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Introduction

In this paper we wish to explore the connections between game theory, precisely constant sum homogeneous weighted majority games 1 , and Fibonacci numbers.

A bridge between these two topics has been thrown by Isbell [START_REF] Isbell | A class of majority games[END_REF] in a vintage paper going back to the early stage of development of cooperative game theory. The bridge was embedded in a couple of propositions. In the first ( [START_REF] Isbell | A class of majority games[END_REF], Cor. [START_REF] Neumann | Theory of games and economic behaviour[END_REF], p. 185), the author showed that, weakly ordering players of a n person constant sum homogeneous weighted majority game from bottom to top, the individual weight (in the minimal homogeneous representation) of the player number i could not exceed the corresponding Fibonacci number (more formally w i ≤ f i for any i = 1, . . . , n). The second proposition ( [START_REF] Isbell | A class of majority games[END_REF], third indent, p. 185) claimed that a game whose individual weights satisfied w i = f i for any i = 1 . . . , n -2, w n-1 = f n-2 , w n = f n-1 , described, for any n > 2, a constant sum homogeneous weighted majority game with minimal winning quota q = f n .

Hence, in such games all the first n Fibonacci numbers are associated to all individual weights and to the winning quota. On the ground of this connection we suggest to call Fibonacci-Isbell the set of games defined by the second proposition.

Thinking in terms of type weights rather than of individual ones and keeping account that in any n person Fibonacci-Isbell game there are t = n -2 types of players, we argue that such games satisfy another slightly different "bridge" property: the bottom-top (strictly) ordered n-1 (or t+1) dimension vector of type weights and winning quota is a string of n -1 consecutive Fibonacci numbers starting from f 2 = 1.

In order to generalize this property to other feasible (n, t) combinations, we suggest to define Fibonacci games the subset of constant sum homogeneous weighted majority games whose bottom-top increasing sequence of type weights and winning quota (in their minimal homogeneous representation) is a string of consecutive Fibonacci numbers 2 . Henceforth, it is convenient to use the (first order) "delayed" Fibonacci sequence g defined, for any natural n, by the relation g n = f n+1 , and delayed Fibonacci subsequences g odd = g o = (g 1 , g 3 , . . . , g 2m-1 , . . .) and g even = g e = (g 2 , g 4 , . . . , g 2m , . . .); moreover, following Rosenmüller ([5], p. 311), we keep into consideration the "profile" of a constant sum homogeneous weighted majority game with t types denoted by the ordered vector k = (k 1 , . . . , k j , . . . , k t ) whose component k j is the number of players of type j in the game.

After that, it is clear that Fibonacci games are unequivocally described by feasible triplets (k; g; g t+1 ) in which the profile k and the delayed Fibonacci sequence g share the dimension t, g j is the weight of players of type j, g t+1 is the winning quota and a triplet is feasible if it meets the homogeneity conditions (for details see [START_REF] Rosenmüller | Homogeneous games: recursive structure and Mathematics of Operations Research[END_REF] and [START_REF] Neumann | Theory of games and economic behaviour[END_REF]).

In our paper we give a simple but insightful characterization of the feasible profiles k of Fibonacci games with t types. The proof of such a characterization largely exploits fundamental properties of the delayed Fibonacci sequence (as for the necessary conditions) and the satellite game approach introduced in [4], Theor. 1.4 (in the sufficiency part).

It follows that, for any positive integer t, there are altogether 3 ⌊(t + 1)/2⌋ Fibonacci games, i.e. the Fibonacci-Isbell one and other ⌊(t -1)/2⌋ games.

Moreover, it turns out that any two Fibonacci games with the same t have a different number n of non dummy players. Hence, it is expressive to associate, for any t, the Fibonacci games to the set of integers z = 1, . . . , ⌊(t + 1)/2⌋ in such a way that the number n(t, z) of players in the Fibonacci game with t types and index z is an increasing function of z.

A closed form description of the behavior of the function n(t, z) is also provided. It is amazing to check that the derived function ∆(t, z) = n(t, z +1)-n(t, z) is resumed by a matrix whose columns are the entire delayed Fibonacci sequence (whose starting point is properly shifted down with z), while the rows are, in backward order, the delayed Fibonacci subsequences coherent with the parity of t (properly truncated, so as the row t has ⌊(t -1)/2⌋ components).

