
HAL Id: hal-01214605
https://hal.science/hal-01214605v2

Preprint submitted on 7 Apr 2016 (v2), last revised 13 Nov 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Velocity of the L-branching Brownian motion
Michel Pain

To cite this version:

Michel Pain. Velocity of the L-branching Brownian motion. 2015. �hal-01214605v2�

https://hal.science/hal-01214605v2
https://hal.archives-ouvertes.fr


Velocity of the L-branching Brownian motion

Michel Pain
∗

April 6, 2016

Abstract

We consider a branching-selection system of particles on the real line that evolves
according to the following rules: each particle moves according to a Brownian motion
during an exponential lifetime and then splits into two new particles and, when a par-
ticle is at a distance L of the highest particle, it dies without splitting. This model has
been introduced by Brunet, Derrida, Mueller and Munier [13] in the physics literature
and is called the L-branching Brownian motion. We show that the position of the
system grows linearly at a velocity vL almost surely and we compute the asymptotic
behavior of vL as L tends to infinity:

vL =
√

2 − π2

2
√

2L2
+ o

(
1

L2

)
,

as conjectured in [13]. The proof makes use of results by Berestycki, Berestycki and
Schweinsberg [5] concerning branching Brownian motion in a strip.

MSC 2010: 60J80, 60K35, 60J70.
Keywords: Branching Brownian motion, selection, F-KPP equation.

1 Introduction

The branching Brownian motion (or BBM) is a branching Markov process whose study
dates back to [23]. It has been the subject of a large literature, especially for its connection
with the F-KPP equation, highlighted by McKean [29]. It is defined as follows. Initially,
there is a single particle at the origin. Each particle moves according to a Brownian motion,
during an exponentially distributed time and then splits into two new particles, which start
the same process from their place of birth. Every particle behaves independently of the
others and the system goes on indefinitely.

We study here a branching Brownian motion with selection. A particle’s position
corresponds to its survival capacity and reproductive success (biologists call it fitness):
it changes during the particle’s life because of mutations and is then transmitted to the
particle’s children. The selection tends to eliminate the lowest particles, that have a
too small fitness value by comparison with the best ones. Thus, we consider a system
of particles evolving as before, but where in addition a particle dies as soon as it is at
a distance L of the highest particle alive at the same time. This system is called the
L-branching Brownian motion or L-BBM.

∗LPMA, UPMC and DMA, ENS.

1



1.1 Statement of the results

First of all, we need to define the branching Brownian motion for a more general initial
condition. Let C :=

⋃
n∈N∗ Rn be the set of configurations. For each ξ ∈ C, ξ = (ξ1, . . . , ξn),

we define the branching Brownian motion starting from this configuration as before, but
with n particles at time 0 positioned at ξ1, . . . , ξn. We denote by M(t) the number of
particles in the BBM at time t and by X1(t), . . . , XM(t)(t) their positions. We will say
that (Xk(t), 1 ≤ k ≤ M(t))t≥0 is a branching Brownian motion although this notation
does not contain the genealogy of the process.

We work on a measure space (Ω, F , (Pξ)ξ∈C) such that for each ξ ∈ C, under Pξ,
(Xk(t), 1 ≤ k ≤ M(t))t≥0 is a branching Brownian motion starting from the configuration
ξ. We equip this space with the canonical filtration associated to the branching Brownian
motion, denoted by (Ft)t≥0.

For each t ≥ 0, let X(t) := (X1(t), . . . , XM(t)(t)) ∈ C be the configuration of the parti-
cles of the BBM living at time t. For ξ = (ξ1, . . . , ξn) and ξ′ = (ξ′

1, . . . , ξ′
m) configurations,

we say that ξ′ ⊂ ξ if
∑m

i=1 δξ′
i

≤ ∑n
i=1 δξi

as measures and we define max ξ := max1≤i≤n ξi.
Thus, max X(t) is the position of the highest particle of the BBM living at time t.

Then, we define the L-branching Brownian motion on the same space (Ω, F , (Ft)t≥0,
(Pξ)ξ∈C), by coupling it canonically with the standard branching Brownian motion: for
each realization of the BBM, we can define a realization of the L-BBM by killing ev-
ery particle that is at a distance greater than L from the highest particle of the L-
BBM. We denote by ML(t) the number of particles in the L-BBM at time t and by
XL

1 (t), . . . , XL
ML(t)(t) their position. Let XL(t) := (XL

1 (t), . . . , XL
ML(t)(t)). By definition,

we have the inclusion XL(t) ⊂ X(t) for all t ≥ 0 and ω ∈ Ω and, for each ξ ∈ C, under
Pξ, (XL

k (t), 1 ≤ k ≤ ML(t))t≥0 is an L-branching Brownian motion starting from the
configuration ξ. See Figure 1.

Our aim here is to study the asymptotic behavior of the position of the highest particle
of the L-branching Brownian motion at time t, that is max XL(t). For the standard
branching Brownian motion, it is known [14] that

1
t

max X(t) −→
t→∞

√
2

almost surely. So, the speed of the highest particle of the L-BBM, whenever it exists, has to
be no more than

√
2, because there are less particles in the L-BBM than in the BBM owing

to selection. Moreover, it is clear that if this velocity exists, then all particles of the L-BBM
moves at the same speed. Our first result ensures that the velocity of the L-branching
Brownian motion is well-defined and does not depend on the initial configuration. The
same result is proved in a similar way by Derrida and Shi in their article [15] in preparation
at the time of writing of this paper, but, nonetheless, we present it here in order to work
legitimately on vL in what follows.

Proposition 1.1. For each L > 0, there exists vL ∈ R such that for each ξ ∈ C we have
the following convergence

1
t

max XL(t) −→
t→∞

vL

Pξ-almost surely.
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Figure 1 – Simulation of a BBM starting with a single particle at 0 and of the coupled L-BBM with L = 3
between times 0 and 7. Particles in black belong to the L-BBM and particles in grey belong only to the
BBM without selection and not to the L-BBM. Note that quickly some particles killed by selection have
descendants with a better fitness value than the particles of the L-BBM.

We focus in this paper on the behavior of vL as L tends to infinity. It means that
the selection effect vanishes, so we can expect that vL tends to

√
2, which is the asymp-

totic velocity of the highest particle of the BBM without selection. Furthermore, we are
interested in the asymptotic order of

√
2 − vL, which permits to estimate the slowdown

due to selection. The main result of this work shows this second term in the asymptotic
expansion of vL, validating a conjecture of Brunet, Derrida, Mueller and Munier [13] (see
Subsection 1.2 for more details).

Theorem 1.2. We have the following asymptotic behavior:

vL =
√

2 − π2

2
√

2L2
+ o

(
1

L2

)
,

as L tends to infinity.

This is analogous to the result of Bérard and Gouéré [2] for the N -branching random
walk, where the selection imposes a constant population size N . One can expect that the
population of the L-BBM is of order ecL with c some positive constant and, then, the
result of Bérard and Gouéré suggests by taking N = ecL that the first correction term
for vL must be of order 1/L2. Actually, we will see in the next subsection that Brunet,
Derrida, Mueller and Munier [13] conjecture that c =

√
2 and it leads exactly to the

term −π2/2
√

2L2. However, the strategy to prove Theorem 1.2 will neither be to use
comparisons with the N -BBM nor to control precisely the population size of the L-BBM.

1.2 Motivations

The L-branching Brownian motion has been introduced by Brunet, Derrida, Mueller and
Munier [13] in order to describe the effect of a white noise on the F-KPP equation. The

3



F-KPP equation (for Fisher [18] and Kolmogorov, Petrovsky, Piscounov [25])

∂th =
1
2

∂2
xh + h(1 − h) (1.1)

is a traveling wave equation that describes how a stable phase (h = 1) invades an unstable
phase (h = 0). Depending on the initial condition, the front between the two phases can
travel at any velocity v larger than a minimal velocity vmin =

√
2 (which is as well the

asymptotic velocity of the highest particle of standard BBM). This equation often repre-
sents a large-scale limit or a mean-field description of some microscopic discrete stochastic
processes. In order to understand the fluctuations that appear at the microscopic scale
with a finite number of particles, one might consider instead the F-KPP equation with
noise [11, 13, 12]

∂th =
1
2

∂2
xh + h(1 − h) +

√
h(1 − h)

N
Ẇ , (1.2)

where N is the number of particles involved and Ẇ is a normalized Gaussian white noise.
Contrary to Equation (1.1), this equation with noise selects a single velocity vN for the
front propagation. A first approximation for Equation (1.2) consists in replacing the noise
term by a deterministic cut-off, leading to the equation [9, 10]

∂th =
1
2

∂2
xh + h(1 − h)1h≥1/N , (1.3)

which selects also a single velocity vcutoff
N . It has been conjectured in [9, 10] for the velocity

vcutoff
N and in [11] for the velocity vN that, as N tends to infinity,

vmin − vN ∼ vmin − vcutoff
N ∼ π2

√
2(log N)2

,

which is an extremely slow convergence.These results have been given a rigorous mathe-
matical proof in [16] for the F-KPP equation with cut-off and more recently in [30] for the
F-KPP equation with white noise.

Brunet and Derrida in [9, 10, 11] support their conjecture by studying directly a
particular microscopic stochastic processes involving N particles. In the same way, Brunet,
Derrida, Mueller and Munier [13] introduce three different branching-selection particle
systems, in order to describe more precisely the velocity and the diffusion constant of
the front for Equation (1.2). Among these processes, they consider the L-BBM and the
N -BBM. The latter is defined with a different selection rule: particles move according
to Brownian motion, split after an exponential lifetime and, whenever the population
size exceeds N , the lowest particle is killed. They conjecture, among other things, that
the asymptotic velocity of the N -BBM is vN and satisfies the more precise asymptotic
expansion as N → ∞:

vN =
√

2 − π2

√
2(log N)2

(
1 − 6 log log N

(log N)3
(1 + o(1))

)
.

