.6]) and

∞ k=1 λ 2r k |u 0,k | 2 C u 0 2 H 2r (Ω) . (2.5) 
In view of (2.4), applying our previous arguments, for all m, n ∈ N * , we obtain

n k=m ∂ t u k ϕ k L 1 (0,T ;L 2 (Ω)) C n k=m (λ k t α ) 1-r 1 + (λ 1 α k t) α t αr-1 λ r k u 0,k ϕ k L 1 (0,T ;L 2 (Ω)) + C n k=m (λ k t α ) 1 2 1 + (λ 1 α k t) α t -α 2 λ -1 2 k u 1,k ϕ k L 1 (0,T ;L 2 (Ω)) + C T 0 t 0 (t -s) α-2 n k=m f k (s)ϕ k L 2 (Ω)
dsdt.

The Young inequality implies

n k=m ∂ t u k ϕ k L 1 (0,T ;L 2 (Ω)) C T αr αr n k=m λ r k u 0,k ϕ k L 2 (Ω) + C T 1-α 2 1 -α 2 n k=m λ -1 2 k u 1,k ϕ k L 2 (Ω) + C T α-1 α -1 n k=m f k (s)ϕ k L 1 (0,T ;L 2 (Ω))
.

Thus, we have

lim m,n→+∞ n k=m ∂ t u k ϕ k L 1 (0,T ;L 2 (Ω))
= 0, which means that n k=1 ∂ t u k (t)ϕ k (x) is a Cauchy sequence and a convergent sequence in L 1 (0, T ; L 2 (Ω)). Since n k=1 u k (t)ϕ k (x) converge to u in C([0, T ]; L 2 (Ω)), combining this with (2.2), we deduce that Second step: Let u 0 = u 1 = 0. In view of Lemma 2.1, for all 0 < t < T , we have

λ 2γ k t α-1 E α,α (-λ k t α ) f, ϕ k 2 t 2(α(1-γ)-1) | f, ϕ k | 2 (λ k t α ) γ 1 + λ k t α 2 .
Thus, for all 0 < t < T and h ∈ L 2 (Ω), we deduce that S 3 (t)h ∈ D(A γ ) ⊂ H 2γ (Ω) with

S 3 (t)h H 2γ (Ω) Ct α(1-γ)-1 h L 2 (Ω) , 0 < t < T.
By the Sobolev embedding theorem, for all 0 < t < T , we have S 3 (t)h ∈ H 2γ (Ω) ⊂ L q (Ω) with

S 3 (t)h L q (Ω) C S 3 (t)h H 2γ (Ω) Ct α(1-γ)-1 h L 2 (Ω) .
Applying this estimate, we obtain u(t, .) L q (Ω)

t 0 S 3 (t -s)f (s) L q (Ω) ds C t 0 (t -s) α(1-γ)-1 f (s) L 2 (Ω) ds.
By t → t α(1-γ)-1 ∈ L p (0, T ), the Young inequality yields

u L p (0,T ;L q (Ω)) C T α(1-γ)-1+ 1 p (p(α(1 -γ) -1) + 1) 1/p f L 1 (0,T ;L 2 (Ω)) . (3.5) 
Repeating the above arguments, we deduce that

u(t, .) H 2r (Ω) C t 0 (t -s) α(1-r)-1 f (s) L 2 (Ω) ds. Then, since α(1 -r) -1 α(1 -(1 -α -1
)) -1 = 0, we deduce from the Young inequality that u(t, .) H 2r (Ω) CT α(1-r)-1 f L 1 (0,T ;L 2 (Ω)) .

Combining this estimate with (3.3) -(3.5), we deduce (1.7) for u 0 = u 1 = 0. This completes the proof of Theorem 1.3.

4.

Local solutions of (1.1)

In this section we will apply the results of the previous section to prove Theorem 1. On the other hand, for 1 -1 α < γ < d 4 , one can check that

γ < dα 4 + dα ⇐⇒ d(b -1) 4b < dα 4 + dα ⇐⇒ b < dα + 4 dα + 4(1 -α) . (4.2) 
Therefore, γ given by (1.14) fulfills

1 - 1 α < γ < dα 4 + dα , which yields 1 1 -α 1 -dα 4+dα < 1 1 -α(1 -γ)
.