We do not discuss here applications of the Fibonacci games, but anticipate that we reached some (not yet published) preliminary evidences that interesting applications to the weighted voting systems in parliamentary elections may be obtained.

The plan of the paper is as follows: section 2 gives a short description of the basic notations used in the paper and recalls well known concepts of homogeneous weighted majority games; section 3 defines Fibonacci games and resumes the main results of the paper; section 4 provides an explicit description of the profiles of Fibonacci games for some small values of t; the behaviour of the n(t, z) and of ∆(t, z) functions and their connections with the delayed Fibonacci (sub)sequences are presented and discussed 2 Of course other definitions, based on more or less restrictive conditions on Fibonacci numbers, could have been chosen. For details on this alternative approach see Gambarelli, Gnocchi and Pressacco (unpublished) communication in the section "Power indices" of the conference: Models of collusion, games and decisions for applications to judging, selling and voting. Oldofredi Castle, Monte Isola 18-19 June 2012. 3 As usual ⌊x⌋ denotes the floor(x). In particular, for t integer even (odd), ⌊(t + 1)/2⌋ = t/2 (or (t + 1)/2).

in section 5; all the proofs are grouped in sections 6 and 7; conclusions follow in the final section 8.

Notations

Let Ω = {1, . . . , n} denote the set of non dummy players of a simple constant sum game in characteristic function form. A simple game is a mapping v : P(Ω) → {0, 1} such that v(∅) = 0 and v(Ω) = 1 and a coalition S ∈ P(Ω) is winning if its payoff v(S) = 1 and losing otherwise. A simple game is constant sum if v(S) + v(Ω/S) = 1 for any S. Moreover, S is minimal winning if, for any player i ∈ S, v(S/i) = 0. A simple weighted majority game is described by the pair (w n ; q) where4 w n = {w 1 , . . . , w n } is the (weakly) ordered vector (w i ≤ w j for i < j) of individual weights and q the winning quota of the game. Thus w(S) = i∈S w i is the weight of S and w(S) ≥ q ⇔ v(S) = 1.

A simple constant sum homogeneous weighted majority game is described by its minimal homogeneous representation, that is the ordered vector h = (w n ; q) which meets the homogeneity conditions, that is h ∈ N n+1 , w 1 = 1, q = (1+w(Ω)) 2 and w(S) = q for any minimal winning coalition. The vector w n of the minimal homogeneous representation induces a decomposition of Ω in equivalence classes K 1 , . . . , K j , . . . , K t . Each class groups all players of the same type, sharing the same individual weight and the corresponding (strongly) ordered type weight vector is w t = {w 1 , . . . , w j , . . . , w t } with w 1 = 1.

Coherently, h = (w t ; q) ∈ N t+1 , but to unequivocally describe a game it is necessary to introduce also the profile k t = (k 1 , . . . , k j , . . . , k t ) with k j the number of players of type j in the game. Thus, a constant sum homogeneous weighted majority game is described by (k t ; w t ; q) ∈ N 2t+1 . Finally, we denote by s t = (s 1 , . . . , s j , . . . , s t ) with s j = |S ∧ K j | ≤ k j the "profile" of the coalition S, so that w(S) = t j=1 s j w j is an alternative formalization of the weight of S and, by homogeneity, w(Ω) = t j=1 k j w j = 2q -1.

Fibonacci games: main results

The Fibonacci sequence f is defined by the well known finite difference equation:

f n = f n-1 + f n-2
holding for any natural n > 2 with initial conditions f 1 = f 2 = 1. Henceforth, we exploit the "delayed" Fibonacci sequence g n = f n+1 for any n and denote, for any integer m, by g m ∈ N m the vector (g 1 , g 2 , . . . , g m ). Coherently, the denumerable sequence g ∞ = (g 1 , . . . , g n , . . .), and g ∞ = g o ∨g e with g o = (g 1 , g 3 , . . . , g 2m-1 , . . .) g e = (g 2 , g 4 , . . . , g 2m , . . .)

the two denumerable (sub)sequences obtained extracting from g ∞ all elements of odd or respectively even index.

Definition 3.1. The set of Fibonacci games is the subset of constant sum homogeneous weighted majority games with h = g t+1 , that is (k t ; w t ; q) = (k t ; g t ; g t+1 ).

Remark 3.1. Feasibility conditions require that in any Fibonacci game with t types, t j=1 k j g j = 2g t+1 -1 constant for any k t : the winning quota is the same for all Fibonacci games with the same t.