This conjecture has not yet been mathematically proved, but some rigorous results have
been obtained concerning the N -BBM or the N -branching random walk (its discrete time
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analog), in particular by Bérard and Gouéré [2], who showed the asymptotic behavior
in π2/

√
2(log N)2(1 + o(1)) for

√
2 − vN , but also by Durrett and Remenik [17], Bérard

and Maillard [3], Mallein [28] and Maillard [27]. For its part, the L-BBM has not yet
been studied in the mathematical literature, but Brunet, Derrida, Mueller and Munier
[13] conjectured that it behaves as the N -BBM by taking

L =
log N√

2
, (1.4)

which means that, with (1.4), the population size of the L-BBM is around N and the N -
BBM has approximately a width L. It follows that the L-BBM must have an asymptotic
velocity vL that satisfies, as L → ∞,

√
2 − vL ∼ π2

2
√

2L2
, (1.5)

which is the result proved in this paper.
Moreover, some recent results of Berestycki, Berestycki and Schweinsberg [5, 4], con-

cerning BBM with absorption on a linear barrier and BBM in a strip, suggested also that
the asymptotic behavior (1.5) must hold. Indeed, they show that for a BBM in the strip
(0, K) with drift −µ (it means that particles move according to Brownian motions with
drift −µ and are killed by hitting 0 or K), the size of the population stays of the same
order on a time scale of K3 when

µ :=

√

2 − π2

K2
,

see Proposition 2.3 further. Thus, if the fluctuations of the L-BBM around the deter-
ministic speed vL are not too large (less than εL on a time scale of L3), one can expect
that √

2 − π2

(L − εL)2
− εL

L3
≤ vL ≤

√
2 − π2

(L + εL)2
+

εL

L3
, (1.6)

for ε > 0 and L large enough, with comparison with BBM in strips (0, L − εL) and
(0, L + εL), and (1.5) follows from (1.6) by letting ε → 0. Actually, fluctuations of the
L-BBM are believed to be of order log L on a time scale of L3 and a precise understanding
of them will probably lead to the next order in the asymptotic behavior of vL.

1.3 Proof overview and organization of the paper

One of the major difficulty in working with the L-BBM or the N -BBM is that they do not
satisfy the branching property and, therefore, any form of many-to-one lemma (see Lemma
2.1): the offspring of a particle at a time t depends on the offspring of other particles alive
at time t. For this reason, Bérard and Gouéré [2] compare the N -BRW with a branching
random walk with absorption on a linear barrier in order to apply the precise results of
Gantert, Hu and Shi [19]. In the same way, we come down here to results of Berestycki,
Berestycki and Schweinsberg [5] concerning branching Brownian motion in a strip (see
Subsection 2.2). In both cases, the study is reduced to another process that satisfies the
branching property and, thus, on which the work is easier.
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However, the arguments used here are quite different from those of Bérard and Gouéré
[2]. The main reason is the absence of a monotonicity property for the L-BBM, like the one
used by Bérard and Gouéré (see Lemma 1 of [2]): it does not seem to exist a coupling such
that, when one of the initial particles of the L-BBM is removed, its maximum becomes
stochastically smaller.

The proof of Proposition 1.1 is based on the study of the return times to 1 for the
population size. These times delimit i.i.d. pieces of the L-BBM, so, showing that they
are sub-exponential, we can use the law of large numbers to prove the convergence of
max XL(t)/t.

Although return times to 1 for the population size are sub-exponential, they are too
large and, therefore, irrelevant for a more precise result. Thus, to prove Theorem 1.2, we
work instead with stopping times (τi)i∈N such that τi+1 − τi is shorter than L3 and use on
such a time interval a comparison with the BBM in a strip.

For the lower bound, we come down to a BBM in a strip that starts at time τi with
exactly the same particles than the L-BBM and is then included in the L-BBM until time
τi+1. Therefore, it is sufficient to show that this BBM in a strip goes up high enough
between times τi and τi+1. It is done by using the monotonicity property of the BBM in
a strip to consider the worst case with only a single initial particle at time τi and, then,
applying results of Berestycki, Berestycki and Schweinsberg [5].

In the same way, for the upper bound, we come down between times τi and τi+1 to
a BBM in a strip with more particles than the L-BBM and we show that it cannot rise
too fast. But here, we need to control the population size at time τi: the bad cases
happen when there are too many particles. To this end, we use the following fact: a large
population involves a quick increase of max XL but, when the maximum of the L-BBM
rises fast, many particle are killed by selection (see Figure 2). This leads to the conclusion
that max XL cannot grow quickly during a too long period.

t

x

(1)

(2)

(3)

Figure 2 – Simulation between times 0 and 10 of an L-BBM with L = 5 starting with a single particle at
0. During the period (1), max XL grows slowly so the number of particles becomes very large. Among
all these particles, there is one that goes up very fast during the period (2) and it reduces drastically
the population. Therefore, after that, during period (3), max XL grows once again slowly, involving an
increase of the population size.

The paper is organized as follows. Section 2 introduces some useful results concerning
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the standard BBM and the BBM in a strip. Then, Section 3 contains the proof of Propo-
sition 1.1. Finally, the lower bound in Theorem 1.2 is proved in Section 4 and the upper
bound in Section 5.

Throughout the paper, C denotes a positive constant that does not depend on the
parameters and can change from line to line. For x and y real numbers, we set x ∧
y := min(x, y) and x ∨ y := max(x, y). For f : R → R and g : R → R

∗
+, we say that

f(x) ∼ g(x) as x → ∞ if limx→∞ f(x)/g(x) = 1 and that f(x) = o(g(x)) as x → ∞ if
limx→∞ f(x)/g(x) = 0. Lastly, we set N := {0, 1, 2, . . .} and denote by C ([0, t],R) the set
of continuous functions from [0, t] to R.

2 Some useful results

2.1 Standard branching Brownian motion

In this section, we present some classical results concerning branching Brownian motion
without selection. We assume here that there is initially one particle at 0, therefore we
work under the probability P(0) and the associated expectation E(0), where (0) denotes
the configuration with a single particle at 0.

First of all, (M(t))t≥0 under P(0) is a Yule process (or pure birth process) with param-
eter 1, which means that it is a Markov process on N with transitions i → i + 1 at rate i
for all i ∈ N. Thus, M(t) follows under P(0) a geometric distribution with parameter e−t:
for each k ≥ 1, P(0)(M(t) = k) = (1 − e−t)k−1e−t. In particular, we have E(0)[M(t)] = et

and the next result, often called in the literature the many-to-one lemma, follows.

Lemma 2.1 (Many-to-one lemma). Let F : C ([0, t],R) −→ R+ be a measurable function
and (Bs)s≥0 denote a Brownian motion starting at 0. Then, we have

E(0)




M(t)∑

k=1

F
(
(Xk,t(s))s∈[0,t]

)

 = et

E

[
F
(
(Bs)s∈[0,t]

)]
,

where we denote by Xk,t(s) the position of the unique ancestor at time s of Xk(t).

This lemma will be useful to compute the expectation of some functionals of the
branching Brownian motion without selection. There is no similar result for the L-BBM
because the number of particles of the L-BBM living at time t is not independent of their
trajectories on [0, t].

We saw before that the first order for the asymptotic behavior of the position of the
highest particle of the BBM is

√
2t, but we will need more accurate information on the

extremal particle of the BBM. The extremal particle has been a main topic in the study of
the BBM, with in particular the seminal works of Bramson [8, 7] who shows the existence
of a real random variable W such that

max X(t) − m(t) law−→
t→∞

W, (2.1)

where
m(t) :=

√
2t − 3

2
√

2
log t, (2.2)
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and of Lalley and Sellke [26] who describe the limit W as a random mixture of Gumbel
distributions.

We will need some further information on the trajectory leading to the extremal particle
at time t. The following proposition is an immediate consequence of convergence (2.1) and
of Theorem 2.5 of Arguin, Bovier and Kistler [1]. It shows that there exists a high particle
at time t (above m(t) − d) whose trajectory does not go too far under the line s 7→ s

t m(t).
Actually, Arguin, Bovier and Kistler [1] show that every high particle at time t is likely
to satisfy this property.

Proposition 2.2. For all γ > 0 and δ > 0, there exist d > 0, r > 0 and t0 > 0 large
enough such that for all t ≥ t0,

P(0)

(
∃k ∈ J1, M(t)K : Xk(t) ≥ m(t) − d

and ∀s ∈ [0, t], Xk,t(s) ≥ s

t
m(t) − r ∨

(
s

1
2

+γ ∧ (t − s)
1
2

+γ
))

≥ 1 − δ,

where Xk,t(s) denotes the position of the unique ancestor at time s of Xk(t).

2.2 Branching Brownian motion in a strip

The branching Brownian motion with absorption on a linear barrier has been introduced
by Kesten [24]. In this process, each particle moves according to a Brownian motion with
drift −µ, splits into two new particles after an exponentially distributed time and is killed
when it reaches a non-positive position. Kesten [24] showed that the process survives with
positive probability if and only if µ <

√
2. More recently, the branching Brownian motion

with absorption has been studied by Harris, Harris and Kyprianou [21], by Harris and
Harris [20] and, in the near-critical case, that is when µ →

√
2 while keeping µ <

√
2, by

Berestycki, Berestycki and Schweinsberg [5, 4]. For recent results concerning the branching
Brownian motion in a strip, see Harris, Hesse and Kyprianou [22].

We focus here on results of Berestycki, Berestycki and Schweinsberg [5] concerning
the branching Brownian motion in a strip, where particles move according to a Brownian
motion with drift −µ, split into two new particles after an exponentially distributed time
and are killed when they come out of a fixed interval, that we will specify hereafter. We
fix a positive real K, we set

µ :=

√

2 − π2

K2
(2.3)

and we choose the interval (0, KA), where we set

KA := K − A√
2

,

in order to keep notation similar to those of Berestycki, Berestycki and Schweinsberg
[5] (but with K and KA instead of L and LA). We denote by (X̃K,KA

k (t), 1 ≤ k ≤
M̃K,KA(t))t≥0 the BBM in the strip (0, KA) with drift −µ, where µ is given by (2.3).
When A = 0 (that is K = KA), we write X̃K instead of X̃K,KA, in order to simplify
notation.
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Berestycki, Berestycki and Schweinsberg [5] introduce the following functional of the
BBM in a strip, defined by

Z̃K,KA(t) :=
M̃K,KA(t)∑

k=1

eµX̃
K,KA
k

(t) sin

(
πX̃K,KA

k (t)
KA

)
, (2.4)

for each t ≥ 0. The random variable Z̃K,KA(t) estimates the size of the process and
the process (Z̃K,KA(t))t≥0 has the advantage of being a martingale in the particular case
where KA = K, as stated in the following proposition (see Lemma 7 of [5]). The sin
function comes into play when one computes the density of a Brownian motion without
drift started at x ∈ (0, K) and killed when it hits 0 or K, by solving the heat equation on
(0, K) with zero as boundary conditions. It brings also an exponential part that is then
modified when one adds the drift and the branching events.

