
HAL Id: hal-01214628
https://hal.science/hal-01214628

Submitted on 17 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Elastography of multicellular aggregates submitted to
osmo-mechanical stress

Charles-Edouard Leroux, Joelle Palmier, Albert-Claude Boccara, Giovanni
Cappello, Sylvain Monnier

To cite this version:
Charles-Edouard Leroux, Joelle Palmier, Albert-Claude Boccara, Giovanni Cappello, Sylvain Monnier.
Elastography of multicellular aggregates submitted to osmo-mechanical stress. New Journal of Physics,
2015, 17, pp.073035. �10.1088/1367-2630/17/7/073035�. �hal-01214628�

https://hal.science/hal-01214628
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 134.157.80.136

This content was downloaded on 17/12/2015 at 15:09

Please note that terms and conditions apply.

Elastography of multicellular aggregates submitted to osmo-mechanical stress

View the table of contents for this issue, or go to the journal homepage for more

2015 New J. Phys. 17 073035

(http://iopscience.iop.org/1367-2630/17/7/073035)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/17/7
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


New J. Phys. 17 (2015) 073035 doi:10.1088/1367-2630/17/7/073035

PAPER
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Abstract
Tumors are subjected tomechanical stress generated by their own growth in a confined environment,
and by their surrounding tissues. Recent works have focused on the study of the growth of spherical
aggregates of cells, spheroids, under controlled confinement or stress. In this studywe demonstrate
themeasurement of spatially and temporally resolved deformationmaps inside spheroids while
applying an osmo-mechanical stress.We use fullfield optical coherence tomography, a high
resolution imaging techniquewell suited for real-timemeasurements of deformation in living tissues
under stress. Using the spherical symmetry of the experiment, we compare our data to amechanical
modeling of the spheroid as a continuousmedium.We estimate the viscoelastic parameters of
spheroids and discuss the apparent tissue anisotropy after the osmo-mechanical stress.

1. Introduction

A tumormechanically interacts with its surrounding tissue, the stroma. In vitro, unbounded growth of
cancerous cells can exert pushing forces and compress the tumor surroundings [1]. In vivo, tumor growth-
induced stress can impact the tumormicro-environment [2] and can eventually promote cancer progression in
a confined environment [3].How a tumor responds, at the cellular level, tomechanical constraints is still an
open question. Beside their clinical relevance,mechanical properties of tissues or cells play important roles in
basic biological processes such as differentiation [4],morphogenesis [5] and cancer invasion [6, 7].

Spheroids are spherical cellular aggregates commonly used tomimic pre-vascularized tumors in vitro. They
are usually built by the aggregation of a single type of cells. Like cells cultured on aflat substrate, they are a
valuable tool for drug screening, or designingwell controlled biophysical experiments [8]. In fact, their overall
simple spherical geometry generates a radial gradient in oxygen, nutrients, and drug penetration andmake them
a valuable tool for anti-cancer drug screening [9]. Variousmethods have been presented to study the effect of
biologically viable stress on the growth of spheroids, without perturbing vital exchanges of oxygen and nutrients
with the culturemedium: growth in stressed agarose gels [1], within hydrogel capsules [7], or under osmo-
mechanical pressure [10]. These experiments show that pressure or confinement impedes spheroid growth by
inhibiting proliferation of cells preferentially located in the inner layers [1, 10], but can also trigger invasion of
the surrounding environment [7].

Osmo-mechanical stress provide an elegant and easy way to apply isotropic stress to a spherical cell aggregate
[10, 11]. The stress can indeed be generated by simply adding a biopolymer to the culturemedium,without
major perturbation at the cellular levels. Largemolecules of dextran, in the order of 100 kDa, do not penetrate
inside the aggregate, so that the peripheral cellular layers acts as an impermeablemembrane and transmit an
isotropic stress to the spheroid [11]. Recently, it was observed such a pressure reduces the aggregate growth by
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inhibiting proliferation of cells located in the inner layers of the aggregate [10, 11]. This spatial inhomogeneity in
the response to an osmo-mechanical stress is thought to emerge from the stress distribution inside the aggregate,
as an important compression at the center of the spheroid (60% in volume)was reported 5min after pressure
application, while the volume of peripheral cells seems not to be affected [12].