Proof. Homogeneity requires that w(Ω) = 2q -1, i.e. t j=1 k j g j = 2g t+1 -1.

Theorem 3.1. Both for t = 1 and t = 2 there is a unique Fibonacci game; their k t are respectively k 1 = (3), and k 2 = (3, 1); for any t > 2, a game is a Fibonacci game if and only if its k t = k(t, z) is given, for any value of the counter z = 1, . . . , ⌊(t -1)/2⌋ and with j 0 = t + 1 -2z, by:

k(t, z) = (k 1 , k ′ , k j 0 , k ′′ ) = (2 + g t-1 -g j 0 , 1 j 0 -2 , 2, 1 2z-1 ) (3.1)
or, putting z = ⌊(t + 1)/2⌋ in order to have a complete indexation of the games, by:

k(t, ⌊(t + 1)/2⌋) = (2 + g t-1 , 1 t-1 ) (3.2)
Corollary 3.1. For any t, there are exactly

Φ(t) = ⌊(t + 1)/2⌋ (3.3)
Fibonacci games with t types.

Let us denote by n(t, z) the total number of non dummy players in a Fibonacci game with t types and index z.

Theorem 3.2. For any t, z 1 < z 2 ⇔ n(t, z 1 ) < n(t, z 2 ).
Proofs of Theorems 3.1 and 3.2 follow in sections 6 and 7.

Profiles of Fibonacci games

According to Definition 3.1, given t there are no degrees of freedom in the choice of the sequence of type weights and of the winning quota. Hence, a Fibonacci game is unequivocally described by its k(t, z) vector which follows the rules described in Formulas (3.1) and (3.2). Table 1 We distinguish between two patterns of profiles: for z = ⌊(t + 1)/2⌋, (the last vector of each row) all but the bottom5 type components are 1, while the bottom component plays a balancing role (according to Formula (3.2)); for all the other z there is just one non bottom component equal to 2 in place j 0 = j(t, z) = t + 1 -2z, all the other non bottom components are still 1 and, again, the bottom component plays the balancing role (according to Formula (3.1)). [START_REF] Rosenmüller | Homogeneous games: recursive structure and Mathematics of Operations Research[END_REF] The behavior of n(t, z) The following properties hold for any feasible combination of (t, z):

Property 5.1. n(t, 1) = t + 2 (5.1) Property 5.2. ∆(t, z) = n(t, z + 1) -n(t, z) = g t-2z
(5.2)

Property 5.3. n(t, 2) -n(t -1, ⌊t/2⌋) = 2 (5.3)
Proofs of the previous Properties are given in section 7.

Here, we distinguish between two kinds of Fibonacci games: the first kind corresponds to z = 1 and Formula (5.1) implies that there is just one Fibonacci game (of this first kind) for any n > 2. Such games have been described by Isbell ([1], p. 185) while studying the class of coalitionally Parsimonious games 6 .

For z > 1 (second kind), there is one Fibonacci game (of this second kind) for sparse values of n. Summing up, there are values of n corresponding to two Fibonacci games (one of the first and one of the second kind), while for other values of n there is just one Fibonacci game of the first kind.

At first glance the values of n associated to the second kind of games seem to follow a chaotic rule. A regularity emerges once we consider the following table of the differences generated by Property 5.2 (see also Remark 7.1). Note that the rows corresponding to odd (even) values of t are backward initial strings with ⌊(t -1)/2⌋) elements of the sequence g o (g e ). In turn, the columns are nothing but the whole sequence g ∞ whose starting point is shifted at the row t = 1 + 2z.

6 Proofs of Theorem 3.1

Proof. For t = 1: q = g 2 = 2 w(Ω) = k 1 • g 1 = k 1 = 2q -1 = 3
Hence there are three players with weight g 1 = 1, k 1 = (3) and Φ(1) = 1.

For t = 2:

q = g 3 = 3 w(Ω) = 2 j=1 k j g j = 2q -1 = 5 Hence, k 1 • g 1 + k 2 • g 2 = k 1 • 1 + k 2 • 2 = 5.
There are two solutions k 2 = (3, 1) and k 2 = (1, 2) but the second is not feasible because the profile s 2 = (0, 2) identifies a minimal winning coalition S with w(S) = 4 > q, incompatible with the homogeneous character. On the other side, the first solution is feasible with profiles (3, 0) and (1, 1) of the minimal winning coalitions, so that Φ(2) = 1.