Proposition 2.3. The process e(1−µ2/2−π2/2K2
A)t(Z̃K,KA(t))t≥0 is a martingale. In partic-

ular, when A = 0, (Z̃K(t))t≥0 is a martingale.

So the drift −µ given by (2.3) is exactly the right choice such that the size of the BBM
in the strip (0, K) does not degenerate. When A > 0 (that is KA < K), the population
decreases exponentially and when A < 0 (that is KA > K), the population explodes
exponentially.

The following results concern the number of particles that are killed by hitting KA

between times 0 and θK3. This corresponds to Subsection 3.2 of Berestycki, Berestycki
and Schweinsberg [5] but with some modifications: here θ is not assumed small (rather,
θ will be close to 1), we consider only the particular case A = 0 and we do not make the
same assumptions about the initial configuration.

This first proposition is a rewrite of Proposition 16 of Berestycki, Berestycki and
Schweinsberg [5] in the case A = 0 and estimates the mean number of particles that
are killed by hitting KA between times 0 and θK3 for any initial configuration.

Proposition 2.4. Assume A = 0. For some fixed θ > 0, let R be the number of particles
that hit K between times 0 and θK3 and R′ the number of particles that hit K between
times K5/2 and θK3. Then, for all ξ ∈ C, Pξ-a.s. we have the following inequalities as
K → ∞:

Eξ[R] ≤ C
e−µK

K
Ṽ K(0) + 2

√
2πθKe−µKZ̃K(0)(1 + o(1)),

Eξ

[
R′] ≥ 2

√
2πθKe−µKZ̃K(0)(1 + o(1)),

where C is a positive constant and Ṽ K(0) :=
∑M̃K(0)

i=1 X̃K
i (0)eµX̃K

i (0).

Proof. This result follows directly from the proof of Proposition 16 of Berestycki, Beresty-
cki and Schweinsberg [5], by noting that K = (log N + 3 log log N)/

√
2 and that the only

place where they need θ to be small enough is their inequality (69), whose left-hand side
is simply zero in the case A = 0.

9



The second proposition gives an upper bound for the second moment of R and follows
from the proof of Proposition 18 of [5]. We still work under the assumption A = 0 but
moreover with a single initial particle, therefore the initial configuration is denoted by
(x), where x ∈ (0, K). Here x can be close to K, so the initial configuration does not
necessarily satisfy the assumption of Proposition 18 of [5].

Proposition 2.5. Assume A = 0 and suppose there is a single particle x at time 0, where
x ∈ (0, K). Let R be the number of particles that hit K between times 0 and K3. Then,
as K → ∞,

E(x)

[
R2
]

≤ Ce−µKeµx
(

1 + K sin
(

πx

K

))
(1 + o(1)),

where C is a positive constant.

Proof. In the same way as Berestycki, Berestycki and Schweinsberg [5] in the proof of their
Proposition 18, we write R2 = R + Y , where Y is the number of distinct pairs of particles
that hit K between times 0 and K3. Here, as there is only a single initial particle, we
have Y = Y2 = Y x

2 with notation of [5], which means that all particles that hit K have
the same ancestor at time 0. From their bounds (76) and (77), it follows that

E(x)[Y ] ≤ Ce−µKeµx(1 + o(1)) + Ce−µKKeµx sin
(

πx

K

)
(1 + o(1)),

because they only use the assumption that θ ≤ 1 and we chose here θ = 1. Moreover,
using Proposition 2.4, we get

E(x)[R] ≤ C
e−µK

K
xeµx + 2

√
2πKe−µKeµx sin

(
πx

K

)
(1 + o(1))

≤ Ce−µKeµx
(

1 + K sin
(

πx

K

))
(1 + o(1))

and the result follows.

3 Existence of the asymptotic velocity

In this section, we prove Proposition 1.1. We recall that the following proof is similar to
the one presented by Derrida and Shi [15]. However, the methods carried out here are
very rough and cannot be used to get more elaborate results as Theorem 1.2, but we want
to be ensured that the velocity vL of the L-branching Brownian motion is well defined.

We work here with a fixed L > 0. The strategy will be to show that the return time
to 1 for the population size of the L-BBM is sub-exponential and then to apply the law
of large numbers to the renewal structure obtained from the sequence of successive return
times to 1 for the population size. Foremost, we need the following coupling result that
will be useful to show that there cannot be too many particles in the L-BBM.

Lemma 3.1. Let M be a positive integer and ξ = (ξ1, . . . , ξN ) be a configuration, with
N ≥ M and ξ1 ≥ · · · ≥ ξN . Then, there exist Brownian motions B1, . . . , BM starting at
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ξ1, . . . , ξM respectively, that are mutually independent but not independent of the L-BBM,
such that, for all t ≥ 0, on the event {∀s ∈ [0, t], ML(s) ≥ M}, we have

max XL(t) ≥ max
1≤i≤M

Bi
t

Pξ-almost surely.

Proof. We choose for Bi the trajectory of the particle of the L-BBM that is at ξi at time
0. When this particle splits, we choose uniformly one of its children and Bi continues by
following the trajectory of this child. We proceed like this until a particle followed by one
of the Brownian motions B1, . . . , BM , say Bi, is killed by selection in the L-BBM. Then,
we distinguish two cases:

(i) If there are at least M particles in the L-BBM at this time denoted by t, then there
is at least 1 particle that is not followed by one of the Brownian motions B1, . . . , BM ,
so we choose uniformly one of those particles and Bi continues by following, from
the position Bi

t, the trajectory of the chosen particle. We proceed then as before.

(ii) Otherwise, we lay the L-BBM aside and work only on the BBM without selection:
each Brownian motion continues following its particle until it splits and then follows
one of its child, and so on.

Thus, B1, . . . , BM are defined for all time and are independent Brownian motions. On
the event {∀s ∈ [0, t], ML(s) ≥ M}, we do not meet the case (ii) until time t and so we
have for all s ∈ [0, t]

max XL(s) ≥ max
1≤i≤M

Bi
s,

because Bi at time s is always lower than the particle it follows: when, in the case (i), Bi

changes the particle it follows, the new particle is necessarily above Bi, because the new
particle is in the L-BBM and Bi is at the low extremity of the L-BBM.

We can now prove that the return time to 1 for the population size of the L-BBM is
sub-exponential. For this purpose, we show with Lemma 3.1 that, if there is a very large
number of particles in the population, then the maximum of the L-BBM can with high
probability increase by 2L in a short time and, thus, a large proportion of particles is
killed by selection.

Proposition 3.2. Let T := inf{t ≥ 1 : ML(t) = 1}. It exists a positive constant c that
depends on L such that for all ξ ∈ C, Pξ(T ≤ 2) ≥ c.

Proof. The strategy will be to show first the same result for SM0
:= inf{t ≥ 0 : ML(t) ≤

M0}, which is the return time under a fixed size M0 for the population of the L-BBM,
where M0 will be chosen very large.

Let M be a positive integer and ξ = (ξ1, . . . , ξN ) a configuration, with N ≥ M and
ξ1 ≥ · · · ≥ ξN . We can suppose with no loss of generality that ξ1 = 0, because the law
of (ML(t))t≥0 is invariant under shift of the initial configuration, and that ξN > −L,
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otherwise the low particles will die instantly. Let a be a positive real number and t :=
aL2/ log N . We have

Pξ

(
∀s ∈ [0, t], ML(s) ≥ M

)
≤ Pξ

(
∀s ∈ [0, t], ML(s) ≥ M, max XL(t) < 2L

)

+ Pξ

(
ML(t) ≥ M, max XL(t) ≥ 2L

)
.

(3.1)

The second term on the right-hand side of (3.1) can be bounded by noting that, on the
event {ML(t) ≥ M, max XL(t) ≥ 2L}, there are at least M particles of the BBM without
selection that are above L. Thus,

Pξ

(
ML(t) ≥ M, max XL(t) ≥ 2L

)
≤ Pξ




M(t)∑

k=1

1Xk(t)≥L ≥ M




≤ 1
M

Eξ




M(t)∑

k=1

1Xk(t)≥L




=
1

M

N∑

i=1

et
P(Bt + ξi ≥ L), (3.2)

where we used successively the Markov inequality and the many-to-one lemma (Lemma
2.1) applied to the BBM starting at each ξi, with (Bt)t≥0 denoting a Brownian motion
starting at 0. With our choice for t and recalling that ξi ≤ 0, (3.2) is bounded from above
by

N

M
eaL2/ log N

P

(√
tN (0, 1) ≥ L

)
≤ eaL2/ log N N

M

e− log N/2a

2
= eaL2/ log N N1−1/2a

2M
,

where N (0, 1) denotes the standard normal distribution and we use that P(N (0, 1) ≥ x) ≤
e−x2/2/2 for all x ≥ 0. From now on, we set M := ⌊Nλ+1−1/2a⌋, where 0 < λ < 1/2a.
Thus, since eaL2/ log N → 1 as N → ∞, we proved that the second term on the right-hand
side of (3.1) is smaller than N−λ for N large enough.

We now deal with the first term on the right-hand side of (3.1). It can be bounded
using Lemma 3.1: we have, with B1, . . . , BM independent Brownian motions starting at
ξ1, . . . , ξM under Pξ,

Pξ

(
∀s ∈ [0, t], ML(s) ≥ M, max XL(t) < 2L

)
≤ Pξ

(
max

1≤i≤M
Bi(t) < 2L

)

≤ P

(√
tN (0, 1) − L < 2L

)M
,

since ξi > −L for all i. Using that P(N (0, 1) ≥ x) ≥ e−x2/2/2x for x large enough and
that ln(1 − u) ≤ −u for u < 1, with our choice for t and M , we get

P

(√
tN (0, 1) − L < 2L

)M
=

(
1 − P

(
N (0, 1) ≥ 3(log N)1/2

a1/2

))⌊Nλ+1−1/2a⌋

≤ exp

(
−⌊Nλ+1−1/2a⌋N−9/2aa1/2

6(log N)1/2

)
, (3.3)
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for N large enough. Thus, we want that λ + 1 − 10/2a > 0, but we need λ < 1/2a to have
M < N . So that a such λ > 0 exists, it is sufficient that 10/2a − 1 < 1/2a, which means
a > 9/2. Then, we get (3.3) ≤ N−λ for N large enough.