Over shorter timescales (minutes), themechanical properties of a spheroid are those of a passive, viscoelastic
material. Numerous experimentalmethods based on puremechanical perturbations have been introduced to
characterize the viscoelastic behavior of cellular aggregates [13]. Indeed,mechanical properties such as Youngʼs
modulus, viscosity or surface tensionwere extracted fromparallel plates experiments historically introduced by
Steinberg and co-workers [14–16], spheroid centrifugation [17], ormicropipette aspiration [18]. The later study
interestingly showed that the surface tension depends on the applied stress, suggesting an active reaction of the
cell tomechanical constraints[18]. Spheroid grown under confinement between PDMSwalls exhibited plastic
behavior after constraint release, this shows that long-term stress can alsomodify themechanical properties of
such systems [19].

In order to understand the growth impediment of spheroids submitted to dextran-generated osmo-
mechanical stress, we use full field optical coherence tomography (FFOCT) to characterize the rapid response of
cellular aggregates to such a compressive stress. Low coherent interferometric imaging techniques, such as
digital holography [20–22] and point scanning optical coherence tomography [23, 24], have a great potential to
study cell dynamics in living tissues. At an improved isotropic resolution of around 1 μm(versus 10 μmfor the
mentioned techniques), FFOCTprovides 2D images with a contrast that is due to the light locally back-scattered
from the sample, which interferes with a reference beam. Thus, no prior stainingwith dyes is needed. As an
interferometric imaging technique, FFOCT is extremely sensitive to sub-micron deformation of biological
tissues, and is therefore well suited to perform real-time elastography of biological tissues [25–27]. Elastography
is a technique that wasfirst developed for ultrasound imaging, in order to add a stiffness contrast to standard
images bymeasuring the local displacement in a tissue under dynamic or staticmechanical excitation.

Here, wemeasure the compression in real time on living spheroids and use a recently proposed [28]
mechanicalmodeling of the spheroid as a continuousmedium to interpret quantitatively the spatio-temporal
behavior of themeasured deformation. First, we exclude any potential artifact due to the cryosection process in
previouswork [28]. Second, we dynamicallymeasure the compression field as a function of the time.Our
experimental data confirm that the response of a spheroid to amechanical perturbation deviates fromwhat is
expected for a homogeneous isotropic sphere and confirms, with real-timemeasurements inside living
spheroids, that a radial gradient in volumetric compression builds up in the core of the spheroidwithinminutes
after the pressure jump.

2.Methods

2.1. Imaging using FFOCT
With FFOCT, the coherent back-scattered signal is isolated from the background by phasemodulation of the
reference beam,which allows deep imaging inside thick biological tissues that scatter light. The positive contrast
originates from the local change of refractive index introduced by the cellmembrane. The low coherence of the
light source, in combinationwith adequate optical filters, sets the sectioning power of themicroscope to
approximately 1 μmalong the optical axis. This valuematches the transverse resolution of themicroscope,
which is set by the numerical aperture of themicroscope objectives.

The FFOCT images were recorded using a commercialmicroscope (Light-CT, LLTECH, Paris, France)with
aCMOS camera (MV-D1024E, Photonfocus) and a halogen lamp (KL 1500 compact, Schott).We show in
figure 1 the schematic of the optical layout of themicroscope, which can be thought as aMichelson
interferometer with identical objectives in the reference and sample arm.With an irradiance as low as
2 mWmm−2 on the sample, the signal to noise ratio of a single FFOCT image is around 2 at the surface of the
spheroid (acquired at 25Hz), and typically drops to a value of 0.5 at a 100 μmimaging depth because of light
scattering and optical aberrations.We found that imaging at a 100 μmdepth inside spheroids of radius 200
micronswas a good compromise to obtain good quality images for the time-resolvedmeasurements of local
displacement. Each processed FFOCT image is the average of 100 accumulated frames, so that the displacements
are computedwith a 4 s temporal resolution. The accumulation of a larger number of frames is beneficial to see
with clarity the cellular contourwith a negative contrast. Infigure 2.1, we show the FFOCT image of a spheroid
section at the 100 μmdepth after accumulating 1000 frames (40 s acquisition time). Inside the cells, organelles
are barely visible on the FFOCT images because they introduce very little change of refractive index, and their
temporal dynamics reduce theOCT signal for acquisition times larger than 1s [24].
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2.2. FFOCT-based elastography
FFOCT is a coherence-based imaging technique, which provides amapping of the back-scattered opticalfield
both in phase and amplitude. The systemwas used here in amplitudemode, and therefore provides a spatial
mapping of reflectivity inside the spheroid. In such an amplitudemode, scanning (non-full field)OCT systems
have been extensively used tomap the axial displacement inside tissues under static load by computing the
spatial cross-correlation of successive cross-sections (xz images, or ‘B-scan’ [27]).We use a similar approach, the
difference being that the internal displacements are estimated in 2D from successive en-face (xy) images. The
spatial resolution is improved 10 timeswith our full-field approach ofOCT [29].We estimate the in-plane
displacementfield at the position r ⃗ by computing the position of themaximumof the 2D cross-correlation
function of a small (N N× pixels, withN=32) portion of the FFOCT images at two consecutive acquisition
times. This correlativemethod is accurate for displacements smaller than the resolution limit of themicroscope
(0.8 μm), and requires to use of a portion large enough to reduce computational errors [27, 30–33]. Herewe
choose a conservativeN=32 pixel window size, which also sets the spatial resolution of the displacementmap.
Themeasured displacement between consecutive frames is only a fraction of pixels, and become significantly
larger than the noise (1/20 pixel) after spatio-temporal averaging.We integrate the displacement over time to