For t > 2, we show at first that the conditions (3.1) or (3.2) are necessary for Fibonacci games and then that they are also sufficient.

Proof of necessity

Property 6.1. In any Fibonacci game with t > 1, the coalition S whose profile s t = (0 t-2 , 1 2 ), i.e. made by a top and a last but top player, is minimal winning.

Proof.

w(S) = s t-1 g t-1 + s t g t = g t-1 + g t = g t+1 = q Property 6.2. In any Fibonacci game with t > 1, k t = 1.

Proof. Otherwise the coalition S : s t = (0 t-1 , 2) would be minimal winning with w(S) = 2g t > g t + g t-1 = q, a contradiction with the homogeneous character of the game. Property 6.3. In any Fibonacci game with t > 2, k t-1 ≤ 2.

Proof. Otherwise the coalition S : s t = (0 t-2 , 3, 0) would be minimal winning as 2g t-1 < g t-1 + g t = q with w(S) = 3g t-1 > 2g t-1 + g t-2 = g t-1 + g t = q. Property 6.4. In any Fibonacci game with t > 3, k t-2 = 1.

Proof. Suppose on the contrary, k t-2 > 1 and consider the coalition S : s t = (0 t-3 , 2, 0, 1). S would be minimal winning too as g t +g t-2 < g t +g t-1 = q with w(S) = g t +2g t-2 > g t +g t-2 +g t-3 = g t +g t-1 = q. A contradiction. Properties 6.3 and 6.4 may be generalized to types (th) with h odd and respectively h even. Property 6.5. In any Fibonacci game it is k t-h ≤ 2 for h odd < t -1.

Proof. Proof of Property 6.5 is based on the following lemma: Lemma 6.1. In a Fibonacci game consider any player of type j 0 = (th) with h odd < (t -1); there exists a minimal winning coalition S in which this player is the weakest. The profile of S is given by: s t = (s 1 , . . . , s j , . . . , s t ) with s j = 0 for j < j 0 ; s j 0 = 1; s j = 1 for j > j 0 and j = (j 0 + 1) mod 2 and s j = 0 for j > j 0 and j = j 0 mod 2.

Proof.

w(S) = g j 0 + j>j 0 and j=(j 0 +1) mod 2

g j = g t-1 + g t = g t+1 = q
Now to prove Property 6.5 suppose on the contrary k j 0 > 2 and consider the coalition S ′ obtained from S by replacement of the player type j 0 + 1 with two additional players of type j 0 . S ′ would be minimal winning with w(S ′ ) > q, a contradiction. Property 6.6. In any Fibonacci game it is k t-h = 1 for h even < t -1.

Proof. Proof of Property 6.6 is based on the previous Lemma 6.1 and on the following one: Lemma 6.2. Suppose in a Fibonacci game there is a minimal winning coalition S and a j 0 = (t-h) > 2 such that s j = 0 for j = 1, . . . , j 0 -1, s j 0 > 0 (so that a player of type j 0 > 2 is the weakest in S), then k j 0 -1 = 1.

Proof. Suppose on the contrary k j 0 -1 > 1 and consider the coalition S ′ obtained from S by replacement of a player of type j 0 with two players of type j 0 -1. S ′ would be minimal winning with w(S ′ ) > q, a contradiction. This Lemma holds independently from the parity of h. Lemma 6.3. If a player of type j = th > 2 is the weakest in a minimal winning coalition S, then there exists a minimal winning coalition S ′ such that a player of type j -2 is the weakest in S ′ .

Proof. In S replace the player of type j with the unique (by Lemma 6.2) player of type j -1 and one player of type j -2. Also this Lemma holds independently from the parity of h. Lemma 6.4. Suppose in a Fibonacci game k j 0 = 2 for j 0 = th with h odd < (t -1), then: a) k j 0 -1 = 1 (by Property 6.6) and b) there is a minimal winning coalition S ′ such that the player of type (j 0 -1) is its weakest player.

Proof. (of part b)) S

′ is obtained from the coalition S in Lemma 6.1 by replacement of the player of type t -(h -1) with one additional player of type th and the player of type t -(h + 1). Clearly S ′ is minimal winning with w(S ′ ) = q. Lemma 6.5. If in a Fibonacci game k j 0 = 2 for j 0 = th with h odd < (t -1), then k j = 1 for any 1 < j < j 0 .