Going back to (3.1), we showed that there exist M0 large enough, a > 0, λ > 0 and
0 < µ < 1 such that, for all ξ = (ξ1, . . . , ξN ) with N ≥ M0,

Pξ

(
∃s ∈ [0, aL2/ log N ] : ML(s) ≤ Nµ

)
≥ 1 − N−λ. (3.4)

We fix N ≥ M0 and we set k := ⌈ log log N−log log M0

log(1/µ) ⌉, so that k is the single integer that

satisfies Nµk ≤ M0 < Nµk−1
. Then, by applying k times the inequality (3.4) and the

strong Markov property, we get

Pξ

(
∃s ∈ [0, akL2/ log N ] : ML(s) ≤ Nµk

)
≥ (1 − N−λ)(1 − (Nµ)−λ) · · · (1 − (Nµk−1

)−λ)

=
k−1∏

i=0

(1 − N−λµi
) ≥

k−1∏

j=0

(1 − M−λµ−j

0 ), (3.5)

by using that N > Mµ−k+1

0 and setting j = k − i − 1. It is easy to see that the product on
the right-hand side of (3.5) converges to a positive limit as k tends to infinity, if M0 > 1.
Moreover, we can choose M0 large enough such that for all N ≥ M0, akL2/ log N ≤ 1.
Thus, we have proved that there exist c1 > 0 and M0 such that, for all ξ = (ξ1, . . . , ξN )
with N ≥ M0,

Pξ

(
∃s ∈ [0, 1] : ML(s) ≤ M0

)
≥ c1, (3.6)

that is Pξ(SM0 ≤ 1) ≥ c1 with SM0
:= inf{t ≥ 0 : ML(t) ≤ M0}.

Now, we consider an initial configuration ξ = (ξ1, . . . , ξN ) but with N ≤ M0. We
suppose ξ1 ≥ · · · ≥ ξN . If no particle splits on the time interval [0, 1], if the particle
starting at ξ1 stays above ξ1 − L/2 on [0, 1] and reaches ξ1 + 2L at time 1 and if all other
particles stay strictly under ξ1 + L/2 on [0, 1], then at time 1 only the particle starting at
ξ1 is alive so T = 1. Therefore, if B denotes a Brownian motion starting at 0, we have

Pξ(T = 1) ≥ (e−1)N
P

(
min

s∈[0,1]
Bs ≥ −L

2
, Bt ≥ 2L

)
P

(
max

s∈[0,1]
Bs <

L

2

)N−1

≥ c2,

where c2 > 0 is reached in the case N = M0. So we can conclude that ∀ξ ∈ C, Pξ(T ≤ 2) ≥
c1c2, by using (3.6) and the strong Markov property at time SM0 in the case where there
are more than M0 particles in the initial configuration.

The controls performed in the previous proof are very loose: with slightly more com-
putation, one can see that M0 needs to be larger than ebL2

with some b > 0, whereas most
of the time ML(t) is of the order of e

√
2L. Indeed, the return to 1 for the population size

is a too infrequent event for a more accurate study of the L-BBM as in Sections 4 and
5. But it is sufficient here to prove the existence of the asymptotic velocity vL for the
L-BBM.
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Proof of Proposition 1.1. Let ξ ∈ C be a fixed configuration. We set T0 := 0 and Ti+1 :=
inf{t ≥ Ti + 1 : ML(t) = 1} for each i ∈ N. Since for i ≥ 1 there is a single particle in the
L-BBM at time Ti, by the strong Markov property, (Ti+1 − Ti)i≥1 and (max XL(Ti+1) −
max XL(Ti))i≥1 are sequences of i.i.d. random variables with the same laws as T and
max XL(T ) under P(0) respectively.

Using Proposition 3.2 and the strong Markov property, we have for all ξ ∈ C and n ∈ N,

Pξ(T ≥ 2n) ≤ (1 − c)n,

which means that T has a sub-exponential distribution under Pξ, so T has finite moments
and, in particular, Pξ-almost surely we have T1 < ∞. Therefore, by the law of large
numbers, we get that Pξ-a.s. Tn/n → E(0)[T ] as n → ∞.

It is clear that Pξ-a.s. max XL(T1) < ∞ but in order to apply the law of large numbers
to the sequence (max XL(Ti+1)−max XL(Ti))i≥1, we need to check that E(0)[|max XL(T )|]
is finite. We are going to prove something stronger that will be useful afterwards in the
proof, which is E(0)[ζ] < ∞ where

ζ := max
t∈[0,T ]

∣∣∣max XL(t)
∣∣∣.

For this, it is sufficient to prove that the function a 7→ P(0)(ζ ≥ a) is integrable on R+.
For all a > 0, we have

P(0)(ζ ≥ a) ≤ P(0)

(
T >

√
a
)

+ P(0)

(
∃t ∈ [0,

√
a] :

∣∣∣max XL(t)
∣∣∣ ≥ a

)
. (3.7)

Since E(0)[T 2] is finite, a 7→ P(0)(T >
√

a) is integrable on R+. So we now have to deal
with the second term on the right-hand side of (3.7). By the coupling with the BBM
without selection, it is bounded by

P(0)

(∃t ∈ [0,
√

a] : |max X(t)| ≥ a
) ≤ 2P(0)

(∃t ∈ [0,
√

a] : max X(t) ≥ a
)

≤ 2E(0)




M(
√

a)∑

k=1

1∃t∈[0,
√

a]:Xk,
√

a(t)≥a


, (3.8)

where we denote by Xk,
√

a(t) the position of the unique ancestor at time t of Xk(
√

a).
Using the many-to-one lemma (Lemma 2.1), (3.8) is equal to

2e
√

a
P
(∃t ∈ [0,

√
a] : Bt ≥ a

)
= 4e

√
a
P

(
a1/4N (0, 1) ≥ a

)
≤ 2e

√
ae−a3/2/2,

which is an integrable function of a. This concludes the proof of the fact that E(0)[ζ] is fi-
nite. In particular, we can apply the law of large numbers to the sequence (max XL(Ti+1)−
max XL(Ti))i≥1 and get that Pξ-a.s. max XL(Tn)/n → E(0)[max XL(T )] as n → ∞. Thus,
we have the convergence

max XL(Tn)
Tn

−→
n→∞

E(0)[max XL(T )]

E(0)[T ]
=: vL (3.9)

Pξ-almost surely.
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For each t ≥ 0, let nt be the integer such that Tnt ≤ t < Tnt+1. It suffices now to show
that Pξ-a.s. max XL(t)/t − max XL(Tnt)/Tnt → 0 as t → ∞. We have
∣∣∣∣∣
max XL(t)

t
− max XL(Tnt)

Tnt

∣∣∣∣∣ ≤
∣∣∣∣∣
max XL(t) − max XL(Tnt)

t

∣∣∣∣∣+
∣∣∣∣∣
max XL(Tnt)

Tnt

∣∣∣∣∣

(
t − Tnt

t

)

≤ ζnt

t
+

∣∣∣∣∣
max XL(Tnt)

Tnt

∣∣∣∣∣

(
1 − Tnt

t

)
, (3.10)

where, for n ∈ N, we set

ζn := max
t∈[Tn,Tn+1]

∣∣∣max XL(t) − max XL(Tn)
∣∣∣.

Since Tnt/nt ≤ t/nt < Tnt+1/nt, we get that Pξ-a.s. t/nt → E(0)[T ] as n → ∞, so Tnt/t → 1
and combining with (3.9), we deduce that Pξ-a.s. the second term on the right-hand side
of (3.10) tends to 0. We now have to deal with the first term. Since (ζn)n≥1 is a sequence
of i.i.d. random variables with the same law as ζ under P(0) and E(0)[ζ] is finite, we have by
the law of large numbers Pξ-a.s. ξn/n → 0 as n → ∞ and so Pξ-a.s. ζnt/t → 0 as t → ∞.
It concludes the proof of Proposition 1.1.

4 Lower bound for vL

In this section, we fix 0 < ε < 1 and consider all processes with drift −µ, where

µ :=

√
2 − π2

(1 − ε)2L2
,

which means that, for each ξ ∈ C, under Pξ, (Xk(t), 1 ≤ k ≤ M(t))t≥0 is a BBM without se-
lection, with drift −µ and starting from the configuration ξ and (XL

k (t), 1 ≤ k ≤ ML(t))t≥0

is the associated L-BBM with drift −µ. However, vL still denotes the asymptotic velocity
of L-BBM without drift, so Proposition 1.1 shows that, for all L > 0 and all ξ ∈ C,

max XL(t)
t

−→
t→∞

vL − µ (4.1)

Pξ-almost surely. Actually, the aim is to show that for L large enough lim max XL(t)/t ≥ 0
P(0)-a.s. so that we can conclude that vL ≥ µ and the lower bound follows by letting ε → 0.

4.1 Proof of the lower bound

In this subsection, we prove the lower bound in Theorem 1.2, by postponing to the next
subsection the proof of a proposition. The strategy is to study the L-BBM on time intervals
of length at most L3 associated to a sequence of stopping times (τi)i∈N defined by τ0 := 0
and for each i ∈ N,

τi+1 := (τi + L3) ∧ inf
{

t ≥ τi

∣∣∣ max XL(t) − max XL(τi) /∈ (−(L − 1), 1)
}

.
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Killing barrier
of the L-BBM t

x

τi τi + L3τi+1

max XL(τi)
max XL(τi) + 1

max XL(τi) − (L − 1)

L

Figure 3 – Representation of a L-BBM between times τi and τi+1. By definition, τi+1 is the time where
t 7→ max XL(t) leaves the gray area. We are here on the event Ac

i because t 7→ max XL(t) leaves the area
from above. Note that the killing barrier of XL (drawn in blue) stays below max XL(τi) − (L − 1).

We also define the event Ai := {max XL(τi+1) < max XL(τi) + 1} (see Figure 3 for an
illustration of these definitions).

The event Ai is a “bad” event, because on the event Ac
i the position of the highest

particle of the L-BBM goes up between times τi and τi+1. The following proposition shows
that the event Ai is very unlikely, regardless of the configuration of the L-BBM at time
τi. Its proof is postponed to Subsection 4.2.