Figure 1.Optical layout of the full-field optical coherence tomography setup (FFOCT). As for standardOCT, the low coherence of the
light source allows the sectioning of thin (0.8 μm) slices of diffusers inside thick biological tissues. Koehler illumination of the sample
allows the parallel acquisition of around 1millionCMOSpixels, as in a standardwide-fieldmicroscope.

Figure 2. (1) FFOCT image of a livingCT26 spheroid at a 100 μm imaging depth. The FFOCT signal is acquired for 40 s and reveals
boundaries of individual cells (white). No staining is required to obtain the contrast. (2) Geometry and notations: the gray slice is the
observation plane, located at a distance z R 20 0= from the spheroid center. Rδ ⃗ is the 3Ddisplacement, and rδ ⃗ itsmeasured 2D
projection.R and r are the radial coordinates relative to the spheroid center and the image and image respectively. (3) Displacement
field rδ ⃗ integrated over 4min after a 10 kPa pressure jump (displayedwith a 10 times scaling factor for visibility purpose). The
displacements are estimated every 25 μmwith a 20 nmprecision.
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obtain the cumulative displacementfield t( )rδ ⃗ in the sectioned plane. As a result of the compressive stress, t( )rδ ⃗
points towards the center of the section of the spheroid. It has a negative projection over the unitary vector er⃗ , as

defined byfigure 2.2.We show infigure 2.3 rδ ⃗ , 4min after the 10 kPa pressure jumpof a CT26 spheroid.Note
that the arrows have beenmagnified by 10 for visual clarity. On overall the accumulated displacements show a
radial symmetry, and are in the order of 1 μm,which ismuch smaller than the spatial windowing of 25 μmused
for their calculation. Imaging is performed at a distance z R 20 0= from the spheroid center so by geometrical

projection one can get the cumulative displacement in the equatorial plane of the spheroid t( )Rδ ⃗ . Figure 2.2
summarizes the geometry and the notations used in themanuscript.

Thanks to the geometry of the experiment, the out of plane displacements are small. They are larger at the
center of the field of view of the FFOCT images (around 1μmof accumulated axial displacements at the end of
the experiment, for the larger pressure jumps). Such axial displacements aremarginalized by a geometrical
projection of themeasurements, as detailed in section 3. In some rare occasions they have a negative effect on the
estimation of the in-plane displacements, when they induce a change between two consecutive sub-images. This
can occurwhen imaging the apex of a cell, but it is a very rare event as the accumulated axial displacement ( 1μ≃
m) is in the order of the axial resolution of themicroscope. Alternatively, we couldmeasure out of plane
displacements with a 3D correlative approach, at the cost of amajor reduction in temporal sampling. Doing so
would require the acquisition of 3D stacks of images for eachmeasurement time, so that each processed image is
a cube of size N N N× × . Recently, our group demonstrated the potential of Full-FieldOCT to obtain 3D
displacementfield after a static load [25].