Proof. Lemma 6.4 and Lemma 6.3 imply that there exists a set of minimal winning coalitions such that each player of type j, 1 < j ≤ j 0 , is the weakest in a minimal winning coalition of the set. After that Lemma 6.5 comes as an immediate corollary of Lemma 6.2. Now, it is possible to give a more precise statement of Property 6.5 concerning the behaviour of k t-h for h odd < t -1. Indeed, Property 6.5 and Lemma 6.5 give immediately: Property 6.7. In a Fibonacci game there is at most one odd h < t -1 such that k j 0 = k t-h = 2 and k j = 1 for all j > 1 and j = j 0 . Now by Remark 3.1 it is:

k 1 = 2g t+1 -1 - t j=2 k j g j (6.1)
and moreover 7 :

g t+2 - t j=1 g j = 2 (6.2)
Furthermore, Properties 6.6 and 6.7 imply that, for any j = 2, . . . , t, k t satisfies conditions (3.1) or (3.2). In the first case and putting j 0 = t + 1 -2z, we obtain:

k 1 = k 1 (t, z) = 2g t+1 -1 -( t j=2 g j + g j 0 ) = = g t+1 + (g t + g t-1 ) - t j=1 g j -g j 0 = = g t+2 + g t-1 - t j=1 g j -g j 0 = = 2 + g t-1 -g j 0 (6.3)
7 By induction: indeed it is immediate to check that (6.2) is true for t = 1 and, if true for t, is true also for t + 1.

In particular, for z = 1, k 1 = 2. In the second case, we get immediately:

k 1 = k 1 (t, ⌊(t + 1)/2⌋) = 2 + g t-1 (6.4)
To resume, by Properties 6.6 and 6.7, and by Formulas (6.3) and (6.4), necessary conditions to be satisfied by the k t vector of a Fibonacci game with t > 2 are those described in Formulas (3.1) and (3.2).

Proof of sufficiency

The proof is based on an adaptation to our problem of the test for homogeneity of a weighted majority games developed as Basic Lemma in [START_REF] Rosenmüller | Weighted majority games and a the matrix of Homogeneity[END_REF] (Theorem 1.4) and [START_REF] Rosenmüller | Homogeneous games: recursive structure and Mathematics of Operations Research[END_REF] (pp. 312).

Henceforth we use the following definitions and notations:

• G 0 = (k 0 t ; g 0 t ; λ 0 = g t+1 ), "seed" game with k 0 t given by Formulas (3.1) or (3.2). In particular, G 0,z , seed game as a function of z = 1, . . . , ⌊(t + 1)/2⌋.

• G r = (k r t ; g r t ; λ r ), any game of a r generation 8 derived by the seed G 0 . Note that the dimension t of G r depends on r. Whenever useful, we utilize t(r). In particular, G r,z , game of a r generation derived by the seed G 0,z .

• Feasible (not feasible) game: a G r for which t j=2 k r j • g r j ≥ λ r (< λ r ).

• For any given type index j 0 > 1, an "intermediate" player in the game G r is a player of type j 0 , a "large" player is a player of any type j > j 0 , a "small" player is any player of type 1 < j < j 0 .

• No bottom coalition of a feasible game G r : a coalition S r whose profile s r has s r 1 = 0.

• Dominant coalition 9 of a feasible game G r a coalition S r such that:

1. S r is no bottom 2. there is an index j 0 (G r ) > 1 (or shortly j r 0 > 1) and a positive integer c r , such that s r = (s r j = 0 for j < j r 0 ; s r j = c r (1 ≤ c r ≤ k r j 0 ); s r j = k r j for j > j r 0 )

i.e. S r is made by all large players and by some (may be all) intermediate players, so that j r 0 is the type index corresponding to the weakest player in the dominant coalition S r . 3. w(S r ) = t(r) j=1 s r j g r j = λ r .