Proposition 4.1. Let h(L) := supξ∈C Pξ(A0). Then, as L → ∞, we have h(L) = o(1/L).

Using Proposition 4.1, we can now conclude the proof of the lower bound. Let
Kn :=

∑n−1
i=0 1Ai be the number of “bad” events Ai that happen before time τn. On

the event Ac
i , we have max XL(τi+1)− max XL(τi) = 1 and, on the event Ai, we only have

max XL(τi+1) − max XL(τi) ≥ −(L − 1) and, therefore, we get

max XL(τn) − max XL(0) ≥ (n − Kn) − (L − 1)Kn = n − LKn

and, thus,
max XL(τn) − max XL(0)

τn
≥ n

τn

(
1 − L

Kn

n

)
. (4.2)

We now want to prove that the right-hand side of (4.2) is non-negative as n tends to
infinity. For this, we need to control Kn. Using Proposition 4.1 and the strong Markov
property, we get that, for each 0 ≤ k ≤ n, P(0)(Kn ≥ k) ≤ (n

k

)
h(L)k and so

E(0)

[
eKn

]
≤

n∑

k=0

(
n

k

)
h(L)kek = (1 + h(L)e)n ≤ enh(L)e.

Then, applying the Markov inequality, we get

P(0)(Kn ≥ 3nh(L)) ≤ e−3nh(L)
E(0)

[
eKn

]
≤ e−nh(L)(3−e)
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which is summable, so the Borel-Cantelli lemma implies that P(0)-a.s. lim supn→∞
Kn
n ≤

3h(L). Moreover, using Proposition 4.1, we get that for L large enough 1− 3h(L)L ≥ 1/2,
so we conclude that for L large enough,

lim inf
n→∞

n

τn

(
1 − L

Kn

n

)
≥ 0. (4.3)

Assume for now that τn tends to infinity P(0)-almost surely as n → ∞. Then, the
left-hand side of (4.2) converges P(0)-almost surely to vL − µ as n → ∞, so with (4.3) we
get vL − µ ≥ 0 for L large enough, that is

vL ≥
√

2 − π2

2
√

2(1 − ε)2L2
+ o

(
1

L2

)

and the lower bound in Theorem 1.2 follows by letting ε → 0. It remains to show that
τn tends to infinity P(0)-almost surely. On the event {(τn)n≥0 is bounded}, τn tends to a
finite limit τ∞ as n → ∞, so it follows from (4.2) that P(0)-almost surely

max XL(τ∞)
τ∞

= ∞,

for L large enough such that 1 − 3h(L)L ≥ 1/2. But P(0)-almost surely, for all t ≥ 0,
max XL(t)/t < ∞, so P(0)((τn)n≥0 is bounded) = 0. It concludes the proof of the lower
bound in Theorem 1.2.

4.2 Proof of Proposition 4.1

In this subsection, we prove Proposition 4.1, that is we show that the event Ac
0 is very

likely. For this, we compare the L-BBM with a BBM in a strip that has less particles than
the L-BBM between times 0 and τ1. Thus, if a particle of the BBM in a strip reaches
max XL(0) + 1, then it is also the case for the L-BBM. To prove that there is a particle of
the BBM in a strip reaching max XL(0) + 1 with high probability, we will use Proposition
2.4, Proposition 2.5 and the following lemma that allows to have many independent BBM
in a strip trying to reach max XL(0) + 1 instead of only one.

Lemma 4.2. Assume that X is a BBM with drift −µ where µ <
√

2. Then, for each
α > 0, for L large enough, we have

P(0)(M(Lα) < L or ∃t ∈ [0, Lα] : min X(t) ≤ −4Lα) ≤ 2Le−Lα
.

Note that this lemma concerns branching Brownian motion without selection and is
stated for a large choice of drift −µ so that it can be applied here and also in Section 5.

Proof. Since M(Lα) follows a geometric distribution with parameter e−Lα
, we get

P(M(Lα) < L) =
L−1∑

k=1

e−Lα
(
1 − e−Lα

)k−1
= 1 −

(
1 − e−Lα

)L−1
∼

L→∞
Le−Lα

. (4.4)
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Moreover, applying the many-to-one lemma (Lemma 2.1) without forgetting the drift −µ,
we have, with (Bt)t≥0 a Brownian motion,

P(∃t ∈ [0, Lα] : min X(t) ≤ −4Lα) ≤ eLα
P(∃t ∈ [0, Lα] : Bt − µt ≤ −4Lα)

≤ eLα
P(∃t ∈ [0, Lα] : Bt ≤ −(4 − µ)Lα)

= eLα
2P
(
Lα/2N (0, 1) > (4 − µ)Lα

)

≤ eLα−(4−µ)2Lα/2. (4.5)

The result follows from (4.4) and (4.5) with µ ≤
√

2.

We now have enough tools to prove Proposition 4.1. Actually, the control will be much
more accurate than needed.

Proof of Proposition 4.1. Let ξ ∈ C be a configuration. Note first that Pξ(A0) is invariant
under shift of ξ, so we can assume without loss of generality that max ξ = L − 1. Then,
Pξ-a.s. τ1 = L3 ∧ inf{t ≥ 0 : max XL(t) /∈ (0, L)} and A0 is Pξ-a.s. equal to the event “no
particle of the L-BBM reaches L before reaching 0 on the time interval [0, L3]”. Moreover,
Pξ-a.s. on the time interval [0, τ1] the killing barrier of the L-BBM stays under 0 (see
Figure 3), so we have the inclusion

∀t ∈ [0, τ1], X̃K,L(t) ⊂ XL(t), (4.6)

where we set K := (1 − ε)L so that (2.3) is satisfied and A := −εL so that KA = L:
thus, under Pξ, (X̃K,L

k (t), 1 ≤ k ≤ M̃K,L(t))t≥0 is a BBM in the strip (0, L) with drift −µ

starting from the configuration ξ. Let C0 denote the event “no particle of X̃K,L reaches
L on the time interval [0, L3]”, then it follows from (4.6) that Pξ-a.s. A0 ⊂ C0. Moreover,
the BBM in a strip satisfies the branching property : the offspring of a single particle at x
at time 0 is independent of the offspring of other initial particles and follows the law of a
BBM in a strip under Px. So we have Pξ(C0) ≤ P(L−1)(C0), by keeping only the offspring
of the highest initial particle. Thus, we get h(L) ≤ P(L−1)(C0) because it does not depend
any more on the initial configuration.

Now, our aim is to give an upper bound for P(L−1)(C0). For this purpose, we will first
use Lemma 4.2 to have at least L particles above L − 1 − 4Lα after a short time Lα and
then apply Propositions 2.4 and 2.5 to show that each particle at time Lα has a descendant
that reaches L before time L3 with a positive probability that does not depend on L. We
fix 0 < α < 1/2. Using Lemma 4.2, we get, for L large enough such that L − 1 − 4Lα > 0,

P(L−1)(C0)

≤ 2Le−Lα
+ P(L−1)({M(Lα) ≥ L} ∩ {∀t ∈ [0, Lα], min X(t) > L − 1 − 4Lα} ∩ C0)

≤ 2Le−Lα
+ P(L−1)

(
{M̃K,L(Lα) ≥ L} ∩ {min X̃K,L(Lα) > L − 1 − 4Lα} ∩ C0

)
, (4.7)

because on the event {∀t ∈ [0, Lα], min X(t) > −4Lα} ∩ C0, no particle of the BBM in
a strip is killed between times 0 and Lα, so M̃(Lα) = M(Lα). Applying the branching
property at time Lα, we bound from above the second term of (4.7) by

E(L−1)


1

M̃K,L(Lα)≥L
1

min X̃K,L(Lα)>L−1−4Lα

M̃K,L(Lα)∏

k=1

P
(X̃K,L

k
(Lα))

(
C ′

0

)

, (4.8)
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where C ′
0 denotes the event “no particle of X̃K,L reaches L on the time interval [0, L3−Lα]”.

Note that the function x ∈ (0, L) 7→ P(x)(C ′
0) is nondecreasing1. So it follows from (4.8)

that
h(L) ≤ 2Le−Lα

+ P(L−1−4Lα)

(
C ′

0

)L
, (4.9)

for L large enough.
Our aim is now to control P(L−1−4Lα)(C ′

0). We set K ′ := L − 4Lα and

µ′ :=

√
2 − π2

(L − 4Lα)2
,

the drift associated to K ′ (see equation (2.3)). Moreover, we define a new process X̄ from
the standard BBM X with drift −µ by killing particles that go below t 7→ (µ′ − µ)t or
above t 7→ K ′ + (µ′ − µ)t (see Figure 4). With this coupling, on the event C ′

0, we have the

t

x

0

L

(1 − ε)L = K

L − 4Lα = K ′

L−K ′
µ′−µ

L3 − Lα

slope µ′ − µ

Figure 4 – Representation of the coupled systems X̄ (full line) and X̃K,L (dashed line) starting with a
single initial particle at K′ − 1, on the event C′

0. The two thick straight lines of slope µ′ − µ are the killing
barriers that define X̄.

inclusion ∀t ∈ [0, L3 − Lα], X̄(t) ⊂ X̃K,L(t) and it follows that

C ′
0 ⊂

{
no particle of X̄ reaches L on time interval

[
L − K ′

µ′ − µ
, L3 − Lα

]}

⊂
{

no particle of X̄ reaches t 7→ K ′ + (µ′ − µ)t on
[

L − K ′

µ′ − µ
, L3 − Lα

]}
,

where the last event means that ∀t ∈ [(L−K ′)/(µ′−µ), L3−Lα], max X̄(t) < K ′+(µ′−µ)t.