2.3. Spheroid preparation
Spheroids were preparedwith eithermouse (CT26) or human colon carcinoma (HT29) cells, following a
cushion agarose protocol [34] andwere cultured at 37 °Cwith 5%CO2 inDulbeccosmodifiedmedium
(DMEM, Life Technologies) supplementedwith 10% fetal bovine serum (Life Technologies) and 1%penicillin/
streptomycin (Life Technologies). The experiments were performed 3 days after the formation of the spheroid,
so that there was no necrotic core due to poor diffusion of oxygen and nutrients.Moreover, the small size of the
spheroids (R 2000 ≃ μm) reducesmost of the relevant biophysical gradients that are conventionally observed
5-10 days after the complete build up [9].

2.4. Pressure clamp experiment
Dextran is a biocompatible polymer that does not enter the cells nor the aggregate, and therefore applies a
controlledmechanical stress from the outer layer of the aggregate [11]. The relationship between the osmotic
pressure and the concentration of dextranwas calibratedwith light scattering by Bonnet-Gonnet et al [35].
Imagingwas performed in a 100 μL volume of culturemediumbefore and after injection of large volume (1mL,
injected in less than 20 s ofmedium supplementedwith 100 kDa dextran (SigmaAldrich, St Louis, USA).
Spheroids were carefully inserted between the substrate and a glass slide to prevent them frommoving during
the injection (figure 3), so that nomeasurable compression by the plate was observed prior dextran injection.

2.5. Spatial averaging
The contrast originating from the cellmembrane allows us to track cell boundaries within the aggregate from
whichwe extract the displacement profiles for three amplitudes of pressure jumps and two cell lines. From the
FFOCT imageswe extract a two dimensional displacement field r t( , )rδ ⃗ ⃗ . To reduce the impact of the
measurement noise, we take into account the spherical symmetry of the experiment and spatially average its
radial component t t e( ) ( ) ·r

i
r r iδ δ= −〈 ⃗ ⃗ 〉 over three separate regions that contain the same number of

measurement points (20) in the FFOCT image : a peripheral ring (ofmean radius r 1551 = μm), an intermediate

ring (r 1122 = μm) and a central disk (r 603 = μm). The negative sign gives positive values for t( )r
iδ , as a result of

compression. Each region corresponds to one third of the total number ofmeasurements. They correspond to

Figure 3. Schematic of the experiment, showing the side inlet for adding dextran in the culturemediumwhile imagingwith FFOCT.
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mean radial positions of R 185 181 = ± μm, R 150 182 = ± μm, and R 117 183 = ± μmrelative to the center
of the spheroid.

We compute the local volumetric compression inside the spheroid from the radial displacements. To do so,
we consider the spheroid as a continuousmedium,where the radial displacements and the volumetric
compression are locally related by spatial differentiation. Appendix 1 details these calculations. As the FFOCT
imagesmostly contain information about the cellular contour and the spheroid has a spherical symmetry, we

consider that this volumetric compression is the cell compression.We obtain two time series ( ) t( )V

V i j

d−
∣

, which

are time-resolvedmeasurements of the volumetric compression at the positions R1 2∣ and R2,3 from the center of
the spheroid. These positions correspond to the interfaces of the sub-regions used for spatial averaging :
R 1701 2 =∣ μm ( R R( ) 21 2≃ + ) and R 1352 3 =∣ μm ( R R( ) 22 3≃ + ). As a result of the compressive stress,

( ) t( )V

V i j

d−
∣

is a positivemeasurement that locally quantifies the relative reduction of cell volume.

3. Results and discussion

3.1. Spatial averaging
Displacements for the three radii in the spheroid display an exponential behavior t( ) (1 e )r r

tδ δ= − τ− , as
shown infigure 4. The amplitude rδ is proportional to the intensity of the stress (figure 5.1), and ismore
important at the periphery of the spheroids.

Cells startmoving immediately after the pressure jump independently of the pressure applied, but the
velocity is smaller for the cells inside the aggregate as shown by the relaxation times τ infigure 5.2. This accounts
for the viscous behavior of the aggregate, the τ is in the order ofminutes as already shown in [16] with parallel
plate compression.