• Generation rules. Let G r a feasible game, S r its dominant coalition and j r 0 the corresponding type index. To any j r 0 ≤ j ≤ t(r), associate the game G r+1 (j) = (k r+1 , g r+1 , λ r+1 ) in which k r+1 = k r+1 (j):

for j > j r 0 and k r j 0c r > 0:

k r+1 j 0 = (k r 1 , k r 2 , . . . , k r j 0 -1 , k r j 0 -c r )
, the dimension of g r+1 is j 0 and λ r+1 = g j 8 Note that the winning quota λ r of G r may well be greater than t j=1 k r j g j r+1 2

, i.e. for r > 0, G r may not be constant sum. 9 It is the counterpart of the "largest min win" coalition (in backward lexicographic order) of a weighted majority game defined in [START_REF] Rosenmüller | Homogeneous games: recursive structure and Mathematics of Operations Research[END_REF], pp. 312.

for j = j r 0 or j > j r 0 and k r j 0c r = 0:

k r+1 j 0 -1 = (k r 1 , k r 2 , . . . , k r j 0 -1
), the dimension of g r+1 is j 0 -1 and λ r+1 = g j Verbally the dominant coalition S r generates as many "satellite" games G r+1 (j) as the number of types j included in the coalition. The players of the satellite game associated to a type j are all players of type i < j not belonging to S r ; the winning quota is g j . The idea is that any satellite game looks for the dominant coalition of the satellite able to replace one player of type j in the generating game while preserving the homogeneous character of the "seed" game. In turn, the dominant coalition gives rise to other satellite games of next generation and so on. Now, our adapted version of Basic Lemma is: Lemma 6.6. A seed weighted majority game G 0 is homogeneous if, in the set of all G r games obtained by the generation rules, do not exist feasible games lacking the dominant coalition.

To prove the Lemma 6.6 we show that any game of the set G r , (r = 0, 1, . . .) generated by a seed G 0 coherent with formulae (3.1) and (3.2) either is not feasible or admits a dominant coalition.

In the proof we will exploit the following relation10 concerning Fibonacci numbers:

g t-2 + 2g t-1 + h j=0 g t+j = g t+h+2 (6.5) 
Proof. Let us distinguish three cases: Case α): z = ⌊(t + 1)/2⌋

Let us denote G 0,⌊(t+1)/2⌋ = G 0 = (k 0 t ; g 0 t ; g t+1 ) any seed game with k 0 t = (k 0 1 , 1 t-1 ). The profile of the dominant coalition S 0 is s 0 t = (0 t-2 , 1 2 ) with k 0 t-1c = 0. Hence the satellite games associated to type t -1 and t are G 1,a = G 1 (t -1) = (k 1 , 1 t-3 ; g t-2 ; g t-1 ) and G 1,b = G 1 (t) = (k 1 , 1 t-3 ; g t-2 ; g t ). By Formula (6.2), G 1,b is not feasible, while G 1,a is feasible for any t = t(0) > 4. Let shortly write G 1,a = G 1 ; it is immediate to check that G 1 mimics the structure of G 0 : only the dimension is different: it is t = t(0) for G 0 and t = t(1) = t(0) -2 for G 1 . The profile of the dominant coalition S 1 of G 1 is s 1 = (0 t(1)-2 , 1 2 ) = (0 t-4 , 1 2 ) and the procedure may be recursively repeated until the integer r for which also G 1,r is no more feasible. This is resumed by the following Property 6.8. Let G 0 be a seed game of type α with t = t(0) > 2. For any generation r = 0, 1, . . . , ⌊(t -3)/2⌋ there is a unique feasible G r = (k r t ; g r t ; λ r ). The k r t of such game is k 0 t truncated at dimension t(r) = t(0) -2r, which is coherently the dimension of g r t , while λ r = g t(r)+1 . Feasible G r games have dominant coalition S r whose s r t(0)-2r = (0 t(0)-2(r+1) , 1 2 ). Case β): z = 1 Let G 0,z = G 0,1 = (k 0 t ; g 0 t+1 ; g t+1 ) any seed game with k 0 t = (k 0 1 , 1 t-3 , 2, 1). The profile of the dominant coalition S 0 is still s 0 t = (0 t-2 , 1 2 ) with k 0 t-1 -c = 1. Hence, the satellite games associated to type t -1 and t are G 1,a = G 1 (t -1) = (k 1 , 1 t-3 ; g t-2 ; g t-1 ) and G 1,b = G 1 (t) = (k 1 , 1 t-2 ; g t-1 ; g t ). Both games share the properties of G 0 of case α), that is behave as seed games and generate for r = 2, . . . sequences G r,a and G r,b according to Property 6.8. Of course the dimension of G 1,a = t(1, a) = t(0)-2,

and of G 1,b = t(1, b) = t(0) -1. Case γ): 1 < z < ⌊(t -1)/2⌋ Let us write G 0,z = (k 0 1 , 1 t-1-2z , 2, 1 2z-1
). The profile of the dominant coalition S 0,z is s 0,z t = (0 t-2 , 1 2 ) with k 0 t-1c = 0. Let us denote the two satellite games by 1) ; hence recursively we go back to G 0,1 , i.e. the seed game of case β).