1It follows from the fact that P(x)(C
′
0) = P(x)(no particle of X̂ reaches L on [0, L3 − Lα]), where X̂

denotes the BBM with drift −µ, with absorption at 0 and with a single initial particle at x under P(x).
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Then, recalling that X̃K ′
denotes the BBM in the strip (0, K ′) with drift −µ′, note that

P(L−1−4Lα)

(
no particle of X̄ reaches t 7→ K ′ + (µ′ − µ)t on

[
L − K ′

µ′ − µ
, L3 − Lα

])

≤ P(L−1−4Lα)

(
no particle of X̃K ′

reaches K ′ on
[

L − K ′

µ′ − µ
, L3 − Lα

])

≤ P(L−1−4Lα)

(
no particle of X̃K ′

reaches K ′ on
[
K ′5/2, K ′3

])
,

using that L3 − Lα ≥ K ′3 and (L − K ′)/(µ′ − µ) = CεL2+α(1 + o(1)) ≤ K ′5/2 for L large
enough, with Cε a positive constant depending only on ε. Thus, we get

P(L−1−4Lα)(C
′
0) ≤ P(L−1−4Lα)(R

′ = 0) = 1 − P(K ′−1)(R
′ ≥ 1) ≤ 1 − E(K ′−1)[R′]2

E(K ′−1)[R′2]
,

where R′ is the number of particles of X̃K ′
that hit K ′ between times K ′5/2 and K ′3. We

now want to give a lower bound for E(K ′−1)[R′]2/E(K ′−1)[R′2]. Using first Proposition 2.4
with θ = 1, we get

E(K ′−1)

[
R′] ≥ 2

√
2πK ′e−µK ′

eµ(K ′−1) sin
(

π(K ′ − 1)
K ′

)
(1 + o(1)) −→

L→∞
2
√

2π2e−µ.

Then, using Proposition 2.5 with R denoting the number of particles of X̃K ′
that hit K ′

between times 0 and K ′3, we get

E(K ′−1)

[
R′2
]

≤ E(K ′−1)

[
R2
]

≤ Ce−µK ′
eµ(K ′−1)

(
1 + K ′ sin

(
π(K ′ − 1)

K ′

))
(1 + o(1))

−→
L→∞

Ce−µ(1 + π).

So, for L large enough, we have E(K ′−1)[R′]2/E(K ′−1)[R′2] ≥ c > 0. Coming back to (4.9),
we get that, for L large enough,

h(L) ≤ 2Le−Lα
+ (1 − c)L,

and the result follows.

5 Upper bound for vL

As in Section 4, we fix 0 < ε < 1/3 and we consider all processes with drift −µ, but we
set here

µ :=

√
2 − π2

(1 + 4ε)2L2
.

We want to show that for L large enough, P(0)-a.s. lim max XL(t)/t ≤ Cε/L2, that is
vL ≤ µ + Cε/L2, and then the upper bound follows by letting ε → 0. Moreover, we set for
j ≥ 1, Lj := (1 + jε)L. Thus, µ is the drift corresponding to L4 according to the results
of Subsection 2.2.
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5.1 Proof of the upper bound

In this subsection, we prove the upper bound in Theorem 1.2, by postponing to the next
subsections the proof of two propositions. As in Section 4, the L-BBM will be studied
on time intervals of length at most L3 associated to a sequence of stopping times (τi)i∈N

defined by τ0 := 0 and for each i ∈ N,

τi+1 := inf
{

t ≥ τi : max XL(t) − max XL(τi) /∈
(

−εL +
2ε

L2
(t − τi), εL

)}
.

So we have τi+1 − τi ≤ L3 (see Figure 5). We also define the event Ai := {max XL(τi+1) =
max XL(τi) + εL}, as a “bad” event: on Ai, max XL can increase quickly between times
τi and τi+1.

t

x

slope 2ε
L2

τi τi + L3τi+1

max XL(τi)

max XL(τi) + εL

max XL(τi) − εL

max XL(τi) − L

L

Figure 5 – Representation of a L-BBM between times τi and τi+1. By definition, τi+1 is the time where
t 7→ max XL(t) leaves the gray area. The two thick straight lines that delimit the gray area intersect at
time τi + L3. We are here on the event Ac

i because t 7→ max XL(t) leaves the area from below.

Let Kn :=
∑n−1

i=0 1Ai be the number of “bad” events Ai that happen before time τn.
On the event Ac

i , we have max XL(τi+1) − max XL(τi) = −εL + 2ε(τi+1 − τi)/L2 and, on
the event Ai, we have max XL(τi+1) − max XL(τi) = εL. Therefore, we get

max XL(τn) − max XL(0) =
n−1∑

i=0

1AiεL +
n−1∑

i=0

1Ac
i

(
−εL +

2ε

L2
(τi+1 − τi)

)

≤ KnεL − (n − Kn)εL +
2ε

L2
τn

and so
max XL(τn) − max XL(0)

τn
≤ 2ε

L2
+

n

τn

(
−εL + 2

Kn

n
εL

)
. (5.1)

We now need two propositions to conclude. The first one shows that there cannot be
much more than (1/2+1/εL)n events Ai happening before time τn. Its proof is postponed
to Subsections 5.2 and 5.3.

Proposition 5.1. For L large enough, P(0)-a.s. we have

lim sup
n→∞

Kn

n
≤ 1

2
+

1
εL

.
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Remark 5.2. The constant 1/2 appears here because we work in the proof as if the lower
barrier that define τi+1 was horizontal too, so that the population size increase between
times τi and τi+1 on event Ac

i is more or less the inverse of the decrease on event Ai. But,
if the lower barrier was horizontal and if there was a vertical barrier at time L3, then we
would probably have τi+1 = τi + L3 most of the time, because fluctuations of the L-BBM
are believed to be of order log L (and not εL) on a time scale of L3. Thus, with the actual
lower barrier, event Ac

i should happen most of the time and lim supn→∞ Kn/n should be
close to zero. Moreover, we took µ greater than the presumed value of vL and this is also
favorable to event Ac

i .

The second proposition gives a lower bound for τn/n as n → ∞ and shows that it
is much larger than L2. Its proof is postponed to Subsection 5.4. Note that by using
some results of Berestycki, Berestycki and Schweinsberg [6] concerning critical BBM with
absorption instead of Corollary 5.7, we could have lim infn→∞ τn/n ≥ c(εL)3 for some
constant c > 0 (see Remark 5.8).

Proposition 5.3. There exists γ > 0 such that, for L large enough, P(0)-a.s. we have

lim inf
n→∞

τn

n
≥ L2+γ

6
.

We can now conclude the proof of the upper bound. Using Proposition 5.1, we get that
P(0)-a.s. lim supn→∞(−εL + 2Kn

n εL) ≤ 2. Therefore, it follows from (5.1) that P(0)-a.s.

lim
n→∞

max XL(τn)
τn

≤ 2ε

L2
+ 2 lim sup

n→∞

n

τn
≤ 2ε

L2
+

12
L2+γ

, (5.2)

for L large enough, applying Proposition 5.3. From Proposition 5.3, we get that P(0)-a.s.
τn → ∞ as n → ∞, so the left-hand side of (5.2) is equal to vL − µ. Thus, we have

vL ≤
√

2 − π2

2
√

2(1 + 4ε)2L2
+

2ε

L2
+ o

(
1

L2

)

and, letting ε → 0, we get the upper bound in Theorem 1.2.

5.2 Comparison with the BBM in a strip

We use here results of Subsection 2.2 concerning BBM in a strip to show two lemmas
that will be useful for the proof of Proposition 5.1 in the next subsection. To bound the
probability of events Ai, we will need to control the size of the L-BBM at times τi. For
this, we introduce a functional of the L-BBM, analogous to the functional Z̃K,KA of the
BBM in a strip (see equation (2.4)): recalling that Lj = (1 + jε)L, we set, for i ∈ N,

Ui := max XL(τi) − L2

SL
i :=

ML(τi)∑

k=1

eµ(XL
k

(τi)−Ui) sin

(
π(XL

k (τi) − Ui)
L4

)
.

It amounts to shift the population at time τi such that the highest particle is at L2 and
then to take the value of the functional Z̃L4 associated with the shifted population. We
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can now state the two lemmas of this subsection, used later for the proof of Proposition
5.1. The first one gives a upper bound for the conditional probability of event Ai given
Fτi , in terms of SL

i : if the size of the L-BBM at time τi is small enough, then Ai is
unlikely.

Lemma 5.4. There exists Cε > 0 depending only on ε such that, for L large enough, for
all i ∈ N,

P(0)(Ai | Fτi) ≤ CεLe−µL3SL
i .

Therefore, according to Lemma 5.4, we need to control SL
i in order to bound the

probability of Ai. The second lemma controls the conditional expectation of SL
i+1 given

Fτi in terms of SL
i , with a poor bound in the general case but with a much more accurate

one on the event Ai. Indeed, even if Ai is a “bad” event because it involves a growth of
max XL, it causes at the same time a large decrease of the population size: when max XL

grows quickly, more particles are killed by selection. So each event Ai that happens makes
the following events Aj less likely.

Lemma 5.5. We have the following inequalities for L large enough and for all i ∈ N:

E(0)

[
SL

i+1

∣∣∣ Fτi

]
≤ 2eµεLSL

i , (5.3)

E(0)

[
SL

i+11Ai

∣∣∣ Fτi

]
≤ 2e−µεLSL

i . (5.4)

Proof of Lemma 5.4. The strategy is as follows: we first come down to the study of Pξ(A0),
where max ξ = L2 and min ξ ≥ 2εL, and then use Proposition 2.4 concerning BBM in
a strip to bound from above the mean number of particles that hit L3 and thus the
probability of event A0. Applying the strong Markov property at the stopping time τi, we
get

P(0)(Ai | Fτi) = PXL(τi)(A0) = PXL(τi)−Ui
(A0), (5.5)

using for the second equality the fact that Pξ(A0) is invariant under shift of the ini-
tial configuration ξ. We have max XL(τi) − Ui = L2 by definition of Ui and therefore
min XL(τi) − Ui ≥ 2εL, so we have to bound Pξ(A0) with an initial configuration ξ that
satisfies max ξ = L2 and min ξ ≥ 2εL.

We fix such a configuration ξ. Then, Pξ-a.s., for all t ∈ [0, τ1), we have the inclusion
XL(t) ⊂ X̃L4,L3(t), because until time τ1 the killing barrier of XL stays above 0 (see
Figure 6) and particles of XL stay below L3 so no particle of X̃L4,L3 is killed by hitting
L3. Therefore, we get that Pξ-a.s.