The volumetric compression ( ) t( )V

V i j

d−
∣

is a positive quantity, as a result of the compressive stress. At the

end of our experiment (t=10min), the volumetric compression for the cells in the outer region is in the order of
5% (figure 5.3), as expected frompurely osmotic shock on single cell experiments [36]. The compression is

Figure 4.Radial component of the 2Dmeasured displacement field, r t( , )rδ ⃗ , spatially integrated over three regions of the FFOCT en-
face images (1/3 of themeasurement points each). Green: central disk. Blue: intermediate annulus. Red: external annulus. Black
curves are single exponential fits.
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higher for the inner cells of theCT26 spheroids, which confirms the observationmade byDelarue et al onfixed
samples of the same cell line [12]. Theymeasured the cell–cell distance as a function of the distance to the center
in equatorial cryosections of spheroids. In the context of continuousmechanics, cell to cell distance is related to
the local cell density and volumetric compression of the spheroid. Their observationwere performed onfixed
aggregates, 5min after a 5–10 kPa osmo-mechanical pressure jump, while we provide here a time-resolved
observation of the gradient in compression on living spheroids. Figure 6 show the volumetric compression

( ) t( )V

V i j

d−
∣

. The radial gradient of compression is less obvious withHT29 cells as the displacements are smaller

and ourmeasurements were not performed in the equatorial section of the spheroid. Indeed, the radial
averaging for the volume compression calculation lead to a loss of information. In the next section, we use a
model-based analysis to better capture the dynamic response of the spheroid, and especially the higher
compression observed in the core of the aggregate.

3.2.Model-based analysis
Spheroids can be described at themesoscopic scale as a continuousmedium. Amodel was recently introduced to
describe the spatio-temporal behaviors of the flow and pressure inside a spheroid under isotropic pressure [28].
Considering the cell aggregate as a viscoelastic and homogeneousmaterial, the authors emphasized the role of
anisotropic stress inside the spheroid, andwrite the displacement as a power-law expression. Due to spherical
symmetry, the displacement is nevertheless radially oriented, and its Laplace transformwrites :

s A s
R

R
E( ) ( ) · (1)R

B s

R
0

1 ( )⎛
⎝⎜

⎞
⎠⎟δ ⃗ = − ⃗

+

with s being the inverse variable of time, R0 is the spheroid radius, and Er⃗ is the unitary radial vector in
spherical coordinate (see figure 2.2). A s( ) characterizes the dynamics of compression of the spheroid as a
homogeneous and isotropic sphere of bulkmodulusK. It also characterizes themagnitude of displacement at
the periphery of the spheroid (R R0= ). The B s( ) term is a dimensionless term that characterizes the role of
anisotropic stress inside the spheroid. It is appropriate tomodel the anisotropic stress that appear inside the
spheroid as a result of active tension generated by the cells and their change of orientation.When B s( ) 0= ,

s( )Rδ ⃗ is linear inR, in this case, the spheroid behaves like a homogeneous isotropic sphere. Its dynamics is then
fully characterized by A s( ).

It is important to stress that for themodel-based analysis wework in the observation plane at the distance
z R 20 0= , where the radial position is denotedwith r as opposed toR (See figure 2.2). Then equation (1) writes
as function of the radial coordinate r and time :

Figure 5. Spatially-averaged data as a function of the radial positionR relative to the spheroid center : (1) radial displacements
accumulated over the 10 min of the experiment, (2) characteristic times τ of the radial displacement. (3) Volumetric compression
10 min after the pressure jump, computed using equation (6).
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( )t t r R t f r e( ) ( ) · ( ) · ( ) , (2)r r0δ α β⃗ ≈ − + ⃗

where ( )f r( ) · lnr

R

r z

R2 0

2
0
2

0
2= +

. t( )α and t( )β are the inverse Laplace transforms of A s( ) and A s B s( ) · ( )

respectively.We detailed the calculations that relate equation (1) to equation (2) in appendix 2.Our data analysis
consists in the joint estimation of t( )α and t( )β , which are at given t the least square solutions of a linear system
that implicitly project the displacementfield t( )rδ ⃗ on two radially symmetric vectors r R e( ) r0 ⃗ and f r e( ) r⃗ . The
sign convention of equation (2) gives t( ) 0α > for a compression in the spheroid. For the homogeneous and
isotropic sphere, t( ) 0β = and the projected displacement t( )rδ is linear in r.We can already notice that f r( ) is
negative in the observation plane ( r R0 3 2 0< < , for z R 20= ), so that the sign of t( )β defines the type of
deviation from this simplemodel : whether the inner cells havemovedmore ( t( ) 0β < ) or less ( t( ) 0β > ) than
expected for the homogeneous and isotropic sphere, at a given time t after the pressure jump.