G 1z,a = G 1z (t -1) = (k 1z,a t ; g 1z,a t ; λ 1z,a ) and G 1z,b = G 1z (t) = (k 1z,b t ; g 1z,b t ; λ 1z,b ). It is k 1z,a t-2 = k 1z,b t-2 = (k 0 1 , 1 t-1-2z , 2, 1 2z-3 ), λ 1z,a = g t-1 , λ 1z,b = g t . Note that G 1z,a mimics G 0,(z-
In turn, as by Formula (6.5),

j s 1z,b j g j = g t , G 1z,b has dominant coalition with profile s 1z,b t-2 = (0 t-2z-1 , 1, 2, 1 2z-3 ). Hence G 1z,b gives rise to 2z -1 satellite games G 2z,b (j) for j = t(0) -2z, . . . , t(0) -2. It is G 2z,b (j) = (k 0
1 , 1 t-2z-2 ; g t-2z-1 ; g j ). By Formula (6.2), for all j, except j * = t(0) -2z, the G 2z,b (j) are not feasible; the survival feasible G 2z,b (j * ) mimics the behavior of the G 0 seed of the case α).

Summing up, in all three cases all G r games either are not feasible, or if feasible admit a dominant coalition and the conditions of the Basic Lemma are verified.

Proofs of Properties of Section 5

By definition:

n(t, z) = k 1 (t, z) + t j=2 k j (t, z) (7.1)
Proof. Proof of Property 5.1

For z = ⌊(t + 1)/2⌋ it is t j=2 k j (t, z) = t -1, by Formula (3.2) and k 1 = 2 + g t-1 by Formula (6.4) so that:

n(t, z) = t + 1 + g t-1 (7.2)
For z < ⌊(t + 1)/2⌋ it is t j=2 k j (t, z) = t, by Formula (3.1) and k 1 = 2 + g t-1g t+1-2z by Formula (6.3) so that:

n(t, z) = t + 2 + g t-1 -g t+1-2z (7.3) 
and in particular n(t, 1) = t + 2

Proof. Proof of Property 5.2.

For (z + 1) < ⌊(t + 1)/2⌋ by Formula (7.3):

n(t, z + 1) -n(t, z) = (t + 2 + g t-1 -g t+1-2(z+1) ) -(t + 2 + g t-1 -g t+1-2z ) = g t-2z+1 -g t-2z-1 = g t-2z
(7.4)

For (z + 1) = ⌊(t + 1)/2⌋ by Formulas (7.2) and (7.3):

n(t, z + 1) -n(t, z) = (t + 1 + g t-1 ) -(t + 2 + g t-1 -g t+1-2z ) = g t+1-2z -1 (7.5)
but z = ⌊(t -1)/2⌋ = (t/2) -1 for t even and (t -1)/2 for t odd so that:

t + 1 -2z = 3 for t even and t + 1 -2z = 2 for t odd which also means, on one side:

t -2z = 2 for t even and t -2z = 1 for t odd and on the other one: g t+1-2z = 3 for t even and g t+1-2z = 2 for t odd and finally g t+1-2z -1 = 2 for t even and g t+1-2z -1 = 1 for t odd so that in both cases still n(t, z + 1)n(t, z) = g t-2z (7.6) which completes the proof of Property 5.2. Note that this property implies the strict monotony of n(t, z) for any t and then, as a by product, gives a proof of Theorem 3.2.

Proof. Proof of Property 5.3.

Preliminarily note that putting t ′ = t -1 it is ⌊(t ′ + 1)/2⌋ = ⌊(t/2)⌋ so that by Formula (7.2): n(t ′ , ⌊(t ′ + 1)/2⌋) = t ′ + 1 + g t ′ -1 (7.7) equivalent to n(t -1, ⌊(t/2)⌋) = t + g t-2

Moreover, it is by Formula (7.3) for t > 4, or by Formula (7.2) for t = 3 and 411 n(t, 2) = t + 2 + g t-1g t-3 = t + 2 + g t-2

and immediately: n(t, 2)n(t -1, ⌊t/2⌋) = 2 (7.8)

Remark 7.1. Jointly Prop. 5.2 and 5.3 imply that, putting in lexicographic order the set Ξ of values of n(t, z), z > 1, a strictly monotone sequence is obtained. By Formulas (7.4), (7.6) and (7.8), all members of the sequence of first differences ∆ of the Ξ sequence are Fibonacci numbers (see Table 3).