Therefore, we can choose p satisfying

b < dα + 4 dα + 4(1 -α) = 1 1 -α(1 -dα 4+dα ) < p < 1 1 -α(1 -γ) .
Moreover, for q given by (1.14) we have q = 2d d-4γ . Thus, for q, γ given by (1.14) and b < p < 1 1-α(1-γ) , p, q, γ fulfill conditions (1.5) and (1.6) with p > b. Provided that 0 < T ≤ T 0 and M > 0 will be chosen suitably later, we set

Y T = L p (0, T ; L q (Ω)) ∩ C([0, T ]; H 2r (Ω)) and B M = {u ∈ Y T : u Y T M }.
Moreover, we set

u Y T = u L p (0,T ;L q (Ω)) + u C([0,T ];H 2r (Ω)) .
We fix the constant C b > 0 which appears in estimates (1.11) and (1.12). We note that C b is independent of T . We put C = C 0 (1 + T 0 ) δ , where the constants C 0 , δ are introduced in (1.8), (1.9) and are independent of T . Finally we fix

C = C (1 + C b ) + 1. Since p > b, for all u ∈ Y T we have u ∈ L b (0, T ; L 2b (Ω)).
Therefore, in view of Theorem 1.3 and estimates (1.7), (1.8) and (1.11), we have

G b (u) ∈ Y T and G b (u) Y T C ( u 0 H 2γ (Ω) + u 1 H 2s (Ω) + f b (u) L 1 (0,T ;L 2 (Ω)) ) C ( u 0 H 2γ (Ω) + u 1 H 2s (Ω) + C b u b L b (0,T ;L 2b (Ω)) ) C( u 0 H 2γ (Ω) + u 1 H 2s (Ω) + u b L b (0,T ;L 2b (Ω)) ). (4.3) 
On the other hand, by the Hölder inequality one can check that

T 0 u(t, .) b L q (Ω) dt T 0 u(t, .) p L q (Ω) dt b p T 1-b p , which implies u L b (0,T ;L 2b (Ω)) T p-b bp u L p (0,T ;L q (Ω)) . (4.4) 
Applying this estimate to (4.3), we obtain

G b (u) Y T C( u 0 H 2γ (Ω) + u 1 H 2s (Ω) + T p-b p u b Y T ). (4.5) 
We set M = 2C( u 0 H 2γ (Ω) + u 1 H 2s (Ω) ) and T = min (3CM b-1 ) -p p-b , T 0 . With these values of M and T , one can easily verify that (4.5) implies

G b u Y T M, u ∈ B M .
In the same way, applying estimates (1.12) and (1.7) in

G b u -G b v = t 0 S 3 (t -s)[f b (u(s)) -f b (v(s))]ds, we obtain G b u -G b v Y T C u -v L b (0,T ;L 2b (Ω)) ( u b-1 L b (0,T ;L 2b (Ω)) + v b-1 L b (0,T ;L 2b (Ω)) ).
Then, (4.4) and the choice of T imply that for every u, v ∈ B M , we have

G b u -G b v Y T CT p-b p u -v L p (0,T ;L q (Ω)) ( u b-1 L p (0,T ;L q (Ω)) + v b-1 L p (0,T ;L q (Ω)) ) 2CM b-1 T p-b p u -v Y T 2 3 u -v Y T . Therefore, G b is a contraction from B M to B M . Consequently G b admits a unique fixed point u ∈ B M
which is a local weak solution of (1.1). Moreover, from our choice of M and T we deduce (1.15) and

(1.16).