3.3. t( )α response of the spheroid, as a homogeneous and isotropic sphere
t( )α characterizes the isotropic properties of thematerial. For the two cell lines and the entire pressure range, we

find that t( )α is accurately fitted by a single exponential function ( )t( ) 1 e t
0α α= − τ− α (figure 7, red and black

curves for the data and the fit respectively). 0α quantifies the overallmagnitude of spheroid displacements as a
homogeneous and isotropic sphere, and is proportional to the applied pressure P in the range of our experiments
(figure 8.1). This linearity gives an estimate of the bulkmodulusK of the spheroid under the hypothesis that the
bulkmodulus ismuch higher than the shearmodulus [28] :

K
P R·

3
. (3)0

0α
=

We found K 355 195= ± kPa and K 514 180= ± kPa for theCT26 andHT29 cells respectively. These
values are four orders ofmagnitude lower thanwhat is usually assumed for biological tissues, with a typical bulk
modulus of about 109 Pa (close to the bulkmodulus of water) [37]. This discrepancy can be explained by the fact
that in our experiments, water is free toflowout of the spheroids through the extracellularmatrix, so that the
spheroids are compressible on larger timescales. Themeasured bulkmoduliK are orders ofmagnitude larger
than the reported Youngʼsmoduli of soft tissues (E Pa[10 , 10 ]2 4∈ , [38] or spheroids [18] (E≃ 700 Pa). Using

Figure 6.Time series of the volumetric compression inside the aggregates at R 1701 2 =∣ and R 1702 3 =∣ μmfrom the center of the
spheroid.
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these typical Youngʼsmoduli we can estimate the Poisson ratio of spheroids to be very close to 0.5
( [0.4966, 0.49966]ν ∈ ). Spheroids are therefore very soft,mostly incompressible tissues with a shearmodulus
G E K3≃ ≪ . Eventually, we note thatDelarue et al, applying similar stresses found an even smaller bulk
modulus (K 10 104 5= − ) [28]. The geometries of the experiments differ : in our case the spheroid is stuck
between two plates, while in their experiments the spheroid sits at the bottomof a bulk ofmedia supplemented
with dextran. In addition, whereas we perform live observations, theirmeasurements were done after sample
fixation, which could have induced artifacts.

The averaged longitudinal relaxation 3τ ≃α mindoes not vary significantly with the amplitude of the
external stress (figure 8.2) and is similar for the two cell lines. It is comparable to the fast component of the stress
relaxation of a spheroid between parallel plates [16]. The agreement with a single exponential fit suggests that the
instantaneous elastic deformation of the spheroid is small at the scale of our experiment. For comparison, at the

Figure 7.Time series of the estimated parameters t( )α (red) and t( )β (green) for theCT26 (first row) andHT29 (second row)
spheroids. t( )α Characterizes the spheroid displacements as a homogeneous and isotropic sphere, and t( )β the first-order departure
from thismodel. The black curves are exponential fits: single exponentialmodel for t( )α , and double exponential for t( )β
(equation (4)).

Figure 8. (1) Amplitude of the overall t( )displacementsα up to steady state, 0α , as a function of the applied pressure P. (2)
Characteristic times of t( )α , 3aτ ≃ min. Error bars were calculated from the 95%confidence intervals of the single exponential fits,
and are smaller than the plotmarkers. t( )α Characterizes the amplitude of displacement field t( )rδ ⃗ , assuming that the spheroid
behaves as a homogeneous and isotropic sphere.
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scale of a single cell, creep experiments typically relate a fast, elastic deformation of the cell within seconds after
the stress is applied [39, 40].

3.4.Departure from the homogeneous and isotropic sphere t( )β
As stated earlier, t( )β is the deviation from the response of a homogeneous and isotropic sphere. One can
observe that t( )β is non-monotonic and appears to become negative after 5≃ min for each cell line or pressure
condition (green curves in figure 7). The non-zero t( )β measurements show the significant anisotropy of a
spheroid during the 10 min timescale of our experiments. The two regimes exhibited by t( )β are empirically
fitted by a sumof two exponential functions (green and black curves infigure 7), and show themultiplicity of the
response to the osmo-mechanical stress:

( ) ( )t( ) 1 e 1 e . (4)t t
1 2

,1 ,2β β β= − − −τ τ− −β β

Since f r( ) 0< , the increase of t( )β for t 1< ≃ min (figure 7) indicates that, at the beginning of the
experiment, cells are resisting the dextran compression. This apparent resistancemight be due to the delay
previously observed in the center of the aggregate (figure 5.2). The spheroid does not compress homogeneously,
since the displacements arisemore slowly in the core.