Conclusions

In this paper we introduce the class of Fibonacci games. They are the subset of constant sum homogeneous weighted majority games whose sequence of all type weights and the minimal winning quota is a string of consecutive Fibonacci numbers. Exploiting properties of Fibonacci sequence, we give closed form results able to provide a simple and insightful characterization of such games. In detail, we compute the total number of Fibonacci games for any given value of t (type of players in the game); we describe, for any (t, z) with z a proper counter, the profile of any game, i.e. the vector whose components are the number of non dummy players of each type in the game; we provide elegant connections between Fibonacci numbers and the overall number of non dummy players in the game.

Compared to other weighted majority games, the Fibonacci games combine two specific characteristics: the presence of some, or perhaps many, "peones" (players with minimum weight), along with an almost total ranking (with one tie at most) of all the other players, whose individual power grows at the speed of the Fibonacci sequence. It seems, by some preliminary analysis, that this feature can be particularly useful in applications to weighted voting systems in parliamentary elections. This would be the object of further research.

Table 1 :

 1 helps to understand the profile vectors of Fibonacci games for a set of small values of t. The profile k(t, z) for a set of small values of t.

	t	Φ(t)	k(t, 1)	n(t, 1)	k(t, 2)	n(t, 2)	k(t, 3)	n(t, 3)	k(t, 4)	n(t, 4)
	1	1	(3)	3						
	2	1	(3, 1)	4						
	3	2	(2, 2, 1)	5	(4, 1, 1)	6				
	4	2	(2, 1, 2, 1)	6	(5, 1, 1, 1)	8				
	5	3	(2, 1, 1, 2, 1)	7	(5, 2, 1, 1, 1)	10	(7, 1, 1, 1, 1)	11		
	6	3	(2, 1, 1, 1, 2, 1)	8	(7, 1, 2, 1, 1, 1)	13	(10, 1, 1, 1, 1, 1)	15		
	7	4	(2, 1, 1, 1, 1, 2, 1)	9	(10, 1, 1, 2, 1, 1, 1)	17	(13, 2, 1, 1, 1, 1, 1)	20	(15, 1, 1, 1, 1, 1, 1)	21
	8	4	(2, 1, 1, 1, 1, 1, 2, 1)	10	(15, 1, 1, 1, 2, 1, 1, 1)	23	(20, 1, 2, 1, 1, 1, 1, 1)	28	(23, 1, 1, 1, 1, 1, 1, 1)	30
	...	...	...	...	...	...	...	...	...	...

Table 2

 2 shows the behavior of the function n(t, z).

				z		
	t	1	2	3	4	5
	1	3				
	2	4				
	3	5	6			
	4	6	8			
	5	7	10	11		
	6	8	13	15		
	7	9	17	20	21	
	8	10	23	28	30	
	9	11	32	40	43	44
	10	12	46	59	64	66
	...	...	...	...	...	...

Table 2 :

 2 List of the values n(t, z).

Table 3 :

 3 Table of the function ∆(t, z).

			z		
	t	1	2	3	4
	3	1			
	4	2			
	5	3	1		
	6	5	2		
	7	8	3	1	
	8	13	5	2	
	9	21	8	3	1
	10	34	13	5	2
	...	...	... ... ...

Henceforth the subscript of the vector is its dimension, not to be confused with the subscript of a scalar which denotes a component of the vector.

The first component of the sequence corresponds to the bottom type, i.e. to the weakest non dummy players.

Parsimoniuos games are the subset of constant sum homogeneous weighted majority games characterized by the parsimony property to have, for any given number n of non dummy players in the game, the smallest number, i.e. exactly n, of minimal winning coalitions. For details see also[START_REF] Pressacco | Bilateral symmetry and modified Pascal triangles in Parsimonious games[END_REF].

By induction: it is true for j = 0, and if true for j it is true for j + 1.

Note that for t = 3 or 4 it is 1 + gt-2 = gt-1. Hence for such t: t + 2 + gt-2 = t + 1 + gt-1 so that both (7.2) and (7.3) describe n(t, ⌊(t + 1)/2⌋).