A0 ⊂
{

at least one particle of X̃L4,L3 hits L3 on time interval [0, L3]
}

. (5.6)

Then, our aim is to come down to X̃L3 instead of X̃L4,L3, in order to apply Proposition
2.4. For this, let

µ′ :=

√
2 − π2

L2
3

be the drift associated to L3 (see equation (2.3)). We have µ′ < µ, so the right-hand side
of (5.6) is obviously included in the event
{

at least one particle of X̃L4,L3 hits t 7→ L3 + (µ′ − µ)t on time interval [0, L3]
}

. (5.7)
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Killing barrier
of the L-BBM

t

x

0 L3

slope 2ε
L2

max XL(0) = L2

L3

L1

L4

εL

τ1

L

Figure 6 – Representation of the coupled systems XL (full line) and X̃L4,L3 (dashed line) between times 0
and τ1, starting with the highest particle at L2, on the event A0. Until time τ1, the killing barrier of XL

(drawn in blue) stays above the straight line t 7→ εL + 2ε
L2 t so above 0.

As in the proof of Proposition 4.1, we define now a new process X̄ from the standard BBM
X with drift −µ by killing particles that go below t 7→ (µ′ −µ)t or above t 7→ L3 +(µ′ −µ)t.
Thus, the event in (5.7) is included in the event

{
at least one particle of X̄ hits t 7→ L3 + (µ′ − µ)t on time interval [0, L3]

}
,

because as long as no particle of X̄ reaches t 7→ L3 + (µ′ − µ)t, the population of X̃L4,L3

is included in the population of X̄ . The probability of this last event under Pξ is equal to

Pξ

(
at least one particle of X̃L3 hits L3 on time interval [0, L3]

)
.

Therefore, coming back to (5.6), we showed that Pξ(A0) ≤ Eξ[R], where R is the number
of particles of X̃L3 that hit L3 between times 0 and L3, and applying Proposition 2.4 with
θ = 1/(1 + 3ε)3, we get that, as L → ∞,

Eξ[R] ≤ C
e−µL3

L3

n∑

k=1

ξkeµξk + 2
√

2πθL3e−µL3

(
n∑

k=1

eµξk sin
(

πξk

L3

))
(1 + o(1)) (5.8)

where we wrote ξ = (ξ1, . . . , ξn). In order to make SL
i appear, our upper bound has to

depend on
∑n

k=1 eµξk sin(πξk/L4). Recalling that ξk ∈ [2εL, L2] for each 1 ≤ k ≤ n, we
get

ξk

L2
≤

sin
(

πξk
L3

)

sin
(

πL2
L3

) =
sin
(

πξk
L3

)

sin
(

πε
(1+3ε)

)

and it follows that
n∑

k=1

ξkeµξk ≤ L2

sin
(

πε
(1+3ε)

)
n∑

k=1

eµξk sin
(

πξk

L3

)
. (5.9)
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Moreover, using the inequality sin(πξk/L3)/ sin(πξk/L4) ≤ L4/L3, we have

n∑

k=1

eµξk sin
(

πξk

L3

)
≤ 1 + 4ε

1 + 3ε

n∑

k=1

eµξk sin
(

πξk

L4

)
. (5.10)

Thus, bringing together (5.8), (5.9) and (5.10), we get that, for L large enough,

Pξ(A0) ≤ CεLe−µL3

n∑

k=1

eµξk sin
(

πξk

L4

)

and coming back to (5.5), the result follows with ξ = XL(τi) − Ui.

Proof of Lemma 5.5. The reasoning is similar to the proof of Lemma 5.4: we first come
down to the study of SL

1 under Pξ where max ξ = L2, then we compare SL
1 with Z̃L4(τ1)

under Pξ in the general case and on the event A0 and finally we use Proposition 2.3 and
the optional stopping theorem to get an upper bound for Eξ[Z̃L4(τ1)].

Applying the strong Markov property at the stopping time τi and using that the laws
of SL

1 and SL
1 1A0 are invariant under shift of the initial configuration, we get

E(0)

[
SL

i

∣∣∣ Fτi

]
= EXL(τi)

[
SL

1

]
= EXL(τi)−Ui

[
SL

1

]
(5.11)

and, in the same way, E(0)[SL
i 1Ai |Fτi ] = EXL(τi)−Ui

[SL
1 1A0]. Thus, we now have to bound

Eξ[SL
1 ] and Eξ[SL

1 1A0 ], for an initial configuration ξ that satisfies max ξ = L2.
We fix such a configuration ξ. As in the proof of Lemma 5.4, we note that Pξ-a.s., for

all t ∈ [0, τ1]2, we have the inclusion XL(t) ⊂ X̃L4(t) (see Figure 6). Thus, we have Pξ-a.s.

ML(τ1)∑

k=1

eµXL
k (τ1) sin

(
πXL

k (τ1)
L4

)
≤ Z̃L4(τ1). (5.12)

Therefore, we want to compare SL
1 with the left-hand side of (5.12), first in the general

case and then on the event A0. Note that U1 ∈ [−εL, εL] and for 1 ≤ k ≤ ML(τ1),
XL

k (τ1) ∈ [max XL(τ1)−L, max XL(τ1)] = [U1 +2εL, U1 +L2]. On the one hand, if u ≤ 0,
then the function x ∈ (0, π + u] 7→ sin(x − u)/ sin(x) is nonincreasing, so if U1 ≤ 0, we get
the upper bound

sin
(

π(XL
k (τ1)−U1)

L4

)

sin
(

πXL
k

(τ1)

L4

) ≤
sin
(

π2εL
L4

)

sin
(

π(U1+2εL)
L4

) ≤
sin
(

π2ε
1+4ε

)

sin
(

πε
1+4ε

) ≤ 2.

On the other hand, if u ≥ 0, then the function x ∈ (u, π] 7→ sin(x − u)/ sin(x) is nonde-
creasing, so if U1 ≥ 0, we get the upper bound

sin
(

π(XL
k

(τ1)−U1)

L4

)

sin
(

πXL
k

(τ1)

L4

) ≤
sin
(

πL2
L4

)

sin
(

π(U1+L2)
L4

) ≤
sin
(

π2ε
1+4ε

)

sin
(

πε
1+4ε

) ≤ 2.

2Note that here the inclusion is still true at time τ1, because a particle of X̃L4 that hits L3 is not killed,
unlike a particle of X̃L4,L3 .
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It follows that

SL
1 ≤ 2e−µU1

ML(τ1)∑

k=1

eµXL
k (τ1) sin

(
πXL

k (τ1)
L4

)
.

Coming back to (5.12) and using that U1 ≥ −εL and, on the event A0, U1 = εL, we get

Eξ

[
SL

1

]
≤ 2eµεL

Eξ

[
Z̃L4(τ1)

]
,

Eξ

[
SL

1 1A0

]
≤ 2e−µεL

Eξ

[
Z̃L4(τ1)

]
.

(5.13)

Note that the bound for SL
1 1A0 is better not because the event A0 is unlikely, but because

it involves a large increase of max XL while most of the particles stay at the same height
(because µ is chosen such that Z̃L4 is a martingale) and so all these particles have a much
smaller weight in SL

1 .
Finally, applying the optional stopping theorem to (Z̃L4(t))t≥0, which is a martingale

by Proposition 2.3, and to τ1, which is a bounded stopping time, we get

Eξ

[
Z̃L4(τ1)

]
≤

n∑

k=1

eµξk sin
(

πξk

L4

)
. (5.14)

The result follows from (5.11), (5.13) and (5.14) with ξ = XL(τi) − Ui.

5.3 Proof of Proposition 5.1

We prove here Proposition 5.1 that states that Kn, the number of events Ai that happen
before time τn, cannot be much larger than n/2.

Proof of Proposition 5.1. For 1 ≤ k ≤ n, we first give a upper bound for P(0)(Kn ≥ k).
We have

P(0)(Kn ≥ k) ≤
∑

1≤i1<···<ik≤n

P(0)(Ai1 ∩ · · · ∩ Aik
).

So we fix 1 ≤ i1 < · · · < ik ≤ n and deal with P(0)(Ai1 ∩ · · · ∩ Aik
). The strategy is

to control SL
i for 1 ≤ i ≤ ik using Lemma 5.5 and then to bound P(0)(Aik

|Fτik
) with

Lemma 5.4 and our control of SL
ik

: if k is large, then SL
ik

is small and Aik
is unlikely. First

conditioning on Fτik
, using that for all i ≥ 0, Ai ∈ Fτi+1 and then applying Lemma 5.4,

we get

P(0)(Ai1 ∩ · · · ∩ Aik
) = E(0)

[
1Ai1

· · ·1Aik−1
P(0)

(
Aik

∣∣∣ Fτik

)]

≤ CεLe−µL3E(0)

[
1Ai1

· · ·1Aik−1
SL

ik

]
. (5.15)

Then, conditioning successively on all Fi for i from ik − 1 to 0 and applying Lemma 5.5
(we use (5.3) if i /∈ {i1, . . . , ik−1} and (5.4) otherwise), we bound (5.15) by

CεLe−µL3

(
2eµεL

)ik−(k−1)(
2e−µεL

)k−1
E(0)

[
SL

0

]
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and it follows that

P(0)(Kn ≥ k) ≤
(

n

k

)
CεL

(
2eµεL

)n−(k−1)(
2e−µεL

)k−1
, (5.16)

using that E(0)[SL
0 ] = eµL2 sin(πL2/L4) ≤ eµL3 .

We take now
k :=

⌈
n

(
1
2

+
1

εL

)⌉
.

Using
(n

k

) ≤ 2n, (5.16) becomes

P(0)(Kn ≥ k) ≤ CεL22n exp(µεL(n − 2(k − 1))) ≤ CL22n exp(−2µn),

which is summable because 2 < eµ for L large enough, so the Borel-Cantelli lemma implies
that P(0)-almost surely for n large enough we have Kn ≤ k − 1 and the result follows.

5.4 Proof of Proposition 5.3

In this section, we fix 0 < γ < 1/7 and we will show that, on the event Ac
i , with high

probability we have τi+1 − τi ≥ L2+γ : the standard BBM starting at max XL(τi) at
time τi has with high probability a particle that stays above t 7→ max XL(τi) − εL +
2ε(t − τi)/L2 between times τi and τi + L2+γ . Then, by Proposition 5.1, we know that
lim infn→∞ n−1∑n−1

i=0 1Ac
i

≥ 1/2 − 1/ǫL > 1/3: thus, more than n/3 events Ac
i happen

until time τn, so we have often enough τi+1 − τi ≥ L2+γ and Proposition 5.3 will follow.
Therefore, we first show a lemma concerning the standard BBM starting with a single
particle (we still work with drift −µ).