The delaymight correspond to the osmotic effect of the dextran, indeed, such a compression on single cells
requires less than 30 s to establish (data not shown), but the osmotic equilibriumhas to propagate from the outer
layers to center of the aggregate. During this regime, thewaterflows out of the peripheral cells in the intracellular
space, tofinally leave the spheroid.Water diffusion through the cellmembrane is probably the limiting step in
this osmotic component of the reaction. If themodeling introduced by equation (1) does not explicitly take into
account the dynamics of osmosis, it is interesting to note that our observation provides a time scale for the
establishment of the isotropic pressure.

The second regime display an opposite reaction, t( )β decreases and finally becomes negative. This indicates
that the inner cells startmoving, and they eventuallymovemore ( t( ) 0β < ) thanwhat would be expected for
the homogeneous and isotropic sphere of same bulkmodulus. This process is slow ( 4.5,2τ ≃β min), in
comparisonwith the previous regime of passive response to the osmotic shock. (See figure 9.2 for comparison of
themodel-based characteristic times.) In theirmodel, Delarue et al describe this over-reaction to the
compression as an active reaction of the cell due to the establishment of an anisotropic stress within the
aggregate [28].

At steady state, the exponent in the power-law of equation (1) B (0) ( )1 2 0β β α= − are negative (figure 9.1),
which translates the fact that cell displacements at the center of the spheroid are, at the end of our experiment,
larger than expected for an isotropic and homogeneous sphere of identical bulkmodulus. Ourmeasurements
indicate that this effect is on averagemore important for theCT26 spheroid (B (0) 1≃ − ) than for theHT29
spheroid (B (0) 0.5≃ − ). Its estimation has a higher uncertainty than 0α , because i) the fit of t( )β hasmore free
parameters and ii) it is normalized by 0α . NegativeB(0) values also predict a sharp increase of compression
towards the center of the spheroid at the end of our experiment, as the volumetric compression then scales as
R R( )B

0
(0) [28]. For theHT29 cells, this increase was barely noticeable on the spatially averaged profiles of

figure 5.3.Many biophysical factors can lead to this radial gradient of compression in the spheroid. Originally,
the authors of themodel introduced the active tension of cells in response to pressure. This active tension
combinedwith an anisotropic orientation of the cells can thus lead to an inhomogeneous stress inside the

Figure 9. (1) Values B(0) of the exponent in the power law of equation (1) in the long time limit (s = 0) of our experiment.
(2) Estimated characteristic times of t( )β , ,1τβ (red) and ,2τβ (green), whichwe compare to themean value of τα (blue line). Error
bars correspond to the 95% confidence interval of thefits.
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spheroid.On the other hand, the radial gradient of compression could also be explained by a radial
inhomogeneity in cell bulkmodulus within the spheroid. According to our observations, cells of the second layer
would be approximately twice softer than the peripheral layer. Promising experiments to discriminate whether
the active response of cells actually play a role would be to use drugs perturbing cell cortex, contractility and cell
polarization.

4. Conclusion

We report the use of FFOCT to probe themechanical properties of living cell aggregates submitted to osmo-
mechanical stress. Here, wefirst confirm the effect on live spheroids, and second provide the timescale, for
which tissue anisotropy is noticeable after an osmotic pressure jump. The spherical symmetry of the aggregates
and the isotropic nature of the applied pressure allows us to apply amodel-based analysis that describedwell our
time-resolvedmeasurements.We estimate viscoelastic parameters of the spheroid, and provide a time-resolved
confirmation of an apparent tissue anisotropywithinminutes after the osmotic stress is applied.

Active response of spheroid to pipette aspiration has been previously described in termof increase in surface
tensionwhereas in ourworkwe observe an over-reaction in the core of the aggregate [18]. This contraction is
likely to originate from the cytoskeleton, andmore precisely from the acto–myosin cortex [41], it will thus be
interesting to test it by using drugs to inhibitmyosin contraction or depolymerize actin.Modifying water
transport through the cellmembranewould also be away to address the osmotic component of the contraction
as the characteristic time should highly depend on it. These experiments would help distinguish between purely
osmotic andmechano-osmotic response of the spheroid.