Now we show that this solution is unique in L p (0, T ; L q (Ω)). For this purpose, consider the space

Z T = C([0, T ]; L 2 (Ω)) ∩ L p (0, T ; L q (Ω)) with the norm v Z T = v C([0,T ];L 2 (Ω)) + v L p (0,T ;L q (Ω)) , v ∈ Z T .
Repeating our previous arguments we can show that G b is a contraction from B M to B M with B M = {u ∈ Z T : u Z T M }. Therefore, the fixed point u ∈ B M of G b is a unique local weak solution of (1.1) lying in L p (0, T ; L q (Ω)). Now let us show that the unique weak solution of (1.1) lying in L p (0, T ; L q (Ω)) is also lying in W 1, (0, T ; L 2 (Ω)) and it fulfills (1.17 for all m, n ∈ N * . In view of (4.1), we have

(αγ -1) > α -2 2 -α > -1.
Therefore, the Young inequality yields Combining this with the fact that Combining this estimate with (4.6) and letting N → ∞, we deduce (1.17). Thus, the proof of Theorem Since T 0 1 we can replace T 0 by T 0 + 1 in condition (1.15). Therefore, with this value of T 0 , condition (1.15) holds. Thus, according to Theorem 1.5, problem (1.1) admits a unique weak solution u on (0, T ) lying in L p (0, T ; L q (Ω)) ∩ C([0, T ]; H 2r (Ω)) ∩ W 1, (0, T ; L 2 (Ω)).

1 . Introduction 1 . 1 .

 111 Statement of the problem. Let Ω be a C 2 -bounded domain of R d with d = 2, 3. In what follows, we define A by the differential operator Au(x) = -
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  ). Since u Z T M and T = min (3CM b-1 ) -p p-b , T 0 , by(1.11), we obtain that f b (u) ∈ L 1 (0, T ; L 2 (Ω)) satisfiesf b (u) L 1 (0,T ;L 2 (Ω)) C( u 0 H 2γ (Ω) + u 1 H 2s (Ω) ).(4.6)Now let us setf k (t) = f b (u(t)), ϕ k , u 0,k = u 0 , ϕ k , u 1,k = u 1 , ϕ k . Then, in view of Lemma 2.3, u k (t) = u(t), ϕ k ∈ W 1, (0, T ) fulfills (2.4). Repeating the arguments used in the last part of the proof of Theorem 1.2, we obtain n k=m (∂ t u k )ϕ k L (0,T ;L 2 (Ω))

k 1 (

 1 ∂ t u k )(t)ϕ k (x)is a Cauchy sequence and is a convergent sequence in L (0, T ; L 2 (Ω)).

k 1 u

 1 k (t)ϕ k (x) converge to u in C([0, T ]; L 2 (Ω)), we deduce that

k 1 u

 1 k (t)ϕ k (x) converge to u in W 1, (0, T ; L 2 (Ω)). Finally, for all N ∈ N * , we findN k=1 u k ϕ k W 1, (0,T ;L 2 (Ω)) C( u 0 H 2γ (Ω) + u 1 H 2s (Ω) + f b (u) L 1 (0,T ;L 2 (Ω)) ).
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 5 is completed.Proof of Corollary 1.6. Let T > 0 fulfill (1.18) and set T 0 = T . Without lost of generality we can assume that T 1. Then, we have u 0 H 2γ (Ω) + u 1 H 2s (Ω) )
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u k (t)ϕ k (x) converge to u in W 1,1 (0, T ; L 2 (Ω)). Finally, repeating our previous arguments and applying (2.5), for all N ∈ N * , we find

Then, combining this estimate with (2.2) and taking the limit N → ∞, we deduce (1.3). Thus, the proof of Theorem 1.2 is completed.

Strichartz estimates

The goal of this section is to show Theorem 1.3. We divide the proof of Theorem 1.3 into two steps.

First we prove estimates (1.7) for the weak solution u of (1.2) with f = 0 and then for u 0 = u 1 = 0.

Henceforth C > 0 denotes generic constants which are dependent only on Ω, d, α, γ.

First step: Let f = 0 and let 1 p, q ∞, 0 < γ < 1 fulfill (1.5) and (1.6). Then, (1.10) implies that

Applying estimate Lemma 2.1, we deduce that for

We have 0 ≤ γ -s < 1 by the definition of γ, s. Therefore, in the same way, Lemma 2.1 yields that, for all 0 < t < T , we have

Thus, for all 0 < t < T , we deduce that S 2 (t)

By the Sobolev embedding theorem, for all 0 < t < T , we have u(t, .) ∈ H 2γ (Ω) ⊂ L q (Ω) and

On the other hand, we have 1 -(γ -s)α 0 and so u ∈ L ∞ (0, T ; L q (Ω)) and

In the same way, we have