Lemma 5.6. We define T := Lγ + L2−5γ and the event

C :=
{

∃k ∈ J1, M(T )K : Xk(T ) ≥ −5Lγ and ∀t ∈ [0, T ], Xk,T (t) ≥ −εL

2

}
,

where (Xk,T (t))0≤t≤T denotes the trajectory between times 0 and T of the particle that is
at Xk(T ) at time T . Then, for L large enough, we have P(0)(C) ≥ 1 − 3Le−Lγ

.

Proof. The strategy is to use first Lemma 4.2 in order to get more than L particles after a
short time Lγ and then Proposition 2.2 to see that each of these particles is likely to stay
high between times Lγ and T . Applying Lemma 4.2 (we still have µ ≤

√
2), we get

P(0)(C
c) ≤ 2Le−Lγ

+ P({M(Lγ) ≥ L} ∩ {∀t ∈ [0, Lγ ], min X(t) > −4Lγ} ∩ Cc). (5.17)

Then, using the branching property at time Lγ , the probability on the right-hand side of
(5.17) is equal to

E(0)



1M(Lγ)≥L1∀t∈[0,Lγ ],min X(t)>−4Lγ

M(Lγ)∏

i=1

P(Xi(Lγ))(C
c
1)


, (5.18)
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for L large enough, where we set

C1 :=
{

∃k ∈ J1, M(L2−5γ)K : Xk(L2−5γ) ≥ −5Lγ and min Xk,L2−5γ ≥ −εL

2

}
.

We now want to bound P(x)(Cc
1) for x ≥ −4Lγ . First, as x 7→ P(x)(Cc

1) is nonincreasing,
it is clear that P(x)(Cc

1) ≤ P(−4Lγ)(Cc
1) = P(0)(Cc

2), where we set

C2 :=
{

∃k ∈ J1, M(L2−5γ)K : Xk(L2−5γ) ≥ −Lγ and min Xk,L2−5γ ≥ −εL

2
+ 4Lγ

}
.

Then, we apply Proposition 2.2 to δ = 1/2: there exist d > 0, r > 0 and t0 > 0 large
enough such that for all t ≥ t0, P(0)(Dt) ≥ 1/2, where we set for all t ≥ 0

Dt :=
{

∃k ∈ J1, M(t)K : Xk(t) ≥ m(t) − µt − d

and ∀s ∈ [0, t], Xk,t(s) ≥ s

t
m(t) − µs − r ∨

(
s

1
2

+γ ∧ (t − s)
1
2

+γ
)}

.

Note that DL2−5γ ⊂ C2 for L large enough3, so we have showed that for x ≥ −4Lγ ,
P(x)(Cc

1) ≤ P(0)(Dc
L2−5γ ) ≤ 1/2 for L large enough such that L2−5γ ≥ t0 (because 2 − 5γ >

0). Thus, we get (5.18) ≤ 1/2L and, combining with (5.17), the result follows.

We now state a corollary that will be used in the proof of Proposition 5.3: it says that a
standard BBM with drift −µ starting with a single particle at 0 has with high probability
a particle that stays above t 7→ −εL + 2εt/L2 between times 0 and L2+γ .

Corollary 5.7. We define the event

E :=
{

∃k ∈ J1, M(L2+γ)K : ∀t ∈ [0, L2+γ ], Xk,L2+γ (t) > −εL +
2ε

L2
t

}
,

where (Xk,L2+γ (t))0≤t≤L2+γ denotes the trajectory between times 0 and T of the particle
that is at Xk(L2+γ) at time L2+γ. Then, P(0)(E) tends to 1 as L → ∞.

Proof. First note that the slope 2ε/L2 plays only a negligible role on a time period of
length L2+γ and that we can replace L2+γ by NT where N := ⌈L6γ⌉: we have Ē ⊂ E with

Ē := {∃k ∈ J1, M(NT )K : ∀t ∈ [0, NT ], Xk,NT (t) ≥ −εL + Lγ}.

We now want to apply Lemma 5.6 to N consecutive time intervals of length T . Formally,
we introduce for 0 ≤ j ≤ N the event

Ēj := {∃k ∈ J1, M(jT )K : min Xk,jT ≥ −εL + (5(N − j) + 1)Lγ}
3On the one hand, with t := L2−5γ and 0 ≤ s ≤ t, we have t

1

2
+γ = L1− γ

2
−5γ2

= o(L) and s
t
m(t) − µs ≥

(
√

2 − µ)s ≥ 0 so s
t
m(t) − µs − r ∨ (s

1

2
+γ ∧ (t − s)

1

2
+γ) ≥ − εL

2
+ 4Lγ for L large enough. On the other

hand, m(t) − µt − d ≥ − 3(2−5γ)

2
√

2
log L − d ≥ −Lγ for L large enough.
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and we have then, for all 0 ≤ j ≤ N−1 and for L large enough such that (5N+1)Lγ ≤ εL/2
(which is possible since γ < 1/7),

Ēj+1 ⊃
{

∃i ∈ J1, M(T )K : Xi(T ) ≥ −5Lγ and ∀t ∈ [0, T ], Xi,T (t) ≥ −εL/2 and

∃k ∈ J1, M i(jT )K : Xi(T ) + min Xi
k,jT ≥ −εL + (5(N − j − 1) + 1)Lγ

}
,

(5.19)

where Xi denotes the BBM emanating from the particle at Xi(T ) at time T in the BBM X,
that is then shifted so that it starts from 0 at time 0. According to the branching property,
(Xi, 1 ≤ i ≤ ML(T )) is a family of independent BBM, which is moreover independent
of FT , so it follows from (5.19) that P(0)(Ēj+1) ≥ P(0)(C)P(0)(Ēj), where C is defined in
Lemma 5.6. As E0 = Ω and ĒN = Ē, we get

P(0)(E) ≥ P(0)(C)N ≥ (1 − 2Le−Lγ
)⌈L4γ ⌉ = exp

(
−2Le−Lγ

L4γ(1 + o(1)
)

−→
L→∞

1,

for L large enough, using Lemma 5.6.

Remark 5.8. Instead of showing Lemma 5.6 and Corollary 5.7, we could have used Theorem
2 of Berestycki, Berestycki and Schweinsberg [6], showing that a BBM with drift −

√
2

starting with a single particle at x has an extinction time close to (2
√

2/3π2)x3 when x
is large enough. Thus, Corollary 5.7 is still true with c(εL)3 instead of L2+γ , for any
c ∈ (0, 2

√
2/3π2). But the proof given here is much more elementary and is sufficient for

our purpose, so we kept it.

Proof of Proposition 5.3. We introduce for i ≥ 0 the event Ei defined by “in the BBM X,
the particle at max XL(τi) at time τi has a descendant at time τi + L2+γ whose trajectory
between times τi and τi + L2+γ stays above t 7→ max XL(τi) − εL + 2ε

L2 (t − τi)”. It is
clear that P(0)(Ei|Fτi) = P(0)(E), where E is defined in Corollary 5.7. Moreover, we have
Ac

i ∩ Ei ⊂ {τi+1 − τi ≥ L2+γ}: on the event Ac
i , τi+1 is the first time after τi when max XL

goes below t 7→ max XL(τi) − εL + 2ε
L2 (t − τi), so on the event Ac

i ∩ Ei the descendant at
time τi + L2+γ in the definition of Ei cannot be killed by selection4 and so belongs to the
L-BBM and guarantees that τi+1 ≥ L2+γ + τi. Thus, we have

P(0)

(
Ac

i ∩ {τi+1 − τi < L2+γ}
∣∣∣ Fτi

)
≤ P(0)(E

c
i | Fτi) = 1 − P(0)(E) (5.20)

for all i ≥ 0.
Now the reasoning is as follows: by (5.20) and Corollary 5.7, on each event Ac

i we have
τi+1 − τi ≥ L2+γ with high probability and, by Proposition 5.1, we know that more than
n/3 events Ac

i happen until time τn, thus τn/n must be larger than L2+γ/6 for n large
enough. For n ∈ N

∗, we have

P(0)

(
τn

n
<

L2+γ

6

)
≤ P(0)

(
τn

n
<

L2+γ

6
and

Kn

n
≤ 2

3

)
+ P(0)

(
Kn

n
>

2
3

)
. (5.21)

4The killing barrier of the L-BBM stays below max XL(τi)+εL−L and, thus, below t 7→ max XL(τi)−
εL + 2ε

L2 (t − τi).
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By the proof of Proposition 5.1, we know that P(0)(Kn/n > 2/3) is summable in n for L
large enough. Moreover, denoting by Pk(S) the set of the subsets with k elements of a set
S, the first term on the right-hand side of (5.21) is equal to

⌊2n/3⌋∑

k=0

P(0)

(
τn

n
<

L2+γ

6
and Kn = k

)

=
⌊2n/3⌋∑

k=0

∑

I∈Pn−k(J1,nK)

P(0)



{

τn

n
<

L2+γ

6

}
∩
⋂

i∈I

Ac
i ∩

⋂

i/∈I

Ai


. (5.22)

But, on the event
{
τn/n < L2+γ/6

}
, the events {τi+1 − τi ≥ L2+γ} happen for at most

⌊n/6⌋ indices i. Therefore, (5.22) is bounded by

⌊2n/3⌋∑

k=0

∑

I∈Pn−k(J1,nK)

∑

J∈Pn−k−⌊n/6⌋(I)

P(0)

(
⋂

i∈J

(
Ac

i ∩ {τi+1 − τi < L2+γ}
))

≤
⌊2n/3⌋∑

k=0

(
n

n − k

)(
n − k

n − k − ⌊n/6⌋

)
(1 − P(0)(E))n−k−⌊n/6⌋, (5.23)

by conditioning successively on Fτi for all i ∈ J (in descending order) and using repeatedly
(5.20). Then, we bound (5.23) from above by

(⌊
2n

3

⌋
+ 1

)
2n2n(1 − P(0)(E))n−⌊2n/3⌋−⌊n/6⌋ ≤ n

(
4(1 − P(0)(E))1/6

)n
,

which is summable for L large enough according to Corollary 5.7. Coming back to (5.21),
P(0)(τn/n < L2+γ/6) is summable and the result follows by the Borel-Cantelli lemma.
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