Our approach is very promising to study themechanical behavior of spheroid over different timescale in a
single experiment.We emphasized the sub-micron sensibility of FFOCT tomeasure displacement with a 25 μm
resolution and 20 nmprecision at a 100 μm imaging depth. Currently we are investigatingmethods to increase
by a factor 2 the imaging depth of FFOCT,whichwould allow us to image spheroid equatorial plane and capture
in real time the radial gradient of the spheroidmechanical properties. Another promising prospect of this work
is to extend our cell tracking technique to prolonged experiments. As FFOCT is non-invasive at low irradiation,
we believe this staining-free imagemethod can also bring information on the long-term behavior of such
systems, such as cell re-arrangements,movements or even extracellularmatrix synthesis and organization.
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AppendixA.

Figure 2.2 clarifies the notations of these calculations.

A.1. Calculation of the spatially-averaged volumetric compression
In principle the displacements Rδ ⃗ and rδ ⃗ are radially oriented, along ER⃗ and er⃗ respectively (with opposite
direction, see figure 2.2). Their radial components are related by sin( )R rδ δ θ= , with

( ) z Rsin( ) sin arccos( 1
z

R 0
2 20θ = = − . In practice we set z R 20 0= in this work.Wemeasure the spatial

average of rδ over 3 sub-regions i atmean distanceRi from the center of the spheroid, t t e( ) ( ) ·r
i

r r iδ δ= −〈 ⃗ ⃗ 〉 (the

negative sign is introduced to showpositive data infigure 4),fromwhichwe compute t( )R
iδ :

t
t

z R
( )

( )

1
. (5)R

i r
i

i0
2 2

δ
δ

=
−

As for rδ , the sign convention implies that t( ) 0R
iδ > for a compressive stress.

In a sphericalmedium that is a radially compressed, the volumetric compression is a function of the radial
displacement Rδ :

( )V

V R R
R

d 1
. (6)R2

2δ− = ∂
∂
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Where 0V

V

d− > as a result of compression.We compute the volumetric compression ( )V

V i j

d−
∣
(t) at the

interface between the regions i and j by using equation (5) and afinite difference of equation (6) :

V

V
t

R

R t R

R R

d
( )

1 · ( ) ·
(7)

i j i j

i R
i

j R
j

i j
2

2 2⎛
⎝⎜

⎞
⎠⎟

δ δ
− =

−
−∣ ∣

Ri j∣ is the radial position of the i j∣ interface, and is approximately themean of the radiiRi andRj.
Equation (7)was used to estimate the spatially-averaged compression at t= 10min (figure 5.3) and the time
series offigure 6 (plain lines).

A.2.Derivation of equation (2)
We start from the power-law description of the Laplace transformof the 3Ddisplacement field, as introduced in
[28] :

s A s
R

R
E( ) ( ) · .R

B s

R
0

1 ( )⎛
⎝⎜

⎞
⎠⎟δ ⃗ = − ⃗

+

Noting from figure 2.3 that R r z2 2
0
2= + and s( ) sin( )r Rδ δ θ= , with

( )r zsin( ) sin arctan( )
r z

r z
0

1 ( )

0

0
2

θ = =
+

, we obtain :

s A s
r

R

r z

R
e( ) ( ) · . (8)r

B s

r
0

2
0
2

0
2

( )
2⎛

⎝⎜
⎞
⎠⎟δ ⃗ = −

+
⃗

ER⃗ is the unitary radial vector in the spherical coordinate system, and er⃗ the unitary radial vector in the FFOCT
image. (See figure 2.2.) In the regime ofweak perturbation (B s( ) 0≃ ), we use afirst order Taylor expansion of
equation (8) :

( )s A s r R A s B s f r e( ) ( ) · ( ) · ( ) · ( ) , (9)r r0δ ⃗ ≈ − + ⃗

where ( )f r( ) · lnr

R

r z

R2 0

2
0
2

0
2= +

. Equation (9)writes as equation (2) in the temporal domain :

( )t t r R t f r e( ) ( ) · ( ) · ( ) .r r0δ α β⃗ ≈ − + ⃗

Where t( )α and t( )β are the inverse Laplace transforms of A s( ) and A s B s( ) · ( ) respectively.
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